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Abstract. Many different definitions of computational universality for
various types of systems have flourished since Turing’s work. In this
paper, we propose a general definition of universality that applies to ar-
bitrary discrete time symbolic dynamical systems. For Turing machines
and tag systems, our definition coincides with the usual notion of uni-
versality. It however yields a new definition for cellular automata and
subshifts. Our definition is robust with respect to noise on the initial
condition, which is a desirable feature for physical realizability.

We derive necessary conditions for universality. For instance, a universal
system must have a sensitive point and a proper subsystem. We conjec-
ture that universal systems have an infinite number of subsystems. We
also discuss the thesis that computation should occur at the ‘edge of
chaos’ and we exhibit a universal chaotic system.

1 Introduction

Computability is often defined via universal Turing machines. A Turing ma-
chine is a dynamical system, i.e., a set of configurations together with a transfor-
mation of this set. Here a configuration is composed of the state of the head and
the whole content of the tape. Computation is done by observing the trajectory
of an initial point under iterated transformation.

However there is no reason why Turing machines should be the only dynam-
ical systems capable of universal computation, and indeed we know that many
systems may perform universal computations.

Artificial neural networks [1], cellular automata [2], billiard balls on a pool
table of some complicated form, or a ray of light between a set of mirrors [3] are
such systems.
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For all these systems, many particular definitions of universality have been
proposed. Most of them mimic the definition of computation for Turing ma-
chines: an initial point is chosen, then we observe the trajectory of this point
and see whether it reaches some ‘halting’ set. See for instance [4] and [5].

However it has been shown that the computational capabilities of many of
these systems are strongly affected by the presence of noise [6,7]; fault-tolerant
cellular automata are built in [8]. See also [9,10] for some definitions of analog
computation and issues relative to noise and physical realizability.

Moreover, many variants of these definitions exist and lead to different classes
of universal dynamical systems. In particular, there is no consensus for what it
means for a cellular automaton to be universal.

Another field of investigation is to make a link between the computational
properties of a system and its dynamical properties. For instance, attempts have
been made to relate ‘universal’ cellular automata to Wolfram’s classification. It
has also been suggested that a ‘complex’ system must be on the ‘edge of chaos’:
this means that the dynamical behavior of such a system is neither simple (i.e., an
attracting fixed point) nor chaotic; see [2,11,12,13]. Other authors nevertheless
argue that a universal system may be chaotic: see [1].

The basic questions we would like to address are the following:

– What is a computationally universal dynamical system?
– What are the dynamical properties of a universal system?

A long-term motivation is to answer these questions from the point of view
of physics. What natural systems are universal? Is the gravitational N-body
problem universal [3]? Is the Navier-Stokes equation universal [14]?

However in this paper we especially focus on symbolic dynamical systems,
i.e., systems defined on the Cantor set {0, 1}N or a subset of it. Some motivat-
ing examples of dynamical systems are Turing machines, cellular automata and
subshifts. Let us briefly describe our ideas.

Extending Davis’ definition of universal Turing machine, we say that a system
is universal if some property of its trajectories, such as reachability of the halting
set, is r.e.-complete.

However, rather than considering point-to-point or point-to-set properties,
we consider set-to-set properties. Typically, given an initial set and a halting
set, we look whether there is at least one configuration in the initial set whose
trajectory eventually reaches the halting set.

We require the initial and halting sets to be closed open sets of the Cantor
space endowed with the usual product topology, which are sets that can be
described with a finite number of bits in a natural standard way.

Finally, we do not restrict ourselves to the sole property ‘Is there a trajectory
going from A to B?’ (where A and B are closed open sets), but to any property
of closed open sets that can be described in temporal logic.

This definition addresses the two issues raised above. Firstly, it is a general
definition directly transposable to any symbolic system. Secondly, dealing with
open sets rather than points takes into account some constraints of physical
realizability, such as robustness to noise.



With this definition in mind, we prove necessary conditions for a symbolic
system to be universal. In particular, we show that a universal symbolic system
is not minimal, not equicontinuous and does not satisfy the effective shadowing
property. This last property is a variant of the usual shadowing property. We
conjecture that a universal system must have infinitely many subsystems, and
we show that there is a chaotic system that is universal, contradicting the idea
that computation can only happen on the ‘edge of chaos’.

The paper is organized as follows: in Sections 2 and 3 we define effective
symbolic systems; in Section 4 the syntax and semantics of temporal logic is
exposed; in Section 5 the formal definition of universality is given, and simple
examples are provided; this definition is discussed in Section 6; in Section 7
necessary conditions for a system to be universal are given, related to minimality,
equicontinuity and effective shadowing property; in Section 8 we build a chaotic
system that is universal, and briefly discuss the the existence of the ‘edge of
chaos’; Section 9 discusses possible directions for future work, including extension
to analog systems.

2 Effective Symbolic Spaces

Effective symbolic dynamical systems are computable continuous transfor-
mations of a symbolic space. In this section and the next one, we provide a
formal definition and elementary properties.

Definition 1 A symbolic space is a compact metric space for which there is a
countable basis of closed open sets (called clopen sets).

The members of a symbolic space are called points or configurations. A typical
example of a symbolic space is the Cantor set {0, 1}N endowed with the product
topology. The topology is given by the metric d(x, y) = 0 if x = y and

d(x, y) = 2−n

where n is the index of the first bit on which x and y differ.
If w ∈ {0, 1}∗ (the set of finite binary words), then [w] denotes the set of all

sequences beginning by w. In fact, sets of this form, usually called cylinders, are
exactly the balls of the metric space. Any clopen set of {0, 1}N is a finite union
of cylinders.

The same definition of distance almost immediately extends to the spaces

{0, 1}∗ ∪ {0, 1}N, AN, Q×AZ, AZ
d

where Q and A are finite and d is a positive
integer.

Closed subsets of the Cantor space are themselves symbolic spaces. It is
well-known that the converse is also true.

Proposition 1 Every symbolic space is homeomorphic to a closed subset of the
Cantor space. Every perfect symbolic space is homeomorphic to the Cantor space.



For instance, {0, 1}Z is homeomorphic to {0, 1}N.
In order to define computational universality, we need to make symbolic

spaces effective: we would like to be able to perform boolean combinations on
clopen sets.

Definition 2 An effective symbolic space is a couple (X,P ) where X is a sym-
bolic space and P : N → 2X is an injective function ranging over all clopen sets
of X, such that intersection and complementation of clopen sets are computable
operations. This means that the index of Pm ∩Pn is a computable function of m
and n and the index of X \ Pn is a computable function of n.

The index of a clopen set Pk is the number k. Of course, union of clopen sets
is then also computable.

Note for instance that the Cantor set {0, 1}N, with any reasonable way to
enumerate clopen sets, is an effective symbolic space. Some other effective spaces

are for instance: {0, 1}∗ ∪ {0, 1}N, AN
d

, AZ
d

, Q × AZ, where Q and A are finite
alphabets and d is a positive natural number.

Remark that we could ask intersections and complements to be primitive
recursive rather than computable, without altering any of the examples and
results of the text.

We now define natural maps between effective symbolic spaces.

Definition 3 Let (X,P ) and (Y,Q) two effective symbolic spaces. An effective
continuous map is a continuous map h : X → Y such that h−1(Qn) is a clopen
set of X whose index according to P is computable as a function of n.

If h is bijective then it is an effective homeomorphism, and (X,P ) is said to
be effectively homeomorphic to (Y,Q).

Note that the composition of effective continuous maps is an effective con-
tinuous map, the identity is an effective continuous map and the inverse map of
an effective homeomorphism is also an effective homeomorphism. In particular,
being effectively homeomorphic is an equivalence relation for effective symbolic
spaces.

Given an effective symbolic space (X,P ), a closed subset Y is said to be
effective if the family of clopen sets intersecting Y is decidable.

Then the effective set Y can be endowed with the relative topology, gen-
erated by all intersections of clopen sets of X with Y . Thus, the enumeration
P0, P1, P2, . . . of clopen sets of X is also an enumeration of clopen sets of Y :
Y ∩ P0, Y ∩P1, Y ∩P2, . . . This enumeration has repetitions, but we can detect
them and renumber the sequence in an effective way. Hence we get an effective
topology for the effective closed set Y . Equivalently, the inclusion i : Y →֒ X is
an effective continuous map.

We know that every symbolic space is a subspace of the Cantor space. The
corresponding result also holds for effective symbolic spaces.

Proposition 2 Every effective symbolic space is effectively homeomorphic to an
effective subset of the Cantor space.



Proof. Let X be a symbolic space, and P0, P1, P2, . . . be an enumeration of all
its clopen sets.

For every point x ∈ X , construct the infinite word x0x1x2x3 . . . ∈ {0, 1}N,
where xn = 1 iff x ∈ Pn. Then the map g : X → {0, 1}N is injective and
continuous. As X is compact, g(X) is closed. Moreover, as every step of the
construction is effective, g(X) is an effective closed set and the map g is effective.

If the space is perfect, then we construct another map h between X and
{0, 1}N. We may write X as a partition of two clopen sets X = X0 ∪X1, where
X0 is the first clopen set to be different from X and ∅; this is always possible
thanks to perfectness.

Then for any word w ∈ {0, 1}∗, we recursively split Xw into two clopen sets
Xw0 and Xw1. We choose Xw0 to be the intersection of Xw and the first clopen
set Pn such that Xw ∩ Pn is different from Xw and ∅.

Now we build a function h from X to {0, 1}N in the following way. Let x
be in X and (wi)i∈N be the set of words such that x ∈ Xwi

for all i. Then
we set h(x) to be the infinite word limwi. It is easy to prove that this map is
well-defined, injective, continuous and surjective. Thus X is homeomorphic to
h(X) = {0, 1}N. Moreover, as every step of the construction is effective, h is
effective. ⊓⊔

Thus we see that there is no loss of generality in supposing that in any
effective symbolic space, for any rational ǫ there is a finite number of balls of
radius ǫ and that we can compute all of them. Indeed, this is the case for all
effective subsets of the Cantor space.

3 Effective Symbolic Systems

Now we would like to define dynamical systems. A (discrete-time) dynami-
cal system is often defined as a continuous transformation of a compact metric
space. Thus a symbolic dynamical system is a continuous transformation of a
symbolic space. However we are naturally interested in effective symbolic dy-
namical systems.

Definition 4 An effective symbolic dynamical system is an effective continuous
map from an effective symbolic space to itself.

In other words, an effective symbolic system is a symbolic space with a con-
tinuous map in which we can compute intersections, complements, and inverse
images of clopen sets. This definition of effective function in a Cantor space is
equivalent to classical definitions in computable analysis, for instance [15].

Extending Definition 3, we define a relation of equivalence between effective
systems.

Definition 5 Two effective symbolic systems (X,O, f) and (Y, P, g) are effec-
tively conjugated if there is an effective homeomorphism h : X → Y such that
h ◦ f = g ◦ h. Then h is called an effective conjugacy.



A cellular automaton is an example of effective symbolic system, acting on

the space AZ
d

, where A is the finite alphabet and d is the dimension. A Turing
machine is an effective system acting on the space Q×AZ, where Q is the finite
set of states of the head and A is the finite tape alphabet.

Recall that a shift is a dynamical system on AN or AZ (where A is a finite
alphabet) with the map σ : AN → AN : a0a1a2a3 . . . 7→ a1a2a3 . . . or σ : AZ →
AZ : . . . a−3a−2a−1a0a1a2a3 . . . 7→ . . . a−3a−2a−1a0a1a2a3 . . ., where the symbol
of index 0 is underlined. A subshift is a subsystem of the shift, i.e., a closed
subset that is invariant under the shift map. A one-sided (two-sided) shift is an
effective system.

An effective subsystem of an effective symbolic system is an effective closed
subset that is invariant under the map. With the relative topology, it is itself an
effective symbolic system.

If a subshift is an effective closed subset of the space, then it is again an
effective symbolic system. The set of all finite words appearing at least once in
at least one of the point of the subshift is called the language of the subshift.
In fact it is easy to see that an effective subshift is exactly a subshift whose
language is recursive.

From any dynamical system (effective or not), we can generate subshifts in
a natural way. A clopen partition of a symbolic space is a partition of the space
into clopen sets. Given a clopen partition X = X0 ∪ . . . ∪ Xs of the space X ,
the subshift induced by this partition is the set of infinite words a0a1a2a3 . . . ∈
{X0, . . . , Xs}N such that there is a point in a0 whose trajectory goes successively
through a1, a2, . . .

Following this observation, we can characterize effective symbolic systems in
terms of their induced subshifts.

Proposition 3 A continuous transformation of an effective symbolic space is
effective if and only if there is an algorithm telling from a given clopen partition
and a given finite word whether this word belongs to the language of the subshift
induced by that partition.

Proof. Let X = X0∪. . .∪Xs be a clopen partition. Then a word a0a1 . . . al−1al ∈
{X0, . . . , Xs}∗ is in the language of the subshift induced by the partition if and
only if f−l(a0)∩f−(l−1)(a1)∩ . . .∩f−1(al−1)∩al is not empty. But we can check
this.

Conversely, suppose that all induced subshifts have decidable languages, and
that we can compute a decision algorithm from the partition. Let Pn be a clopen
set of X . Consider the partition of at most four parts X = X0 ∪X1 ∪X2 ∪X3,
where X0 = Pn \ f−1(Pn), X1 = f−1(Pn) \ Pn, X2 = Pn ∩ f−1(Pn), X3 =
X\(Pn∪f

−1(Pn)). Some of these sets can be empty. This is the coarsest partition
that is finer than both Pn and f−1(Pn). Now consider the language induced by
this partition. Then X0X0, X0X2, X3X0, X3X2, X1X1, X1X3, X2X1,X2X3 do
not belong to the language. In fact, if we find a partition into four or less parts
with this property, then we know that f−1(Pn) = X1 ∪X2. Thus it is enough to
enumerate all partitions of four elements or less, and check these conditions to
compute f−1(Pn). ⊓⊔



If the subshifts have decidable languages, but decision algorithms are not
computable, then the system may fail to be effective, as shown in the following
example.

Example 1 Assume k is an uncomputable total strictly increasing function
on N. We define a function f on the Cantor space {0, 1}N such that f(x) =
f0(x)f1(x)f2(x) . . ., where fi is the sum modulo two of the k(i)th first bits of x.

Then it is not difficult to see that for every partition of {0, 1}N, the subshift
is of finite type (i.e., we can describe it as the infinite words avoiding a finite
list of finite forbidden words); thus the language is decidable. However f is not
effective, for otherwise we could compute k.

4 Temporal Logic

Our goal is to describe properties of trajectories that may be useful in defining
universal computation, such as ‘starting from here, the system eventually goes
there’. Temporal logic, developed by Prior in 1953, is appropriate to express
such properties. It was later used by computer scientists to express and prove
sentences such as, typically, ‘the programm will not reach a forbidden state’; see
[16] for a reference book on modal and temporal logic.

Formally, we suppose that we have a set {P0,P1,P2, ...} of proposition sym-
bols indexed by N including two propositions that we will denote ⊥ and ⊤, and
we form all temporal formulae by composing the propositions symbols with the
boolean operators ∨ and ¬, the temporal unary operator ◦ (read ‘next’) and the
binary operator U (‘until’).

We can also add some usual abbreviations: φ∧ψ denotes ¬(¬φ∨¬ψ), φ⇒ ψ

denotes ¬φ ∨ ψ, ⋄φ (read ‘eventually φ’) stands for ⊤Uφ and ✷φ (read ‘always
φ’) for ¬ ⋄ ¬φ.

We now give temporal formulae a semantics adapted to symbolic systems.
Let (X,P, f) be an effective symbolic system. Recall that X is a symbolic space
with clopen sets P0, P1, P2, . . . and f : X → X is a continuous function. Then
to each formula φ we assign a subset |φ| of X , called the interpretation of φ, in
the following way. Then to each formula φ we assign a subset |φ| of X , called
the interpretation of φ, in the following way.

– If φ is the proposition symbol Pn, then |φ| = Pn. Moreover we ask that
|⊥| = ∅ and |⊤| = X .

– If φ is φ1 ∨ φ2 then |φ| = |φ1| ∪ |φ2|.
– If φ is ¬ψ then |φ| = X \ |ψ|.
– If φ is ◦ψ then |φ| = f−1(|ψ|).
– If φ is φ1Uφ2 then |φ| =

⋃

n∈N
An, where A0 = |φ2| and An+1 = f−1(An) ∩

|φ1| for all n.

In particular, if φ is ⋄ψ then |φ| =
⋃

n∈N
f−n(|ψ|).

We say that a formula is satisfiable if |φ| 6= ∅.



Intuitively, we may think that a formula φ represents a statement about
a point of X , which is seen as ‘the current configuration of the system’. This
statement may be true for some points of X and false everywhere else. For
example, ⋄Pn means ‘when applying f iteratively the current configuration will
eventually be in Pn’. The formula PmUPn means ‘the configuration lies in Pm

until it reaches Pn’ or, in other words, ‘the configuration will stay in Pm during
a finite time and then get in Pn’.

Then |φ| is the set of points for which the assertion φ holds, and a satisfiable
formula is verified by at least one configuration. Note that in the following, we
will make no distinction between a proposition symbol Pn and the corresponding
clopen set Pn.

5 Universal Systems

We are ready now to state the main definition. We define a universal system
to be an effective system with some undecidable temporal property. Then we
show that most usual ways to define computability are particular examples of
this definition. Finally we briefly discuss the possible presence of different degrees
of uncomputability in a system.

5.1 Main Definition

Davis [17] proposed the following definition: a Turing machine is universal
if the relation ‘xn is in the orbit of xm’ is r.e.-complete, where xm and xn are
arbitrary finite configurations. This definition bypasses the need for a description
of a way to encode the input and decode the output of a computation. Here we
modify Davis’ definition in order to be applied to any effective symbolic system.
Our choices are justified in Section 6.

Definition 6 An effective dynamical system is universal if there is a recursive
family of temporal formulae such that knowing whether a given formula of the
family is satisfiable is an r.e.-complete problem.

A r.e.-complete problem, or Σ1-complete problem, is a recursively enumer-
able problem, to which any recursively enumerable problem is Turing-reducible.

Universality is obviously preserved by effective conjugacy.
Note that this may be interpreted as a non-deterministic scheme of com-

putation. The computation succeeds iff at least one trajectory exhibits a given
behavior.

For example, we may call halting problem for f , the satisfiability problem for
formula:

(Pn ∧ ⋄Pm)n,m∈N,

whose satisfiability problem reads: ‘There is a configuration in the clopen set Pn

that eventually reaches the clopen set Pm’. We may think of Pn as an initial
configuration of which we know only the first digits and Pm as the halting set.
The unspecified digits of the initial configuration may be seen as encoding the
non-deterministic choices occurring during the computation.



5.2 Examples

Turing machines. Turing machines are often described as working only on
finite configurations. A finite configuration is an element of Q×{0, 1}∗×{0, 1}∗,
where Q denotes the set of states of the head, the first binary word is content
of the tape to the left of the head and the second binary word is the right part
of the tape. The rest of the tape is supposed to be entirely filled with blank
symbols. Such a Turing machine is universal if given two finite configurations u
and v, checking whether u is in the trajectory of v is an r.e.-complete problem.

This is a particular case of our definition. Indeed, let W = {0, 1}∗ ∪ {0, 1}N

the set of finite and infinite binary words. Then the Turing machine transition
function is also defined on Q×W ×W , which is a compact space, whose isolated
points are Q×{0, 1}∗×{0, 1}∗. Isolated points are in fact clopen sets of Q×W ×
W . So the problem of checking whether the formula Pn∧⋄Pm is satisfiable, given
two clopen sets Pn and Pm, is r.e.-complete. Indeed, it is already r.e.-complete if
we restrict ourselves to clopen sets that are isolated points, and it is recursively
enumerable (although perhaps not r.e.-complete) on non-isolated clopen sets.

Tag systems. Tag systems were introduced by Post in 1920. A tag system is a
transformation rule acting on finite binary words. At each step, a fixed number
of bits is removed from the beginning of the word and, depending on the values
of these bits, a finite word is appended at the end of the word. Minsky proved in
1961 that there is a so-called universal tag system, for which checking whether
a given word will end up to the empty word when repeating the transformation
is an r.e.-complete problem; see [2].

We can extend the rule of tag systems to infinite words, by just removing to
them the fixed number of bits. Thus we have a dynamical system on the compact
space {0, 1}∗∪{0, 1}N of finite and infinite words, in which finite words are clopen
sets. Again, if the tag system is universal for the word-to-word definition, then
it is universal for our definition with the formulae Pn ∧ ⋄Pm.

Collatz functions. We can also apply our definition to functions on integers.
Let N ∪ {∞} be the topological space with the metric d(n,m) = | 1

n+1 − 1
m+1 |.

This is effectively homeomorphic to the set {1n0∞|n ∈ N} ∪ {1∞}. Then a
total computable map on N can be extended to an effective continuous map on
N ∪ {∞} iff either it has a finite range and only one integer has an unbounded
preimage set, or it has an infinite range and we can compute a (finite) bound on
the largest preimage of every given integer.

For example, it is meaningful to ask whether the famous 3n + 1 function
(which is effective) is universal. This is an unsettled question. But Conway [18]
proved that similar functions, called Collatz functions, may be universal.

Transformations on countable sets. All preceding examples — Turing ma-
chines, tag systems, Collatz functions — fit into our definition of effective sym-
bolic system, provided a minor modification: making the space of configurations
compact.



More generally, let f : X → X be a transformation of a countable set X =
{x0, x1, x2, . . .}. Then we may ask, given two points xn and xm, whether xn is in
the trajectory of xm. If this problem is r.e.-complete, we would like to say that
f is universal.

If we suppose that X is a discrete space (i.e., all points are isolated), then f
is always continuous. However, this does not fit in our definition of dynamical
system since X is not compact.

But we can sometimes embed X in a compact symbolic space X in which
X is dense, and extend f to X in a continuous way. If f : X → X is universal
according to point-to-point definition, then f : X → X is universal according to
our definition with the formulae (Pn ∧ ⋄Pm)n,m∈N.

Turing machines without blank symbol. It is only slightly more compli-
cated to build a universal Turing machine on {0, 1}N. In such a Turing machine,
there is no obvious notion of ‘finite configuration’. The trick is basically to encode
the initial data in a self-delimiting way.

Take a Turing machine that is universal for the usual, finite-configuration-to-
set halting problem. Then add two new symbols L and R to the tape alphabet.
On an initial configuration, put a L on the left and and a R on the right of the
finite encoded data. When the head encounters an L, it pushes one cell to the
left, leaving a blank symbol to make more space available for computation. It
acts similarly for an R symbol. The working space is always delimited by a L
and a R, and the symbols situated outside are considered as noise.

Cellular automata. We now give an example of a universal cellular automaton.
Let us take a universal Turing machine with a blank symbol. We suppose that

when the halting state is reached, then the head comes back to the cell of index
0. We can simulate it in an almost classic way with a one-dimensional cellular
automaton. The alphabet of the automaton is A∪(A×Q)∪{L,R,Error}, where
A is the tape alphabet (including the blank symbol) and Q the set of states.

Let us take a point in the cylinder [L, initial data of the Turing machine, R],
and observe its trajectory. The symbol L moves to the left at the speed of light,
leaving behind blank symbols. The symbol R moves to the right in a similar way.
Meanwhile, the space between L and R is used to simulate the Turing machine
and is composed of symbols from A and exactly one symbol from (A×Q), which
denotes the position of the head. When L or R symbols meet each other, then a
spreading Error symbol is produced, that erases everything.

This cellular automaton is universal for formulae Pn∧⋄Pm. Indeed, there is an
orbit from the cylinder [L, initial data of the Turing machine, R] to the cylinder
[halting state] (both cylinders centered at cell of index zero) if and only if the
universal Turing machine halts on the initial data.

5.3 Decidable Systems

An effective system could fail to be universal for different reasons. There
could exist families of formulae with an undecidable satisfiability problem, each



of them being too easy (an intermediate r.e.-degree) or too difficult (higher than
Σ1 in the arithmetic hierarchy, for instance). The simplest case is when every
temporal property is decidable.

Definition 7 An effective dynamical system is said to be decidable if the satis-
fiability problem for the family of all temporal formulae is decidable.

Decidability of an effective system is also preserved by effective conjugacy.
Actually, we have no example of a system that would be neither universal

nor decidable. In a setting of point-to-point properties, it is proved in [19] that
there exists cellular automata with an undecidable, but not r.e.-complete, halting
problem.

6 Discussion on the Definition of Universality

Our definition of universality differs in several ways from what we could
expect at first glance from a generalization of Turing machine universality. In
this section we give various arguments to support the present definition against
seemingly more obvious attempts. In particular, we justify the use of set-to-set
properties, expressed in the formalism of temporal logic, on systems for which
the transition function is computable.

6.1 Set-to-set Properties

Many definitions of universality for particular systems propose to observe
point-to-point properties.

On the other hand, in [20] is proposed a definition for effective metric space;
the basic idea is to endow a metric space with a countable dense set of points. Ex-
amples include the reals with rational points, the Cantor space with ultimately
constant configurations, the Cantor space with ultimately periodic configura-
tions.

So it could seem that it is possible to build a general definition of universality
with point-to-point properties, but we show that it may lead to undesirable
consequences. We then argue in favor of set-to-set properties.

The most natural idea would to say that a metric space with a dense set
of points (xn)n∈N is universal if the property ‘xn is in the trajectory of xm’ is
r.e.-complete.

However, as remarked in [21], this leads to conclude that the shift is universal;
a consequence that is counter-intuitive. It sounds unreasonable to admit the
shift as universal, because it does not treat any information, but just reads the
memory.

Indeed if instead of ultimately periodic points we choose configurations with
primitive recursive digits, then we take as initial configurations the sequence of
states of the head of a universal Turing machine during a computation. And we
just have to shift to know whether the halting state will appear.



The definition presented in this text overcomes this problem in a simple
manner: the user needs only to give a finite number of bits as an initial condition.
Instead of initial configurations we shall rather talk about initial sets, which may
be seen as ‘fuzzy points’, points defined with finite accuracy.

This solution is also more satisfactory from the point of view of physical
realizability. Indeed, we expect the set of configurations of a physical system to
be uncountable in general, and specifying an initial point for the computation
means a priori that we must give an infinite amount of information. Preparing a
physical system to be in a very particular configuration is likely to be impossible,
because of the noise or finite precision inherent to every measure.

6.2 Temporal Properties

What kind of property are we going to test on clopen sets (or, equivalently, on
induced subshifts)? Here again, we must avoid trivialities. Suppose that we look
at identity on the Cantor space. We now choose to observe the following property:
a clopen set satisfies the property iff its index (i.e., the integer describing the
clopen set) satisfies some r.e.-complete property on N. Then we find again that
identity is computationally universal, which is not a desirable property. The
complexity of computation is artificially hidden in decoding of the answer.

On the other hand, we see no reason to restrict ourselves to the sole halting
property: ‘there is a trajectory from this clopen set to that clopen’. Any observ-
able property could a priori be used as a basis for computation. For instance, the
chaotic system built in Section 8 is universal but not for the halting property.

So we must precisely define a class of observable properties of clopen sets,
not too large and not too restricted. Temporal logic, as defined above, has been
widely used for decades to express expected properties of various transitions
systems. We therefore say that a symbolic system is computationally universal
iff there is a family of temporal formulae involving only clopen sets for which
determining which formulae are satisfied is an r.e.-complete problem.

6.3 Effectiveness

Finally, the following example shows that it is useful to add an effectiveness
structure on dynamical systems.

Fix an r.e.-complete set H ⊂ N of integers and consider the symbolic system
({0, 1}N, f) where

{

f(1n0x0x1x2 . . .) = 1m0x0x1x2 . . .
f(1∞) = 1∞

and m is the largest integer strictly smaller then n such that m ∈ H iff n ∈ H ,
or 0 if no such number exists. Just suppose that 13 ∈ H . Then the relation ‘the
clopen set [1n0] will eventually reach [1130]’ is r.e.-complete, because H is. On
the other hand, if we were provided an actual implementation of ({0, 1}N, f), we
could decide an undecidable problem (namely, H) by observing the trajectories.



So there is a discrepancy between the computational complexity of properties
of clopen sets and the actual possibilities of the machine. This is because we
cannot compute even a single step of f : it is a ‘non-simulable’ system. We there-
fore restrict ourselves to systems such that the inverse image of a clopen set is
computable. Note that for instance in [1] the author allows neural networks with
non-recursive weights, leading to a non-computable transition function and to
super-Turing capabilities.

7 Necessary Conditions for Universality

It has been highlighted in the Introduction that some attempts have been
made to link computational capabilities of a system to its dynamical properties.
This is also the purpose of this section.

All results proved in this section are in fact sufficient condition of decidability
and can thus be interpreted as necessary conditions for universality. For instance,
minimal systems are decidable, thus universal systems are not minimal.

For simplicity, we will write ‘symbolic system’ for ‘effective symbolic dynam-
ical system’ — unless otherwise specified.

7.1 Minimality

A minimal dynamical system is a system with no subsystem (except the
empty set and itself). It is characterized by the fact that all orbits are dense.

We prove that a minimal symbolic system is decidable. This is not surprising
since in some way all trajectories of have the same behavior.

Proposition 4 A minimal symbolic system is decidable. Hence it is not univer-
sal.

Proof. Let f : X → X be an effective symbolic dynamical system. We shall
prove that for the set of all temporal formulae, satisfiability is decidable. We
use the recursive structure of formulae. Let φ be a formula; we prove recursively
that its interpretation [φ] is always a clopen set, whose index may be computed.

– If φ is a proposition symbol, then |φ| is the clopen set indexed by the same
integer.

– If φ is φ1 ∨ φ2 then |φ| is |φ1| ∪ |φ2|. If |φ1| and |φ2| are clopen sets then we
may compute their union.

– If φ is ¬ψ then |φ| is X \ |ψ|. If |ψ| is a clopen set then we may compute its
complement.

– If φ is φ1Uφ2 then |φ| is
⋃

n∈N
Bn, where B0 = |φ2| and Bn+1 = (f−1(Bn)∩

|φ1|) \ Bn for all n. Clearly, if |φ1| and |φ2| are clopen sets then every Bn

is a computable clopen set. But Bn is the set of points staying in |φ1| \ |φ2|
during exactly n steps before entering |φ2|. If all Bn are non-empty, then we
can find a limit point, which stays in |φ1| \ |φ2| for ever. Unless |φ1| = X and
|φ2| = ∅, this contradicts minimality. Hence in every case there is an empty



Bn. In fact, only a finite number of Bn are then non-empty. Therefore |φ| is
a computable clopen set.

Alternatively we could have proved that |φ| \ |φ| must be a subsystem (i.e.,
a closed invariant subset) and thus be empty. Then |φ| is a clopen set and
from compactness is covered by a finite number of Bn.

⊓⊔

Now suppose that the symbolic system is not minimal but consists of minimal
subsystems attracting the whole space of configurations. In other words, the limit
set is minimal. Recall that the limit set of a dynamical system f : X → X is the
set

⋂

n≥0 f
n(X).

Then such a system is again not universal.

Proposition 5 A symbolic system with a minimal limit set is decidable.

Proof. Like in the preceding proposition, we prove that the interpretation of ev-
ery formula is a computable clopen set. The critical case is the ‘until’ connector.

Let a formula φ be of the form φ1Uφ2. Then two possibilities may occur:
either |φ2| intersects the minimal subsystem, or not.

In the former case, then the argument of Proposition 4 still holds: if infinitely
many Bn were non-empty, then there would be a closed orbit never crossing |φ2|,
which is impossible.

In the latter case, there is a n such that f−n(|φ2|) is empty, because the
minimal set attracts the whole space. Thus Bn ⊆ f−n(|φ2|) is also empty, and
so are Bn+1, Bn+2, . . .. ⊓⊔

For example, if all points uniformly converge to a periodic orbit, then the
system is not universal.

This can be generalized:

Corollary 1 If the limit set is the union of finitely many minimal subsystems,
then the system is decidable.

Proof. Every minimal system attracts an open part of the space. The basins of
attraction must then cover the whole space of configurations. Thus their basins
are clopen sets and from Proposition 5 the system is the disjoint union of decid-
able systems. Hence it is also decidable. ⊓⊔

A stronger statement is suggested by the intuition that a universal system is
able to simulate many other systems.

Conjecture 1 A universal symbolic system has infinitely many minimal sub-
systems.



7.2 Equicontinuity

A system f : X → X is equicontinuous if for all ǫ > 0 there is a δ > 0 such
that d(x, y) < δ implies d(f t(x), f t(y)) < ǫ, for any points x, y and natural t.
Note that equicontinuity in symbolic systems is rather a topological property
than just a metric property, since instead of ‘For every ǫ > 0, there is a δ . . . ’
we could say ‘For every clopen partition, there is a clopen partition . . . ’

Proposition 6 An equicontinuous symbolic system is decidable.

Proof. Just like in the proof of Proposition 4, we show by induction on formulae
that the interpretation of a formula is always a computable clopen set. The
crucial case is the ‘until’ operator.

Let us suppose that that some formula φ is of the form φ1Uφ2 and that |φ1|
and |φ2| are clopen sets.

Then there is some ǫ > 0 such that |φ1| and |φ2| are both finite unions of
balls of radius ǫ.

We know from definition that |φ| is
⋃

n∈N
An, where A0 = |φ2| and An+1 =

f−1(An) ∩ |φ1| for all n. Thus every An is a computable clopen set and |φ| is
open.

Now suppose that we can find an x ∈ |φ| \ |φ|. Then for any δ there is a point
x′ ∈ |φ| such that d(x, x′) ≤ δ. In particular, from equicontinuity we can choose
δ such that for all n ∈ N, d(fn(x), fn(x′)) ≤ ǫ. But then fn(x) is in |φ1| exactly
when fn(x′) is in |φ1|, and fn(x) is in |φ2| exactly when fn(x′) is in |φ2|. Hence
x ∈ |φ1Uφ2|: this is a contradiction. We conclude that |φ| \ |φ| is empty and that
|φ| is a clopen set.

Moreover, from compactness, it is covered by a finite number of An: the
process stops when A0 ∪ · · · ∪AN = A0 ∪ · · · ∪AN ∪AN+1, for some N . As this
is detectable, we can compute |φ|. ⊓⊔

We say that a point x of a dynamical system f is sensitive if there is an ǫ > 0
such that for every δ > 0 there is a point y with d(x, y) < δ and a nonnegative
time t such that d(f t(x), f t(y)) > ǫ.

It is easy to show from compactness that an equicontinuous dynamical system
is exactly a system with no sensitive point. Hence, we can deduce from the above
result that a universal symbolic system must have a sensitive point.

Equicontinuity in the case of cellular automata has been given a combi-
natorial characterization in [22]. It is also proved that equicontinuous cellular
automata are eventually periodic, thus confirming in this particular case that
equicontinuity prevents computational universality from arising.

7.3 Shadowing Property

We now define the effective shadowing property for a dynamical system.

Definition 8 Let (X, f) be a symbolic dynamical system. A δ-pseudo-orbit is a
(finite or infinite) sequence of points (xn)n≥0 such that d(f(xn), xn+1) < δ for
all n.



A point x ǫ-shadows a (finite or infinite) sequence (xn)n≥0 if d(f
n(x), xn) < ǫ

for all n.

The dynamical system is said to have the shadowing property if for all ǫ > 0
there is a δ > 0 such that any δ-pseudo-orbit is ǫ-shadowed by some point.

If moreover such a δ can be effectively computed from ǫ then we say that the
system has the effective shadowing property.

In the case of symbolic spaces, we can check that the effective shadowing
property is invariant through effective conjugacies.

We can give the following interpretation to this property: suppose that we
want to compute numerically the trajectory of x such that at every step numeri-
cal errors amount to δ. The resulting sequence of points is a δ-pseudo-orbit, and
the shadowing property ensures that this pseudo-orbit is indeed ǫ-close to an
actual trajectory of the system.

Proposition 7 A symbolic system that has the effective shadowing property is
decidable.

Proof. Let us consider such a system (X,P, f) with the effective shadowing prop-
erty, and a temporal formula φ.

We may effectively find a ǫ such that all clopen sets involved in φ are finite
unions of balls of radius ǫ.

From the effective shadowing property, we effectively get some δ such that
all δ-pseudo-orbits are ǫ-shadowed. We may suppose without loss of generality
that δ ≤ ǫ.

Let us call δ-pseudo-interpretation of φ, the set of points from which there is
a δ-pseudo-orbit that satisfies φ. More precisely, the δ-pseudo-interpretation is
defined recursively on the structure of φ exactly like the interpretation defined
in Section 4, except that every occurrence of f−1 is replaced by f−1 ◦Bδ, where
Bδ(A) is the union of all balls of radius δ intersecting the set A. Every time we
must compute a preimage of a set, we first replace the set by an approximation
of accuracy δ.

Note that the δ-pseudo-interpretation is computable. Indeed, the crucial case
is to compute the pseudo-interpretation of φ1Uφ2. Let us suppose that B is
the pseudo-interpretation of φ1 and A is the pseudo-interpretation of φ2. Then
the pseudo-intepretation of φ1Uφ2 is

⋃

n∈N
An where A0 = A and An+1 =

f−1(Bδ(An))∩B for all n. However there are only finitely many possible values
for An, because there are only finitely many balls of radius δ. Hence the sequence
A0, A1, A2, . . . will loop at some point.

We claim now that φ has a non empty interpretation if and only if it has a
non empty δ-pseudo-interpretation.

Indeed, if there is an orbit satisfying φ, then this orbit is also a pseudo-orbit
satisfying φ. Conversely, if there is a pseudo-orbit satisfying φ, then this pseudo-
orbit is ǫ-shadowed by some orbit. But as clopen sets involved in φ are union of
balls of radius ǫ, then this orbit also satisfies φ. ⊓⊔



In particular, the full shift is decidable.
The following proposition shows that we cannot lift effectiveness of the shad-

owing property in Proposition 7.

Proposition 8 There is an undecidable symbolic system that has the shadowing
property, but not the effective shadowing property.

Proof. Let Xn be the subshift with forbidden words 0t, where the universal
Turing machine stops on data n in less than t steps. If the Turing machine
eventually never halts on n, then Xn is the full shift; if it stops in k steps, then
the forbidden word is 0k. All these subshifts are effective, but we cannot compute
a set of forbidden words. We can form the product of all Xn, and this an effective
system.

Satisfiability for the family (✷π−1
n [0])n∈N, where πn is nth coordinate pro-

jection, is Π1-complete, so the system is undecidable.
It is known that a subshift of finite type has always the shadowing property,

and even the effective shadowing property; see [23] for a proof. We define ǫ and
δ as in Definition 8.

The product of subshifts that have the shadowing property has also the
shadowing property. Basically, balls of radius ǫ in the system may be expressed
as product of balls of radius ǫ′ in a finite number of subshifts. Then we choose the
smallest of the corresponding δ′ in the subshifts. The product of balls of radius
δ′ may be expressed as union of balls of radius δ; this is the δ corresponding to
ǫ.

Hence the system is effective, has the shadowing property but not the effective
shadowing property, since it is undecidable. ⊓⊔

We don’t know whether this system is universal, i.e., if there is a Σ1-family
of formulae.

Note also that Turing machines that satisfy the shadowing property have
been given a combinatorial characterization in [24]; in particular, the proof shows
that the link between ǫ and δ (see Definition 8) is linear. Hence the effective
shadowing property is not stronger than the shadowing property in the case of
Turing machines.

7.4 Sofic Systems

Kůrka, in [25], describes several kinds of ‘simple’ systems. Among them, sofic
(or regular) systems are those systems whose all induced subshifts are sofic. A
sofic subshift is a subshift whose language is regular. Can a sofic system be
universal?

We consider first an easier question. Let an effective system be effectively
sofic if it is sofic and there is an algorithm that builds from a given partition the
finite automaton recognizing the language induced by the partition.

Then it is not hard to derive the following theorem.

Proposition 9 An effectively sofic system is decidable.



Proof. Given a formula, choose a partition of the space that is finer than the
clopen sets appearing in the formula. Then we build the corresponding finite
automaton. In this automaton, we must check whether there is an infinite path
satisfying the formula. This is very close to a classical problem of model-checking.
We first build a Büchi automaton labelled by the clopen sets of the partition
and accepting exactly sequences of clopen sets verifying the formula. Then we
compose it with the automaton recognizing the sofic subshift. If the resulting
automaton accepts an infinite sequence, then the formula is satisfiable. See [26]
for more details on this construction. ⊓⊔

However, if a system is sofic but not effectively, then the argument of the
proof fails. Indeed:

Proposition 10 There is a symbolic system that is sofic and universal.

Proof. Let Xn be the subshift of 2N whose forbidden words are those of the
form 10t1, where the universal Turing machine does not stop on data n in less
than t steps. If the Turing machine does not halt, then Xn is the sofic subshift
{0∗10∞, 0∞}. If the Turing machine halts in k steps, then Xn is the subshift of
finite type with forbidden words 11, 101, 1001, . . . , 10k−11. So all subshifts are
sofic, but we cannot effectively build the automaton recognizing the language,
for it would allow to solve the halting problem.

Now consider the product of all Xn. This product is again an effective sym-
bolic system X , and all its induced subshifts are sofic, due to the fact that sofic
subshifts are closed under finite products and factors. Thus the system is sofic,
but not effectively sofic.

Finally, X is universal for the family (π−1
n ([1]) ∧ ◦ ⋄ π−1

n ([1]))n, where πn is
the projection from X to Xn. ⊓⊔

8 A Universal Chaotic System and the Edge of Chaos

According to Devaney [27], a system is chaotic if it is infinite, topologically
transitive and has a dense set of periodic points. We can prove that such a system
is sensitive [28].

It is not difficult to prove the existence of a universal subshift. Indeed, con-
sider all the forbidden words of the kind 01n00t1, where the universal Turing
machine launched on data n does not halt in less than t steps. Then the subshift
of all binary sequences avoiding this set of words is effective and universal.

Improving this construction, one gets the following result:

Proposition 11 There exists an effective system on the Cantor space that is
chaotic and universal.

Proof. Take the universal one-sided subshift X on alphabet {0, 1} defined just
above and consider the language L on {0, 1, §}, made of the words w1§w2§ . . . §wn,
for any w1, w2, . . . , wn in the language of X . In particular, L includes the lan-
guage of X and the word §.



Consider Xchaos the one-sided subshift whose language is L. We now prove
that Xchaos is indeed a universal chaotic system.

First note that Xchaos is a perfect subshift, so it is effectively conjugated to a
system on the Cantor space. Then Xchaos has dense periodic points: indeed if w
is a word of L then (w§)∞ is in Xchaos. Finally Xchaos is topologically transitive:
for any two finite words v, w of L, we can go from [v] to [w] with the sequence
v§w . . .

According to Devaney’s definition, Xchaos is thus chaotic.
Moreover, it is universal for the family [01n0] ∧ ◦n+1(¬[§]U [1]). ⊓⊔

Note that the system built in the proof is also expansive, since it is a one-sided
subshift.

The central idea of the ‘edge of chaos’ is that a system that has a complex
behavior should be neither too simple nor chaotic. There are several ways to
understand that.

Here we interpret ‘complex system’ by ‘universal symbolic system’. Then
‘too simple’ could refer to the situation treated in Corollary 1: one or several
attracting minimal subsystems. This includes of course the case of a globally
attracting fixed point.

If we take ‘chaotic’ as meaning ‘Devaney-chaotic’, then computational uni-
versality need not be on the ‘edge of chaos’, since we have just provided a chaotic
system that is universal.

However, many examples of chaotic systems (whatever the exact meaning
given to ‘chaotic’, and for symbolic systems as well as for analog ones), although
not all of them, have the shadowing property and even the effective shadowing
property. For instance the shift and Smale’s horseshoe (present in some physi-
cal systems), as well as all hyperbolic systems, satisfy the effective shadowing
property with a linear relation between ǫ and δ (see Definition 8).

Thus we claim that the ‘edge of chaos’ could be replaced for general symbolic
systems by the ‘edge of effective shadowing property’ — although this sounds
less thrilling.

Note nevertheless the ‘edge of chaos’ has been intensively studied for cellular
automata, and we don’t know whether an example of chaotic universal cellular
automaton exists.

9 Future Work

We formulated some open problems already. Is there a gap between decidabil-
ity and universality? Is there a cellular automaton that is chaotic and universal?
Must a universal system have infinitely many subsystems?

But many more questions are yet to solve. For instance, can we find a suf-
ficient conditions of universality? What simplicity criteria proposed in [25] are
sufficient conditions for decidability? Are the Game of Life and the automaton
110 universal? Can a linear cellular automaton be universal?

Let us conclude by looking at some more particular aspects in some depth.



10 Families of dynamical systems

Undecidability of the halting problem for Turing machines may be interpreted
as the fact that we cannot decide, given a Turing machine and an initial data,
whether the halting state will be reached.

However for some Turing machines the halting problem is easy to decide.
Hence we would like to know for which subfamilies of Turing machines the halting
problem is already undecidable. Proofs of the preceding section may be easily
adapted and give us some insight about this.

For example, we can say:

Proposition 12 The halting problem is decidable for any recursive family of
Turing machines such that all of them are minimal.

More generally, we can prove for instance the following proposition, again
with the same arguments used in Section 7.

Proposition 13 Given an effective family of equicontinuous symbolic dynamical
systems, any property expressed by a family of temporal formulae is decidable.

This can be put in contrast with the result in [29], where undecidability of
properties for families of dynamical systems are studied, and sufficient conditions
are given for a whole class of properties to be undecidable. Perhaps this way can
be explored further.

10.1 Hierarchies

All formulae involved in examples of universal systems in the preceding sec-
tions were quite simple; in particular, they had no nested temporal operators,
such as ⋄✷A for instance.

We can define Σn and Πn formulae in a traditional way, where n is the num-
ber of alternance of ‘until’ operators and negations. In particular, Σ1 formulae
are those formulae where no ‘until’ is negated. We observe that all examples of
universal formulae take place in Σ1.

This hierarchy is to be put in parallel with the Borel hierarchy and the arith-
metic hierarchy: Σ1 formulae have interpretations that are Σ1 Borel sets (i.e.,
open sets) and checking their satisfiability is a Σ1 (i.e., recursively enumerable)
problem.

We don’t know much about the link between these hierarchies. In particular,
we propose the following conjectures.

Conjecture 2 If a symbolic system is universal for some family of temporal
formulae, then it is universal for a family of Σ1 formulae.

Conjecture 3 When there is a family of formulae whose satisfiability is Σ1-
complete, there is a family with a satisfiability problem in every level of the
arithmetic hierarchy.



10.2 Measure Theory

If we superimpose a ‘reasonable’ measure on symbolic systems then we can
give a probabilistic definition, rather than non deterministic: instead of asking
whether there is a trajectory from A to B, we would ask whether there is a
positive probability to go from A to B. More generally, we check whether a
formula has an interpretation of positive probability.

In some way, this probabilistic formulation is more physically relevant than
the topological formulation we adopted in Section 5. Indeed, checking whether
some temporal property is satisfiable might be practically impossible if the set
of points verifying this property is non empty, but has probability zero.

However, if we restrict ourselves to Σ1 formulae, as explained in the preceding
subsection, then both definitions are equivalent. Indeed, a Σ1 formula has an
open interpretation; hence it is satisfiable if and only if it is satisfiable with
positive probability.

The following conjecture, weaker than Conjecture 2, states that it is the case
in general.

Conjecture 4 A symbolic system is universal according to the topological defi-
nition if and only it is universal according to the measure-theoretic definition.

This definition is an opportunity to investigate the link between universality
and classical properties of measure-theoretic systems. For example, is it possible
for an ergodic system to be universal? For a mixing system?

10.3 Analog Computation

It would be desirable to extend all definitions and results derived for symbolic
systems to other kinds of systems, especially systems taking place in subsets of
R

n.
Let for instance X = [0, 1] be the unit interval. We would like to make an

effective space of it. For that purpose we endow it with a basis of open sets,
indexed by the integers, stable under union and intersection, for which union,
intersection and inclusion are computable. Then an effective system on X is a
continuous transformation of X such that the inverse image of a basic open set
is a computable basic open set.

Examples are given by the interval endowed with finite unions of open inter-
vals of rational endpoints and any continuous piecewise affine map with rational
coefficients.

However, the choice of a basis is at first glance arbitrary, and we could fear
that the universality of a given map may depend on this choice. For example, is
it possible for the logistic map f : [0, 1] → [0, 1] : x 7→ 4x(1 − x), which is very
similar to the shift, to be universal with respect to a clever choice of the basis?
This would be similar to the phenomenon observed in Section 6.1.

It therefore remains to extend in a satisfactory way the definitions and results
for systems in R

n in discrete time and even continuous time.



The resulting definition of universality could then be compared to existing
definitions, for instance [4,5,9]. Then, results like those of Section 7 could hope-
fully be adapted. For instance, are minimal systems capable of universal com-
putation? Such results could then be applied to physical systems. What systems
that can be found in Nature are able to compute?

Hyperbolic dynamical systems are known to have the effective shadowing
property. This would suggest that hyperbolic systems are not universal.
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