
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

Online Bin Packing with Resource Augmentation

L. Epstein, R. van Stee

REPORT SEN-E0413 SEPTEMBER 2004

SEN
Software Engineering



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



Online Bin Packing with Resource Augmentation

ABSTRACT
In competitive analysis, we usually do not put any restrictions on the computational complexity
of online algorithms, although efficient algorithms are preferred. Thus if such an algorithm were
given the entire input in advance, it could give an optimal solution (in exponential time). Instead
of giving the algorithm more knowledge about the input, in this paper we consider the effects of
giving an online bin packing algorithm larger bins than the offline algorithm it is compared to.
We give new algorithms for this problem that combine items in bins in an unusual way and give
bounds on their performance which improve upon the best possible bounded space algorithm.
We also give general lower bounds for this problem which are nearly matching for bin sizes b 2.

2000 Mathematics Subject Classification:  68W25,68W40
1998 ACM Computing Classification System: F.2.2
Keywords and Phrases: bin packing;online algorithms;resource augmentation

≥



Online Bin Packing with Resource Augmentation

Leah Epstein∗ Rob van Stee†

September 8, 2004

Abstract

In competitive analysis, we usually do not put any restrictions on the computational complexity of
online algorithms, although efficient algorithms are preferred. Thus if such an algorithm were given the
entire input in advance, it could give an optimal solution (in exponential time). Instead of giving the
algorithm more knowledge about the input, in this paper we consider the effects of giving an online bin
packing algorithm larger bins than the offline algorithm it is compared to. We give new algorithms for
this problem that combine items in bins in an unusual way and give bounds on their performance which
improve upon the best possible bounded space algorithm. We also give general lower bounds for this
problem which are nearly matching for bin sizes b ≥ 2.

1 Introduction

In this paper we investigate the bin packing problem, one of the oldest and most thoroughly studied problems
in computer science [2, 3]. In particular, we investigate this problem using the resource augmentation model,
where the online algorithm has bins of size b ≥ 1 and is compared to an offline algorithm that has bins of
size 1. We show improved upper bounds and general lower bounds for this problem.

Problem Definition In the classical bin packing problem, we receive a sequence σ of items p1, p2, . . . , pN .
Each item has a fixed size in (0, 1]. In a slight abuse of notation, we use pi to indicate both the ith item
and its size. We have an infinite supply of bins each with capacity 1. Each item must be assigned to a bin.
Further, the sum of the sizes of the items assigned to any bin may not exceed its capacity. A bin is empty if
no item is assigned to it, otherwise it is used. The goal is to minimize the number of bins used.

In the resource augmentation model [8, 11], one compares the performance of a particular algorithm A
to that of the optimal offline algorithm (denoted by OPT) in an unfair way. The optimal offline algorithm
uses bins of capacity one, where A is allowed to use bins of capacity b > 1. The goal is still to minimize
the number of bins used.

In the online versions of these problems, each item must be assigned in turn, without knowledge of the
next items. Since it is impossible in general to produce the best possible solution when computation occurs
online, we consider approximation algorithms. Basically, we want to find an algorithm that incurs cost
which is within a constant factor of the minimum possible cost, no matter what the input is. This constant
factor is known as the asymptotic performance ratio.

∗School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. lea@idc.ac.il. Research supported by Israel
Science Foundation (grant no. 250/01).

†Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands. Rob.van.Stee@cwi.nl. Research
supported by the Netherlands Organization for Scientific Research (NWO), project number SION 612-061-000.

1



The resource augmentation model was introduced due to the following drawback of standard competitive
analysis. Competitive analysis compares the performance of an online algorithm, which must pack each item
upon arrival, to that of an omniscient and all-powerful offline algorithm that gets the input as a set. Resource
augmentation gives more power to the online algorithm, making the analysis more general.

A bin-packing algorithm uses bounded space if it has only a constant number of bins available to accept
items at any point during processing. These bins are called open bins. Bins which have already accepted
some items, but which the algorithm no longer considers for packing are closed bins. While bounded space
algorithms are sometimes desirable, it is often the case that unbounded space algorithms can achieve lower
performance ratios.

We define the asymptotic performance ratio more precisely. For a given input sequence σ, and a fixed
bin size b, let costA,b(σ) be the number of bins (of size b) used by algorithm A on σ. Let cost(σ) be the
minimum possible cost to pack items in σ using bins of size 1. The asymptotic performance ratio for an
algorithm A is defined to be

R∞
A,b = lim sup

n→∞
max

σ

{
costA,b(σ)

cost(σ)

∣∣∣∣∣cost(σ) = n

}
.

The optimal asymptotic performance ratio is defined to be R∞
OPT,b = infA R∞

A,b. Our goal is to find for all
values of b (b ≥ 1) an algorithm with asymptotic performance ratio close to R∞

OPT,b.

Previous Results The classic online bin packing problem was first investigated by Ullman [14]. He
showed that the FIRST FIT algorithm has performance ratio 17

10 . This result was then published in [6]. John-
son [7] showed that the NEXT FIT algorithm has performance ratio 2. Yao showed that REVISED FIRST FIT

has performance ratio 5
3 . Currently the best known lower bound is 1.54014, due to van Vliet [15].

Define u1 = 2, ui+1 = ui(ui − 1) + 1, and h∞ =
∑∞

i=1
1

ui−1 ≈ 1.69103. Lee and Lee showed
that the HARMONIC algorithm, which uses bounded space, achieves a performance ratio arbitrarily close
to h∞ [9]. They further showed that no bounded space online algorithm achieves a performance ratio less
than h∞ [9]. In addition, they developed the REFINED HARMONIC algorithm, which they showed to have a
performance ratio of 273

228 < 1.63597. The next improvements were MODIFIED HARMONIC and MODIFIED

HARMONIC 2. Ramanan, Brown, Lee and Lee showed that these algorithms have performance ratios of
538
333 < 1.61562 and 239091

148304 < 1.61217, respectively [12]. Currently, the best known upper bound is 1.58889
due to Seiden [13].

Bin packing with resource augmentation was first studied by Csirik and Woeginger [4]. They give an
optimal bounded space algorithm. Naturally, its asymptotic performance ratio is strictly decreasing as a
function of the bin size of the online algorithm. Some preliminary general lower bounds for bin packing
with resource augmentation were given in [5]. In Section 7, we will compare them to our new lower bounds.

Our Results In this paper, we present new algorithms for the online bin packing problem in the resource
augmentation model. We introduce a general method which extends many previously studied algorithms for
bin packing. This method takes the online bin size b as a parameter. We study four instances of the general
method, each of our algorithms performs well for a different interval of values of b. By partitioning the
interval [1, 2) in four sub-intervals and using the most appropriate algorithm on each sub-interval, we give
upper bounds that improve upon the bounds from [4] on the entire interval. That is, these algorithms are
better than the best possible bounded space algorithm.

Our analysis technique extends the general packing algorithm analysis technique developed by Sei-
den [13]. Specifically, unlike previous algorithms which pack the relatively small items by a very simple

2



heuristic (Next-Fit, or any fit), we combine small items with large items in the same bins in order to achieve
good performance (see the algorithms SMH and TMH).

We also show new lower bounds for this model, by using improved sequences. For b ≥ 2, our lower
bounds show that the best bounded space algorithm is very close to optimal (among unbounded space
algorithms).

2 The HARMONIC algorithm and variations

In this section we discuss the important HARMONIC algorithm [9] and possible variations on it. In the next
section we will discuss the specific variations on HARMONIC that we have used in this paper.

The fundamental idea of these algorithms is to first classify items by size, and then pack an item ac-
cording to its class (as opposed to letting the exact size influence packing decisions). For the classification
of items, we need to partition the interval (0, 1] into subintervals. The standard HARMONIC algorithm uses
n− 1 subintervals of the form (1/(i + 1), 1/i] for i = 1, . . . , n− 1 and one final subinterval (0, 1/n]. Each
bin will contain only items from one subinterval (type). Items in subinterval i are packed i to a bin for
i = 1, . . . , n − 1 and the items in interval n are packed in bins using NEXT FIT.

A disadvantage of HARMONIC is that items of type 1, that is, the items larger than 1/2, are packed one
per bin, possibly wasting a lot of space in each single bin. To avoid this large waste of space, later algorithms
used two extra interval endpoints, of the form ∆ > 1/2 and 1−∆. Then, some small items can be combined
in one bin together with an item of size ∈ (1/2, ∆]. Items larger than ∆ are still packed one per bin as in
HARMONIC. These algorithms furthermore use parameters αi (i = 3, . . . , n) which represent the fraction
of bins allocated to type i where the algorithm will reserve space for items ∈ (1/2, ∆]. The remaining bins
with items of type i still contain i items per bin.

Example MODIFIED HARMONIC (MH) is defined by n = 38 (the number of intervals) and ∆ = 419/684.

α2 = 1
9 ;

α3 = 1
12 ;

α4 = α5 = 0;

αi =
37 − i

37(i + 1)
, for 6 ≤ i ≤ 36;

α37 = α38 = 0.

The results of [12] imply that the asymptotic performance ratio of MH is at most 538
333 < 1.61562. (In the

original definition, ∆ was used to denote 1 − ∆.)

In the current paper, we will use as interval endpoints the points of the form b/i (as long as they are
below 1) instead of 1/i, since items in (b/(i + 1), b/i] can be placed exactly i to a bin in an (online) bin of
size b. Moreover, sometimes we will also use points of the form ∆, b − ∆, 1 − b/2 as interval endpoints, in
order to combine items from different types where they would otherwise waste much space.

Note that for b ∈ [1, 2) we always have b/2 ≤ 1. We now consider an algorithm A that uses n basic
intervals (some might be subdivided further):

I1
A = (b/2, 1]

Ij
A = (b/(j + 1), b/j] j = 2, . . . , n − 1

In
A = (0, b/n]

3



In case ∆ is used as an endpoint, the interval I1
A = (b/2, 1] is partitioned into two subintervals, which

will be denoted by I
∆(2)
A = (b/2, ∆] and I

∆(1)
A = (∆, 1]. (∆ will always be chosen larger than b/2.) We will

use two versions of algorithms, that are determined by whether they use b − ∆ or 1 − b/2 as an additional
endpoint. We denote the largest possible size of an item of the smallest type by ε. This is b/n unless In

A is
divided further into two subintervals.

Version 1 We use the endpoint b − ∆ (but not the endpoint 1 − b/2). Let j∆ be the integer such that
b/(j∆ + 1) < b − ∆ ≤ b/j∆. Then Ij∆

A is partitioned into two subintervals, which will be denoted by

I
∆(4)
A = (b/(j∆ + 1), b − ∆] and I

∆(3)
A = (b − ∆, b/j∆].

Version 2 We use the endpoint 1 − b/2 (but not the endpoint b − ∆). Let j∆ be an integer such that
b/(j∆ + 1) < 1 − b/2 ≤ b/j∆. In this version we always take n ≥ j∆.

If n ≥ j∆ +1, then Ij∆
A is partitioned into two subintervals, which will be denoted by I

∆(4)
A = (b/(j∆ +

1), 1 − b/2] and I
∆(3)
A = (1 − b/2, b/j∆].

Otherwise nA = j∆ and In
A is partitioned into the two subintervals I

∆(4)
A = (0, 1 − b/2] and I

∆(3)
A =

(1 − b/2, b/n].

In both versions, the intervals are disjoint and cover (0, 1]. A assigns each item a type depending on its
size. An item of size s has type τA(s) where τA(s) = j ⇔ s ∈ Ij

A. Note that either 2 ≤ j ≤ n (j �= j∆)
or j = ∆(i) for some 1 ≤ i ≤ 4.

Note that if we place an item from the interval I
∆(2)
A in a bin, the amount of space left over is at least

b − ∆. If possible, we would like to use this space to pack more items. To accomplish this, we assign each
item a color, red or blue. A attempts to pack red items with type I

∆(2)
A items. For both versions, all items of

types 2, . . . , j∆−1 and ∆(k), k = 1, 2, 3 (where applicable) are blue. Other items can be either red or blue.
To assign colors to items, the algorithm uses two sets of counters, ej∆ , . . . , en and sj∆ , . . . , sn, all of

which are initially zero. The counter sj∆ counts the number of bins for items of type ∆(4), and the counter
si keeps track of the total number of bins in which we packed items of type i for i = j∆ + 1, . . . , n. The
counters ei are defined analogously, but only count the number of bins containing red items of type ∆(4) or
i. These bins are also called red themselves.

For j∆ ≤ i ≤ n, A maintains the invariant ei = �αisi�, i.e. the fraction of bins with type i items that
contain red items is approximately αi. Recall that αi is defined only for j∆ ≤ i ≤ n. For each such interval,
at least one item can fit in a bin together with an item of size at most ∆ in a bin of size b. Moreover, for
version 2 we combine only relatively small items with items of interval ∆(2), so in most cases several items
fit together with the ∆(2) item.

We now describe how blue and red items are packed. The packing of blue items is simple. For i < n,
the number of items with sizes in (b/(i + 1), b/i] which fit in a bin of size b is i. Blue items with such sizes
are placed i in a bin, as in the HARMONIC algorithm. Note that the type of such an item is either i or ∆(k)
for some 1 ≤ k ≤ 4. Small items (type n) which are colored blue are packed into separate bins using NEXT

FIT, again as in the HARMONIC algorithm.
For the red items, we consider the two versions of algorithms defined before separately.

Version 1 One red item of type ∆(4) can be combined with an item of type ∆(2). We define γj∆ = 1. For
j∆ < j < n, the number of red items we will assign together with a type ∆(2) item is γj = �j(b − ∆)/b�.
For type n, we treat the remaining space of b − ∆ in bins containing an item of type ∆(2) as a bin, and use

4



NEXT FIT to place red items in such bins. Clearly we can fill at least b−∆− b/n of this space by small red
items.

Version 2 If n = j∆, it means that we combine only the smallest interval with items of type ∆(2). Then
we can assign at least b− ε = 3b/2− 1 to blue items bins, and b−∆− ε = 3b/2−∆− 1 to red items bins.
If n > j∆, all the amounts are defined as for version 1, except for γj∆ = �(b − ∆)/(1 − b/2)�.

We explain more precisely the method by which red items are packed with type ∆(2) items. When a bin
is opened, it is assigned to a group. If ε = b/n, the bin groups are named:

∆(1), ∆(3), ∆(4), 2, 3, , . . . , j∆ − 1, j∆ + 1, . . . n; (1)

(∆(2), i), for αi �= 0, j∆ ≤ i ≤ n; (2)

(∆(2), ∗); (3)

(∗, i), for αi �= 0, j∆ ≤ i ≤ n; (4)

If ε = 1 − b/2, i.e. the smallest interval was partitioned, the bin groups are named:

∆(1), ∆(3), ∆(4), 2, 3, . . . , n − 1; (5)

(∆(2), ∆(4)); (6)

(∆(2), ∗); (7)

(∗, ∆(4)); (8)

Bins from groups in (1) and (5) contain only blue items of the type they is named after. The closed bins
all contain the maximum number of items they can have (explained earlier).

If the smallest interval was not partitioned, then for j∆ ≤ i < n, a closed bin in group (∆(2), i) contains
one type ∆(2) item and γi type i items, and a closed bin in group (∆(2), n) contains one type ∆(2) item
and red items of total size at least b−∆− b/n. If the smallest interval was partitioned, a closed bin in group
(∆(2), ∆(4)) contains red items of total size at least 3b/2−∆− 1. There is at most one open bin in any of
these groups.

The group (∆(2), ∗) contains bins which hold a single blue item of type ∆(2). These bins are all open,
as we hope to add red items to them later.

The group (∗, j) contains bins which hold only red items of type j. Again, these bins are all open, but
only one has fewer than γj items if j < n. For j = n only one bin can contain total size of less than
b − ∆ − ε of red items of the last interval. We will try to add a type ∆(2) item to these bins if possible.

We call bins in the last two group classes ((3) and (4), or (7) and (8)) indeterminate. Essentially, the
algorithm tries to minimize the number of indeterminate bins, while maintaining all the aforementioned
invariants. I.e. we try to place red and type ∆(2) items together whenever possible; when this is not
possible we place them in indeterminate bins in hope that they can later be combined.

On arrival of an item, it gets the same color as the previous item of the same type, if it can also fit into
the same bin. Otherwise, we update the bins counter, and according to the counters, decide which color it
gets.

3 Algorithms in this paper

After describing the general framework, we now describe the specific algorithms that we have designed.
They are all instances of the general algorithm above.

5



3.1 Generalized Modified Harmonic (GMH)

This algorithm has the same structure as the regular MODIFIED HARMONIC, i.e. n = 38, and the same
values of αi. The only difference is that the variable ∆ is adjusted to ensure that ∆ ∈ (b/2, 1) for b ∈ [1, 2).

Specifically, we let ∆ grow linearly with the bin size until it reaches the value 1 for a bin size of 2, i.e.
∆ = 419/684 + 265(b − 1)/684. We applied this algorithm on the interval [1, 6/5). This algorithm is of
version 1 as we only modify ∆.

3.2 Convenient Modified Harmonic (CMH)

On the interval [6/5, 4/3), we focus on the items that could be packed together in one offline bin together
with items of type 1, that is, items that are just larger than b/2. This was done specifically to handle the
greedy input sequence, which starts with an item just larger than b/2 and repeatedly adds an item of the form
b/ij + ε such that all items together fit into a bin of size b.

Our algorithm is of version 1 and does the following. Let

k =
⌊

1
1 − b/2

⌋
.

This means that the largest items that can be packed together with an item of size b/2 in a single bin of
size 1 are in the interval (1/(k + 1), 1/k] (possibly not every size in this interval can be so packed). Let
∆ = (k − 1)b/k. Note that in the interval of b we consider, we always have k = 3 and hence ∆ = 2b/3.
Note that b − ∆ = b/k and therefore I∆(3) = ∅.

Our choice of ∆ ensures that items of type ∆(2), with sizes in (b/2, (k−1)b/k], can be packed very well
together with items of type k, with sizes in (b/(k + 1), b/k], in our case this is (b/4, b/3]. In the discussed
interval we have b/2+ b/4 < 1, so in the optimal packing such items could also be together in one bin. The
choice of n = 38 is as in GMH and the values αi are chosen by experimenting. The values we used are

α3 = 1
8 ;

α4 = 1
10 ;

α5 = 0;

αi =
37 − i

37(i + 4)
, for 6 ≤ i ≤ 36;

α37 = α38 = 0.

3.3 Small Modified Harmonic (SMH)

On the interval [4/3, 12/7 ≈ 1.7143), it becomes more important how to pack smaller items (relative to b).
We define ∆ = 1, and n = 12. Thus I∆(1) = ∅. Note that we use the second version of the algorithm,
which means that in marked contrast to all other previously defined variations on Harmonic that the authors
are aware of, we do not take α12 = 0, that is, we pack some of the smallest items together with the large
items.

We illustrate the reason. Consider a bin of size 3/2. Taking ∆ = 1 leaves a space of 1/2 in a bin. This
space could be used to accommodate an item of size b/3 = 1/2. However, items of size in (b/4, b/3], when
packed three to a bin, occupy at least 3b/4 = 9/8 > 1. Considering an offline packing we can see that such
items do not fit together with an items of type ∆(2). Therefore there is no reason to improve their packing
which is already relatively good.

6



However, items that do fit together with type ∆(2) items do need to be packed more carefully (partly red
and partly blue), including the ones from the last interval, since they can be combined in an offline packing.
We determine the largest item type that OPT could pack together with an item in (b/2, 1] (i.e. the smallest i
such that b/i ≤ 1 − b/2). Larger items are packed according to Harmonic, while a fraction of these smaller
items are reserved to be packed together with an item of type ∆(2), i.e. in (b/2, 1].

We explain how to fix the values αi for this algorithm in Section 4.2.

3.4 Tiny Modified Harmonic (TMH)

On the interval [12/7, 2), it turns out that it is crucial to pack the smallest items better than with Harmonic.
All other items are packed in their own bins according to Harmonic. We use the second version of the
algorithm. We use ∆ = 1 (so I∆(1) = ∅) and let n = j∆.

In other words, we determine the number of intervals that we use in such a way that 1 − b/2 ∈ (b/(n +
1), b/n]. The smallest interval boundary of the form b/i is just larger than 1 − b/2 (or equal to it). This
ensures that in the optimal packing, only items of the smallest type could be packed together with large
items with size in (b/2, 1]. We use αj∆ = (2b − 2)/(4 − b).

It would be possible to improve very slightly using the algorithm SMH with more intervals, but the
number of intervals required grows without bound as b approaches 2, and it becomes infeasible to calculate
all the patterns.

4 Analysis

An algorithm for a given bin size b can be used without change for any bin size c ≥ b, and will have the same
performance ratio since for any given sequence, the offline optimal packing and the cost of the algorithm
remain unchanged. This means that the function R∞

OPT,b is monotonically decreasing in b. This property
allows us to give bounds on an interval by sampling a large but finite number of points. An upper bound for
the bin size b holds for b + γ for any γ > 0. A lower bound for the bin size b holds for a bin size b − γ for
any γ > 0.

4.1 Weighting functions

The type of algorithm described in Section 2 can be analyzed using the method of weighting systems devel-
oped in [13]. The full generality of weighting systems is not required here, so we adopt a slightly different
notation than that used in [13], and restrict ourselves to a subclass of weighting systems.

A weighting system for an algorithm A is a pair (WA, VA). WA and VA are weighting functions which
assign each item p a real number based on its size. The weighting functions for an algorithm A are defined
as follows.

If ε = 1 − b/2, the only value of αi which is not zero is αj∆ . The weighting functions are defined as
follows.

Type of item p WA(p) VA(p)
∆(1) 1 1
∆(2) 1 0

k ∈ {2, 3, . . . , j∆ − 1} 1/k 1/k
∆(3) 1/j∆ 1/j∆

∆(4)
p(1 − αj∆)

3b/2 − 1 − ∆αj∆

p

3b/2 − 1 − ∆αj∆

7



For the cases that ε = b/n we define the functions differently.

Type of item p WA(p) VA(p)
∆(1) 1 1
∆(2) 1 0

k ∈ {2, 3, . . . , j∆ − 1} 1/k 1/k
∆(3) 1/j∆ 1/j∆

∆(4)
1 − αj

γj∆αj
∆ + j∆(1 − αj

∆)

1

γj∆αj
∆ + j∆(1 − αj

∆)

k ∈ {j∆ + 1, . . . , n − 1} 1 − αk

γkαk + k(1 − αk)
1

γkαk + k(1 − αk)

n
p(1 − αn)

b − b/n − ∆αn

p

b − b/n − ∆αn

The following lemma follows directly from Lemma 4 of [13]:

Lemma 1 For all σ, we have

costA(σ) ≤ max

{∑
p∈σ

WA(p),
∑
p∈σ

VA(p)

}
+ O(1).

So the cost to A can be upper bounded by the weight of items in σ, and the weight is independent of the
order of items in σ.

We give a short intuitive explanation of the weight functions and Lemma 1: Consider the final packing
created by an algorithm A on some input σ. In this final packing, let r be the number of bins containing red
items, let b1 be the number of type ∆(2) items, and let b2 be the number of bins containing blue items of
type other than ∆(2). The total number of bins is just max{r, b1} + b2 = max{r + b2, b1 + b2}. We have
chosen our weighting functions so that

∑
p∈σ WA(p) = b1 + b2 + O(1) and

∑
p∈σ VA(p) = r + b2 + O(1).

In both WA and VA, the weight of a blue item of type other than ∆(2) is just the fraction of a bin that it
occupies. WA counts type ∆(2) items, but ignores red items. VA ignores type ∆(2) items, but counts bins
containing red items. For a formal proof, we refer the reader to [13].

Let f be some function f : (0, 1] �→ �
+.

Definition 4.1 P(f) is the mathematical program: Maximize
∑n

x∈X f(x) subject to
∑

x∈X x ≤ 1, over
all finite sets of real numbers X . In an abuse of notation, we also use P(f) to denote the value of this
mathematical program.

Intuitively, given a weighting function f , P(f) upper bounds the amount of weight that can be packed in a
single bin. It is shown in [13] that the performance ratio of A is upper bounded by max{P(WA),P(VA)}.
The value of P is easily determined using a branch and bound procedure very similar to those in [13, 5].

4.2 Choice of values αi for SMH

To choose the values of αi in the algorithm SMH we use the following idea. We would like to balance the
total weight of two particular offline packings. The first offline packing contains one item of interval ∆(2)
and smaller items of type i (here the weight is maximized by considering the weight function WA). The
second offline packing contains only items of type i, and we use VA to determine the maximum weight.

8



In order to balance these weights, we define the expansion of type i to be the maximum ratio of weight
to size of an item of type I . Let EV (i) be the expansion according to VA and EW (i) be the expansion
according to WA. We would like to have

EV (i) = 1 + (1 − b/2)EW (i).

This implies

αi =
S − b/2

S − s + 1 − b/2
,

where S is the minimal occupied area in a closed bin containing blue items of type i and s is the minimal
occupied area by red items of interval I in a closed bin.

Note that this computation is not entirely accurate for all types, as it is not always possible to fill a bin of
size 1 or of size 1− b/2 completely with items of the largest expansion. However, the interval which affects
the asymptotic performance ratio the most is (0, ε].

4.3 Analysis of TMH

The simple structure of TMH allows an analytical solution. For this algorithm, we do not need to solve
mathematical programs, but can instead calculate the asymptotic worst case performance directly, as follows.

For all types but the smallest and the largest, the weight of an item of size x is at most x. The reason for
this is that they are packed according to Harmonic, and TMH can fit at least the same number of items per
bin as OPT can. To get a bin of weight more than 1, there must be some items of the first or the last type.

The upper bound of the last interval is 1 − b/2, denoted by ε. Only items in this interval can be packed
together with a type ∆(2) item in one bin.

Recall that the algorithm uses a parameter α = αj∆ that determines how the small items are packed.
The algorithm maintains the invariant that a fraction α of the bins containing small items are red and have
room for a type ∆(2) item. The total size of all the small items in such a bin is at least b − 1 − ε. The rest
of these bins are blue and contain a volume of at least b − ε. There are two cases.

Case 1 There is no item of type ∆(2). If TMH uses k bins to pack all items of type ∆(4) (the last
type), then αk bins are red and contain a minimum volume of b − 1 − ε each; (1 − α)k bins contain a
minimum total volume of b − ε of small blue items each. Thus k bins contain a total volume of at least
αk(b− 1− ε) + (1− α)k(b− ε) = k(b− α− ε), in other words each bin contains on average a volume of
at least b − α − ε. The worst case is that all the items are small. Since an offline bin can contain one unit
of such items, this gives an asymptotic performance ratio of 1/(b− α− ε). Note that this is consistent with
the definition of the function VA for this case.

Case 2 There is an item of type ∆(2). We are interested in the case that its weight is 1, i.e. in the weights
according to the function WA. The large item is of size at least b/2. The weight in a bin that contains such
an item is maximized by filling up the bin with items of type ∆(4). The remaining space in the offline bin is
exactly 1− b/2. In this case, TMH only needs “to pay” for the blue bins. It packs a volume of k(b−α− ε)
using only (1 − α)k blue bins. The total weight according to WA is 1 + 1−α

b−α−ε(1 − b/2).

Balancing the weights gives that the best choice is α = 2b−2
4−b and a ratio of 1/(b − α − ε) = (2b −

8)/(3b2 − 10b + 4).

9



5 Lower bounds

We now consider the question of lower bounds. Prior to this work, only a very simple general (non-bounded
space) lower bound for resource-augmented online bin packing was known [5].

Our method follows along the lines laid down by Liang, Brown and Van Vliet [1, 10, 15]. We give some
unknown online bin packing algorithm A one of k possible different inputs. These inputs are defined as
follows: Let � = s1, s2, . . . , sk be a sequence of item sizes such that 0 < s1 < s2 < · · · < sk ≤ 1. Let ε be
a small positive constant. We define σ0 to be the empty input. Input σi consists of σi−1 followed by n items
of size si + ε. Algorithm A is given σi for some i ∈ {1, . . . , k}.

A pattern with respect to � is a tuple p = 〈size(p), p1, . . . , pk〉 where size(p) is a positive real number
and pi, 1 ≤ i ≤ k are non-negative integers such that

∑k
i=1 pi si < size(p). Intuitively, a pattern describes

the contents of some bin of capacity size(p). Define P(�, β) to be the set of all patterns p with respect to �
with size(p) = β. We write POPT(�) = P(�, 1) and PA(�) = P(�, b). Note that these sets are necessarily
finite. Given an input sequence of items, an algorithm is defined by the numbers and types of items it places
in each of the bins it uses. Specifically, any online algorithm is defined by a function Φ : PA(�) �→ � ≥0.
The algorithm uses Φ(p) bins containing items as described by the pattern p. We define φ(p) = Φ(p)/n.

Consider the function Φ that determines the packing used by online algorithm A uses for σk. Since A
is online, the packings it uses for σ1, . . . , σk−1 are completely determined by Φ. We assign to each pattern
a class, which is defined as class(p) = min{i | pi �= 0}. Intuitively, the class tells us the first sequence σi

which results in some item being placed into a bin packed according to this pattern. I.e. if the algorithm
packs some bins according to a pattern which has class i, then these bins will contain one or more items
after σi. Define PA(�, i) = {p ∈ PA(�) | class(p) ≤ i}. Then if A is determined by Φ, its cost for σi is
simply n

∑
p∈PA(�,i) φ(p). Since the algorithm must pack every item, we have the following constraints

n
∑

p∈P(�)

φ(p) pi ≥ n, for 1 ≤ i ≤ k.

For a fixed n, define χi(n) to be the optimal offline cost for packing the items in σi. The following lemma
gives us a method of computing the optimal offline cost for each sequence:

Lemma 2 ([5]) For 1 ≤ i ≤ k, χ∗ = limn→∞ χi(n)/n exists and is the value of the linear program:
Minimize

∑
p∈POPT(�,i) φ(p) subject to 1 ≤ ∑

p∈POPT(�) φ(p) pj , for 1 ≤ j ≤ i, over variables χi and

φ(p), p ∈ POPT(�).

Given the construction of a sequence, we need to evaluate

c = min
A

max
i=1,...,k

lim sup
n→∞

costA(σi)
χi(n)

.

As n → ∞, we can replace χi(n)/n by χ∗
i . Once we have the values χ∗

1, . . . , χ
∗
k, we can readily compute a

lower bound for our online algorithm:

Lemma 3 The optimal value of the linear program: Minimize c subject to

c ≥ 1
χ∗

i

∑
p∈PA(�,i)

φ(p), for 1 ≤ i ≤ k;

1 ≤
∑

p∈PA(�)

φ(p) pi, for 1 ≤ i ≤ k;
(9)

10



over variables c and φ(p), p ∈ PA(�), is a lower bound on the asymptotic performance ratio of any online
bin packing algorithm.

Proof. For any fixed n, any algorithm A has some Φ which must satisfy the second constraint. Further, Φ
should assign an integral number of bins to each pattern. However, this integrality constraint is relaxed, and∑

p∈PA(�,i) φ(p) is 1/n times the cost to A for σi as n → ∞. The value of c is just the maximum of the
performance ratios achieved on σ1, . . . , σk. �

Similarly to in [5], it can be shown that we only need to consider dominant patterns in Lemmas 2 and 3.

6 Lower bound sequences

To determine a lower bound, we extended the idea of a “greedy” sequence that was also used to give the
best known lower bound for the standard online bin packing problem [1, 10, 15]. Interestingly, unlike these
papers and the previous paper on resource augmentation in bin packing [4], it turns out to be insufficient to
simply consider the “standard” greedy sequence that we will define first. More sequence and arguments are
required to get a good lower bound.

A greedy sequence is built as follows. We start by taking the largest possible number of the form b/i that
is less than 1, where i is a positive integer. If b ∈ [1, 2), this is always the number b/2. Then we repeatedly
add the largest possible b/ij (ij is an integer) that fits in the remaining space after packing all previous items
in a bin of size 1. That is, for b ∈ [1, 2), the second item b/i2 has size strictly less than 1 − b/2. We repeat
this until the item found is sufficiently small.

We also use several modified greedy sequences. The reason to do that is that unlike the construction
for bounded space algorithms [4], we need to consider the optimal offline packing of subsequences and not
only of the complete sequence. For some intervals of values of b, some greedy items b/ij are inconvenient
to pack into bins of size 1, and a higher bound can be proved by choosing such items differently.

The first modified sequence picks the item b/(i2 + 1) instead of b/i2, and continues greedily from that
point. Another natural choice is b/(i2 + 2) instead of b/i2, but that does not improve the bounds. A second
modified sequence keeps the first two items picked greedily, b/2 and b/i2, but it picks b/(i3 + 1) as the next
item, and continues greedily. A third version picks both the second and third item using this non-greedy
method.

The lower bound is then constructed in the standard fashion: we have constructed a sequence of item
sizes b/2, b/i2, b/i3, . . . , b/ij . We invert the order of this sequence and start with the smallest item size. The
inputs σi are then constructed as described above, where ε is chosen in such a way that a set which consists
of one instance of each item can be placed together in a single bin of size 1.

For b ≥ 2 we use only the basic greedy sequence.

7 Results

As mentioned in Section 4, we can determine valid upper and lower bounds on the asymptotic performance
ratio for this problem on any interval by sampling a finite number of points. In fact, since we have given an
analytical solution for the algorithm TMH, it is not necessary to do any sampling for the upper bound on the
interval (12/7, 2].

On the remaining intervals, we used a computer program to solve the associated mathematical program
P for many specific values of b (we sampled integer multiples of 1

1000 ) and whichever algorithm is used for
that value of b.

11



We also used a computer program to generate lower bounds for 1,000 values of b between 1 and 2. There
were some values of b where all lower bound sequences that we used gave a worse lower bound than we had
already found for some higher value of b. However, a lower bound of c for a value b0 also implies a lower
bound of c for all values 1 ≤ b ≤ b0 as stated before. Therefore, whenever we found a lower bound that was
worse than one that was found for some higher value of b, we instead use this higher bound. This explains
the small intervals in the graph where the lower bound is constant.

Our results are summarized in the two Figures 1 and 2. The horizontal axis is the size of the online bin,
and the vertical axis is the asymptotic performance ratio. For comparison, we have included the graph of
the bounded space upper bound (which matches the bounded space lower bound).

It can be seen that for all bin sizes between 1 and 2, we have given substantial improvements on the
bounded space algorithm, which was the best known algorithm for this problem so far. The lower bounds
from [5] were also significantly improved: for instance for b = 6/5, the lower bound was improved from
less than 1.18 to above 1.34, and for b ≥ 3/2, the previous lower bound was less than 0.8.

1.2 1.4 1.6 1.8 2
a

1.1

1.2

1.3

1.4

1.5

1.6

Figure 1: The lower bound (lowest graph), upper bound (middle), and bounded space bound (highest).
Horizontal axis is size of online bin, vertical axis is asymptotic performance ratio.

References

[1] Donna J. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical Report
R-864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

[2] Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms for bin
packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS Publishing Company,
1997.

12



2.5 3 3.5 4 4.5 5
a

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: The lower bound (lowest graph) and bounded space bound on [2, 5]. Axes as in previous figure.

[3] János Csirik and Gerhard J. Woeginger. On-line packing and covering problems. In A. Fiat and
G. J. Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of Lecture Notes in
Computer Science, pages 147–177. Springer-Verlag, 1998.

[4] János Csirik and Gerhard J. Woeginger. Resource augmentation for online bounded space bin packing.
Journal of Algorithms, 44(2):308–320, 2002.

[5] Leah Epstein, Steve S. Seiden, and Rob van Stee. New bounds for variable-sized and resource aug-
mented online bin packing. In P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, and
R. Conejo, editors, Proc. 29th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 2380 of Lecture Notes in Computer Science, pages 306–317. Springer, 2002.

[6] Michael R. Garey, Ronald L. Graham, and Jeffrey D. Ullman. Worst-case analysis of memory allo-
cation algorithms. In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,
pages 143–150. ACM, 1972.

[7] David S. Johnson. Fast algorithms for bin packing. Journal Computer Systems Science, 8:272–314,
1974.

[8] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM,
47:214–221, 2000.

[9] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM, 32:562–572,
1985.

[10] F. M. Liang. A lower bound for online bin packing. Information Processing Letters, 10:76–79, 1980.

[11] Cynthia Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, pages 163–200, 2002.

13



[12] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time. Journal of
Algorithms, 10:305–326, 1989.

[13] Steve S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, 2002.

[14] Jeffrey D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

[15] André van Vliet. An improved lower bound for online bin packing algorithms. Information Processing
Letters, 43:277–284, 1992.

14


