DSL Weaving for Distributed Information Flow Systems

Calton Pu, Galen Swint

CERCS, College of Computing, Georgia Institute e€finology, 801 Atlantic Drive,
Atlanta, Georgia, 30332-0280 USA
calton@cc.gatech.edu, swintgs@acm.org
http://www.cc.gatech.edu/projects/infosphere/

Abstract. Aspect-oriented programming (AOP) is a promisiigdf for reducing
application complexity. However, it has proven idifft to implement weavers for
general purpose languages. Nevertheless, we feite stunctionality for our
information flow abstraction, Infopipes, might besb captured in aspects. In this
paper, we describe a weaver built for domain smetahguages (DSLs) related to
Infopipes around an off-the-shelf XSLT processospécts are written in XSLT,
XML annotations are added to existing DSL genemattemplates, and XML
directives are added to our Infopipes specificatidiinally, we successfully
demonstrate a generated+woven application that tdsguality of service (QoS)
dimension of CPU usage awareness to an image shgamplication.

1 Introduction

Web services are gaining momentum in industry as a paradigbuilding and deploying
applications with a strong emphasis on interoperability éetwservice providers.
Inherent in this movement is the need to codify and roopierformance of applications
or application components which are administered or purdifase another party. This
has led to the recognition and proposal of service level agreerffelbAs), which can
capture expectations and roles in a declarative fashion (In2]view of such agreements
is that they constitute a domain specific language. As with language, then, the
guestion becomes how to map the “high” abstraction of the I&hguage into a lower-
level implementation. This amounts to run-time measurenfieatlback, and adaptation
interspersed into a web service-enabled application.

In addition to viewing SLAs as a domain specific languaigis, helpful to consider
them as an aspect of a web-based application in the sense of A3pented
Programming (AOP)[3]. This follows from noting that/&s typically describe some
application functionality thatrosscuts application implementation which means that
given a complete implementation of the application includiexyice monitoring, then the
SLA implementation code will be found in multiple compotseof the main application,
and furthermore, the crosscutting code is heavily migethngled, in components where
this crosscutting occurs.

AOP centers on the use of source code weavers to attackahismrcrosscutting an
tangling in an organized fashion. Currently, the magtiicant AOP tool has been the
AspectJ weaver [4], developed after several years of effbitfmsupports the addition of

aspect code to general Java applications. Applying the same teehna C and C++
code, however, has been harder. The question arises, thternwhsther it is difficult to
implement weavers for any language.

We built the AXpect weaver into the existing code generaframework, the
Infopipe Stub Generator [5,6]. The ISG has three imporpamts: the intermediate
representation, XIP; a repository of types and Infopipgcdptions; and a collection of
templates written in XSLT.

This paper describes the architecture and implementation &fXpect weaver in
detail, as well as discusses a prototypical example applicati@relassh a WSLA
document is used to specify CPU usage policy between a sed/aliamt of a media
stream. In section 2, we introduce the Infopipes abstractradigtributed applications. In
section 3, we discuss the pre-existing code generator farojact, the ISG. In section 4,
we present a close look at how we implement AOP in ourrsystad in section 5, we
evaluate the weaver in the context of an example media application.

2 Infopipes

It has been long-recognized that RPC, while promising,phhallems as a distributed
programming paradigm. This mainly stems from the faat #h distributed application
may have to deal with comparatively vast time scales, less tyeamd much greater
divergence in resource availability than when operating ingdle machine, even if it is a
parallel machine. Consider that memory access and procedureneslintiay be measured
in nano- or micro-seconds, but that web applications amlditess millisecond latencies —
three to six orders of magnitude longer.

Infopipes are designed to take these differences into acceanticularly for
information flow applications. One reason for targetingiinfation flow applications is
that they are difficult to capture abstractly using RPC bectheie normal operation,
sending a continuous stream of data, is innately mismatch&PC'’s request/response
scheme. Second, such applications often involve multigleegsing steps, a concept that
is again not addressed by RPC’s encouragement of the-sfiamr style. Finally, RPC
completely obscures the communication taking place in the appticatahat if latency,
bandwidth, security, or some other property is neetled & developer must “uncover”
the communication and insert new code to recover lost datat almmnection
performance, and add any new functionality by hand whichlvegparticularly difficult if
some sort of end-to-end property is desired to be erfoA®we stated before, Infopipes
expose the communication step, and make it much easier fovetopler to capture
connection information and implement properties around need®dmunication
boundaries.

The Infopipes architecture is service-oriented — it encapsujadesiles of distributed
computation which are intended to be composited together jj7§t like those proposed
for web service applications. While the ISG does not ctlyrexplicitly support XML as

a wire format as is currently required to be Web Service camtplit in no way excludes
such a possibility, and even some previous unpublishfepipe experiments have used
XML as anad hoc wire format. The ISG, in fact, already supports two coraehfet
different wire formats — PBIO, which is the wire fornfiat ECho, and x86 byte-ordered
data, as might come directly from a C program.

We have devised a prototype application to demonstrate Infofdipesapplication is a
video-streaming example in which the receiver of the vitemam has Quality of Service
requirements; it is constrained by its CPU resource and prostde feedback to the
sender of the stream to control image arrival rate. Our caaergtor creates the
communication setup, binding, and marshalling code andahtmatically incorporates
the QoS code which is parameterized in an external WSLA documehe next section,
we describe the implementation of our ISG to generate thecbasaunication code. For
this example, we will denote as our base application the semod@r receiver’s
communication code with no QoS supporting code.

O\

Fig. 1. The QoS-aware application.

Rate Control

_‘

Control Channel

=

We can see that there the application requires several funtdidoesimplemented to
support its QoS needs: a control channel, for feedbaoknmattion; timing tags and code
to monitor the CPU usage from times gleaned; and a ratgotarhannel which
implements the actions to take based on observationstfi®@PU monitor.

3 ThelSG

The I1SG toolkit has been developed for the Infosphere prdcautomate the
programming of Infopipes code for developers. It consists human-friendly descriptive
language Spi_(Sifying Infopipes), an intermediate descriptive language XIP (XML for
Infopipes), a repository for persistence of defined lifep structures, and a hybrid
C++/XSLT code generation engine.

For a developer, converting a Spi specification to comglablirce code is a three-step
process:

1. Create a Spi document to describe the information flow system

2. Compile the Spi into XIP.

3. The XIP is then processed with the ISG.

The ISG can read the XIP, and <pipe cl_ass:"lmagePipeIinePIain">
shown in Fig. 2 below (which als <2§BEg)igz>name="imagessource"
includes the AXpect weaver), it procee class="SendingPipe"/>
through multiple stages to generate { <subpipe name="imagesReceive"
communication code for the application: <,subpi‘;|2§i= ReceivingPipe"/>
1. The XIP is processed; ne' <connections>

specifications go to the repository ~ <connection comm="tcp">
2. Previously defined specification <fr°&£f%zt!ym>agessource
are retrieved and ISG constructs <to pipe="imagesReceive"
full specification for a generatec port="in"/>
termed a XIP+ document becau aconnection>
it has a similar format, but i</pipe>

3 gt:ggenttﬁg W;Tpiddlgggﬁkdg? ié:ig. 3. Example XIP Infopipe specification.
completed, the XIP+ document i~
processed with our XSLT codt
generation templates. The result
another XIP+ document that als
includes all the information from
the source XIP+.

4. Code weaving can now b

performed (see Section 4).

5. Code is written to directories an

files ready for compilation.

The choice of XML for our
intermediate format has proven to [
beneficial even though XML’s primary
role is in the data connections betwe:

organizations. Instead of only inter
organizational data interchange, howev:

we use it for data interchange during tl

oy . . K N C Code/
building of an application. This provide Makefiles
important advantages. First, it allows us
retain _and add tq semantic mformatlo'gig 2. ISG with support for AXpect
that might otherwise be lost from stage->_.....
to-stage within the code generator. In particular, itvedlous to capture domain
information injected by virtue of operating in the Infogdgpdomain and with the Infopipes
suite of domain languages. Such information is not requldgerved by general purpose
programming languages. Second, it allows us to have onenaonvrapper format for
multiple languages. Using XML, we can treat our code as ddt&Hvit is), and that fact
allows us to modify the code after the generation phase.t@t¢timique is already widely

used in programming languages, but is only recently ecagabin in code transformation.
Examples in general purpose languages include LISP macrasteGiplates, and Java
generics. Each of those, in some fashion, allows the qamoger to create a type of data-
code hybrid. Later, as needed, certain parameters can be changetand code can be
created for an application.

4 Weaving

Weaving is a concept from AOP in which new pieces of code areterieioua controlled
and automatic fashion near, around, or instead-of code ireaapplication. We devised a
source-level weaver to insert new functionality on top d&wiapplication. The weaving
integrates code to measure CPU statistics, provide feedbackadapd to changing
transmission environment. It has a goal of maintaining QBR&yje receiver-side below a
given level.

There are three key concepts that enable the weaver. First, we sataghtic tags to
the source code that we generate. Second, we use XSLT to eftexwteaving of the
aspect, and third, we insert weaving directives into thapipgs description file.

Any weaver must have some points in the target code tban itdentify. These are the
“joinpoints.” In our case, we benefit from our domainafie arena. Because of this, we
know that specific activities occur within each Infopipe wkhown ordering. For
example, we know that each pipe has a start-up phase that indlad&®y up each inport
and each outport, resolving bindings and names, and actaling connections. During
these initializations, our pipe may initialize data strucuoe each inport or outport. In
the code generation templates, there is template code for edl@sef'common tasks.”

AOP has three types of advice: before, after, and aroundevkloper chooses a
joinpoint using a pointcut, and then designates by keywhether aspect code should
execute before, after, or around (which subsumes insteableofetected joinpoint. One
interesting subtlety is that in AXpect the explicit XML taggnote a semantic block of
code, and not just a single point. This most closely retatéspectJ “around” semantics.
Still, we retain the before and after capability of the weawmwithout loss of “power.”
One could also view it another way, in which the XML opertag marks “before,” the
closing tag marks “after,” and taken together the tags make apri@ semantics.

For a concrete example, consider a fragment of template for gegeKaticode
Infopipes. This template excerpt generates a startup furfatidghe Infopipe. The startup
function name is based on the name of the Infopipe. The c¢é8imands are XML tags
which have thexsl namespace prefix (like the elemexdl.value-of which
retrieves the string representation of some XML elementpat#ri or XSLT variable).
The added joinpoint XML tag is bolded, and it denotes #ginming and ending of the
code block that implements the startup functionality. We hexeerse-printed the
joinpoint XML for clarity, and printed the C code in batdistinguish it from the XSLT.

/] startup all our connections

i nt i nfopi pe_<xsl:value-of select="$thisPipeName"/> _startup()

/] insert signal handler startup here
/] start up outgoing ports <xsl:for- each select="./ports/outport">
i nf opi pe_<xsl:value-of select="@name"/> _startup(); </xslfor- each>

return O;
}

Sometimes a joinpoint does not denote code but language artifiattare needed for
code to be written correctly. In following example, we $&d tve can denote the header
file for an inport. This allows the C developer of new aspede to insert new function
definitions at the appropriate scope.

#i f ndef | NFOPI PE<xsl:value-of select="$thisPortName"/> I NCLUDED

#def i ne | NFOPI PE<xsl:value-of select="$thisPortName"/> | NCLUDED

<j pt: header point="inport" pipenane="{$thi sPi peNane}" portnanme="{$t hi sPortNane}">
int drive();

/1 init function

i nt infopipe_<xslvalue-of select="$thisPortName"/> _startup();

i nt infopi pe_<xslvalue-of select="$thisPortName"/> _shutdown();

voi d i nf opi pe_<xsl:value-of select="$thisPortName"/> _receivel oop();

/1 data comes in to this struct

ext er n <xsl:value-of select="$thisPortType"/> Struct

<xsl:value-of select="$thisPortName"/>

/ p : header >|

#endi f // | nfopi pe<xslvalue-of select="$thisPortName"/> | NCLUDED
Joinpoints remain with the code until the files are writtzisk. After the generation

phase, they serve as signposts to the weaver and aspeetsdhsider our first example,

then after generation for the pipe called “imageReceiver” théhésistartup code:
/1 startup all our connections
int infopipe_i mageRecei ver_startup()
{
i nfopi pe_i np_startup();
i nfopi pe_i np_recei vel oop();

return O;

}

At this point, obviously, the code looks very much likeeC ready for compilation,
and most importantly, we and the AXpect weaver kméat the code does in the context
of the Infopipes domain. Interestingly, we find that sodaly about 26 joinpoints are
necessary for quite a bit of flexibility with respect to @et we can perform on the
generated code. These joinpoints have evolved into soraé bategories as evidenced in
Table 1, below.

“Language Artifacts” help a developer structure his code prkpp#ata” joinpoints
relate to the structures that hold incoming/outgoing d&tge” joinpoints define actions
that occur during the overall running of the pipe. Comitation layer joinpoints are
needed because it is common for these packages to need to prifiatization, set-up,
or tear down functionality only once per-application startj aome applications may

need to build on this communication layer behavior or nydtlilLast, we have joinpoints
on the inports and outports themselves.

Table 1. Catalog of joinpoints in the C templates. These expressed in a shorthand such that in
the table belowtype:point equates ta&jpt:type point="point”> in the XML/XSLT

Language Data Pipe Comm Layer Inport Outport
Artifacts
make:rule
header:pipe .
source‘;'))ige . : socket:socket inport:startup outport:marshall
header.:inport data:define p:p:igtsaer;fuuncuon Socket;bind :Epggﬁ'ﬁarshaﬂ outport;push
source:inport datacinitialize pipe: p comm-startup port: outport:startup

pipe:shutdown inport:calimiddle

comm-shutdown inport:shutdown

header:outport
source:outport

source:userdeclare

outport:shutdown

The second ingredient of the AXpect weaver is an XSLT fié¢ tontains aspect code.
Every AXpect file has two parts. First, the aspect has somerpattatching statement,
written using XPath and utilizing the XSLT pattern matghéngine, to find the proper
joinpoint and the code to be inserted. This correspondsetoole of the pointcut in an
AOP system like Aspect]. The pointcut in AXpect is an XRa#dicate for an XSLT
match statement in a fashion similar to this:

/ffilledTemplate[@name=$pipename][@inside=$inside]/ JAipt:pipe[@point="shutdown']

We can dissect the elements of the pointcut XPath statement:

/ffilledTemplate[@name=$pipename][@inside=$inside] — structure-
shy specification to find a filledElement template, whichaiblock of generated
code and predicates to narrow filled templates returned toomeparticular pipe.
/ljpt:pipe[@point="shutdown'] — a specific joinpoint

Instead of keywords like AspectJ, the AXpect developer ukeement. The actual
joinpoint and its contents are copied over by XSLAs© instruction. A simple
aspect for AXpect looks like this (the C code is boldmdifstinction from the XSLT):

<xsl:template match="//filledTemplate[@name=$pipena me]
[@inside=S$inside]// pt:pipe[@point='shutdown’] &g
fclose(afile);
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

It is now easy to see how aspect code, pointcuts and jaispaind advice mesh. The
pointcut, in reverse print, we have already discussed, tasdcontained in thenatch
attribute to thexsl:template element. We can see the C code to close a file
(fclose(afile)) is located before thesl:copy command, which means that it will
be executed before the rest of the shutdown code.x$happly-templates is
boilerplate XSLT that ensures the processor continues &rpatiatch to all elements and
attributes of the generated document that lie inside thpgoihelement. (It is our plan, in
fact, to eliminate having to write XSLT for aspects, andat@mpanying boilerplate like

thexsl:copy elements and to generate them from a higher level desar)ptio
As a second example, we can examine a case where around is helpful:

<xsl:template match="//filledTemplate[@name=$pipena me]
[@inside=$inside]//jpt:source[@point="pipe 1>

static FILE *afile;

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
#include &l t;unistd. h>
int main()

In this case we are structurally bound by the standards afd@yg which advocate
placing variable definitions at the top of a file and havinctions declared at file scope.
This means we weave on the joinpoint that defines the soilgcef fthe Infopipe. The
declaration of the variable occurs before the main code of thpipref, and the definition
and declaration of the main function occur after. Sin@@n() is not generated by
default we add it using an aspect and then call the Infoptpgup code which
subsequently spawns a thread to service our incoming peE®gionnection.

One of the interesting results of using XSLT and XML tluis system is that aspects
can introduce new joinpoints in the form of new XML tagkis means that one aspect
can build upon an aspect that was woven into the code earlir (@fF aspect weaving
will be discussed shortly). In our example scenario, werinsning code to measure how
long various pieces of Infopipe code take to run the usetibmwhich can be used later
in calculating CPU usage.

<xsl:template match="//filledTemplate

[@name=$pipename][@inside=$i nsidel/ NS >
<jpt:time-probe point="begin">
/1 take timng here
getti meof day(&anp; i nport _<xsl : val ue-of sel ect="@oi nt"/>_begi n, NULL) ;

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

<jpt:time-probe point="end">

getti meof day(&anp; i nport _<xsl : val ue-of sel ect="@oint"/>_end, NULL);

</jpt:time-probe>

</xsl:template>

The timing code is bracketed with XML that declares it, dard@PU monitoring code
can then select it with a pointcut just like any othamgoint:
<xsl:template match="//filledTemplate[@name=$pipena me][@inside=$inside]

! ipt:inport{@point="calimiddle']
1 jpt:time-probe[@point="end’]

This brings us to the third part of the AXpect weavepecsying the aspects to apply
in the XIP specification. This is a very simple process hictv we add<apply-
aspect> statements to the pipe descriptions:

<pipe class="vidSink" lang="C">

apply-aspect name="rate_controller.xs|" targetPc

apply-aspect name="control_receiver.xsl" targe t="ppmIn"/>
apply-aspect name="cpumon.xsl" target="ppmIn">
<apply-aspect name="timing.xsl"/>

<apply-aspect name="sla_receiver.xsl" doc="ua v.xml"/>

<ports>
<inport name="ppmIn" type="ppm"/>
</ports>
</pipe>
Note that we can nest tlapply-aspect elements to declare dependencies of one

aspect upon another. Since we invoke the XSLT processor ladities, and neither the
XSLT standard nor Xalan-C supports self-invocation, the evialu of these statements is
handled in a C++ program using Xerces-C, which is thégphatthe 1SG is built around.
The weaver proceeds recursively through the following stegsaoch pipe:

1. Retrieves the firstapply-aspect> element from the pipe specification.

2. If the aspect contains morapply-aspect> statements, then the AXpect
applies those aspects first, and re-enters the processawing at this step.

3. The weaver retrieves the aspect code from disk (aspects are lkeptah-
known directory).

4. Apply the aspect to the code by passing the aspect XSLT stylesheet
generated code with joinpoints, and system XML specificatiothe Xalan-C
XSLT processor. The result is a new XIP+ document that agaitains the
specification, woven code, and joinpoints. The weaving resules as input
for any aspects that follow the current aspect. This insluaspects which
depend on the current aspect's functionality, or functipnatependent
aspects that are simply applied later.

5. Once all aspects are applied, the entire XML result docuimgrdssed to the
last stage of the generator.

This algorithm implementation only required an add#io@9 lines of C++ code be
added to the generator application. The bulk of the weavepleaity is contained by the
XSLT weaver.

5 Our Sample Application

We used the AXpect weaver and Infopipes to implement thelsapplication which we
described earlier in the paper. We now discuss the implenwentdtaspects to fulfill the
QoS requirements of the rate-adaptive image-streamingcappii.

The timing aspect hooks on to all join points that des@aatexecutable block of code.
This can be done in an efficient fashion by using the patbtatching to select entire sets
of joinpoints around which to install timing code ardu€omplementing this is creating
new variables to hold the timing measurements which we derdating their names at
aspect-weaving time.

On top of this we install the CPU monitoring code. Tdusle installs around the join
points for timing, specifically the timing points thaésignate the call to the middle-
method code. Instead of using start-to-end elapsed timehwiould only provide a
measure of how long it took to execute a joinpoint, we measnd-to-end so that we
have a measure of the total time for the application to comphetéround-trip” back to
that point. We can compare this to the system-reported @& tb calculate the
percentage of CPU used by this process.

The control channel sends data between the two ends of dpépkef We used a socket
independent of the normal Infopipe data socket both toidatiee overhead of
demultiplexing control information and application data and piggyback this
functionality on top of the OS demultiplexing which wolld performed, anyway. Also,
separating these two flows of information should imprthe general robustness of the
application as there is no possibility of errant applicatiata deing interpreted as control
data or of misleading data being injected as control data somehow.

Finally, there is the SLA aspect. During weaving, it readgxarnal SLA document
which specifies the metrics and tolerances of the values thengkds to observe and
report. At run time, the SLA reads the CPU usage valuessands them through the
control channel to the video; once received, the SLA acts bast#w ageturned value. In
our example, the SLA can set a variable to control if anchéw long the sender enters
usleep() to adjust its rate control.

We compiled the sample application and ran it with a “strongiee a dual 866MHz
Pentium Il machine and a “weak,” resource-constrained receientium 11 400MHz.
Running without any controls on resource usage, the videaler is able to capture
roughly 36% of the receiver’s CPU. Using the CPU contrel,are able to bring the CPU
usage back to a target 20+5% range.

We have observed so far that our aspect files are genenajlyr lthan they amount of
code they actually generate. However, this tradeoff is appremuatsidering the increase
in locality of code and reusability (some of these aspeotsh &s timing and CPU
monitoring, have been reused already in another demdactnwhen we examine the
files altered or created by the aspects in this application, whaeearnt aspect such as the
sender-side SLA code can alter four of the generated files amcduetwo more files of
its own. In all, the QoS-aware application is 434 lineg&y than the base application that
is not QoS aware. Without support from a weaver to mefmage code, it would
obviously be more difficult to keep track of these 434 lifidsey are handwritten into the
base set of 18 files versus the six AXpect files.

(See also http://www.cc.gatech.edu/projects/infosphere/olémos/WeaveDemo)

6 Related Work

The AOP and code generation community is actively exgottie new possibilities in
combining the two including SourceWeave.NET [8], Meta-Asjiétttwo-level weaving

[10], and Xaspects [11].

Before that, The AOP community has worked diligently on weesa for general
purpose languages such as Java and C++. This has resutmalsirsuch as Aspect],
AspectWerkz, JBossAOP, and AspectC[4,13,14,15]. Gengrdglyelopment of weavers
for these platforms requires continual and concerted effat a fairly long period of
time. Other work has tackled separation of concerns fortBavagh language extensions,
such as the explicit programming approach of ELIDEeuiof16].

DSLs have also often been implemented on top of weavetabM in this area is the
QuO project, which uses a DSL from which it generates COBBjActs which are called
during runtime to be executed at the join point to enpnt quality of service. However,
the QuO project does not weave source code. Instead, & titeiexecution path of the
application therefore imposes invocation overhead [17]. 8ases AOP ideas to abstract
scheduling points in OS kernels, but again does notodece weaving; each joinpoint
triggers an event and advice registers at events in orden {d8]. Because of the use of
aspects in conjunction with DSLs, the XAspects projectudysing the use of aspects to
implement families of DSLs. Still, this project usespAst] as the source weaver and
therefore focuses only on Java as the target language fielMé&ta-AspectJ package also
targets enhancing the power of code generators and citgggeneration plus AOP to
reduce complexities for implementing security and persistedjca\ork has been done
using XML in the AOP arena; however, this work has comaegd on using XML to
denote the abstract syntax tree [18]; conversely, it has beenassthe aspect language
syntax as in SourceWeave.NET to weave aspect code in the bytefctie .NET the
Common Language Runtime (CLR) [8].

7 Conclusion and Ongoing Work

We have shown that even adding a relatively simple QoS emeirt can entalil
widespread changes to an application and that those chandas sjaread throughout the
entire application. To address this, we described the AXpeater. The AXpect weaver
can use information from a WSLA and integrate new code satoce code generated
from an Infopipes XML specification. Our target applicatimed the weaver to add new
functionality to a C program which realized an image-streamiitiy responsiveness to
CPU usage constraints on the sender end of the image sEearfuture work, we are
continuing to explore the space of applications for weavarg] we have already
demonstrated early application of the weaver to C++ progwathdurther plans for Java.
Also, we are investigating Infopipes support for WelviBerapplications.

8 Acknowledgements

The authors are grateful for the input of Charles Cong¢R(A, University of Bordeaux,
France); Ling Liu, Younggyun Koh, Wenchang Yan, and 8aKjumar (Georgia Institute
of Technology, Atlanta, GA), and Koichi Moriyama (SONY r@g Japan); Part of this

wo

rk was done under DARPA funding.

References

1

2.

10.

11.

12.

13.

15.

16.

17.

18.

19.

. M. Debusmann, and A. Keller, “SLA-driven ManagemefitDistributed Systems using the Common

Information Model,”IFIP/IEEE Inter national Symposium on Integrated Management. 2003.

A. Sahai, S. Graupner, V. Machiraju, and A. van ket “Specifying and Monitoring Guarantees in

Commercial Grids through SLAThird International Symposium on Cluster Computing and the Grid.

2003.

. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,\C.Lopes, J.-M. Loingtier, J. Irwin. “Aspect-
Oriented Programming.Proceedings of the 15" European Conference of Object-Oriented Programming
(ECOOP 2001). June 2001.

. G. Kiczales, E. Hilsdale, J. Hugunin, M. KerstenPalm, W. G. Griswold. “An Overview of AspectJ.”
Proceedings of the European Conference of Object-Oriented Programming (ECOOP 1997). June 1997.

. C. Pu, Galen Swint, C. Consel, Y. Koh, L. Liu, K.oNyama, J. Walpole, W. Yan. Implementing
Infopipes: The SIP/XIP Experiment, Technical RepGT-CC-02-31, College of Computing, Georgia
Institute of Technology, May 2002.

. G. Swint, C. Pu, and K. Moriyama, “Infopipes: Copte and ISG Implementation,” The 2nd IEEE
Workshop on Software Technologies for Embeddedliiquitous Computing Systems, Vienna. 2004.

. M. Papazoglou. “Service-Oriented Computing: Consepfharacteristics, and Directions.” Fourth
International Conference on Web Information Systé&mgineering (WISE'03). December 2003.

. A. Jackson, S. Clarke. “SourceWeave.NET:Cross-LagguAspect-Oriented Programming.” Proceedings
of the Third International Conference on Generaffivegramming and Component Engineering (GPCE),
Vancouver, Canada, October 24-28 2004.

. D. Zook, S. S. Huan, Y. Smaragdakis. “Generatinge&s) Programs with Meta-AspectJ.” Proceedings of

the Third International Conference on GenerativegfPamming and Component Engineering (GPCE),

Vancouver, Canada, October 24-28 2004.

J. Gray, J. Sztipanovits, D. Schmidt, T. BaptyN8ema, and A. Gokhale, “Two-level Aspect Weaving to

Support Evolution of Model-Driven Synthesisispect-Oriented Software Development. Robert Filman,

Tzilla Elrad, Mehmet Aksit, and Siobhan Clarke, .efiddison-Wesley, 2004.

M. Shonle, K. Lieberherr, and A. Shah. Xaspect: Bxtensible System for Domain Specific Aspect

Languages. OOPSLA 2003. October 2003.

S. Sarkar, “Model Driven Programming Using XSLT: Approach to Rapid Development of Domain-

Specific Program Generators,” www.XML-JOURNAL.coAugust 2002.

J. Bonér, A. Vasseur. AspectWerkz. http://aspedtaendehaus.org/.

. JBoss. http://www.jboss.org/products/aop.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolynsifig AspectC to Improve the Modularity of Path-

Specific Customization in Operating System Code”Proceedings of the 8th European software

engineering conference held jointly with 9th ACM SIGSOFT international symposium on Foundations of

Software Engineering, Vienna, Austria, 2001, pp. 88-98.

A. Bryant, A. Catton, K. de Volder, G. C. MurphyEXplicit programming,”1st International Conference

on Aspect-Oriented Software Development, Enschede, The Netherlands, April 22-26, 2002.

J. P. Loyall, D.E. Bakken, R.E. Schantz, J.A. ZinkyA. Karr, R. Vanegas, and K.R. Anderson, “QoS

Aspect Languages and Their Runtime IntegratidPrbceedings of the 4th Workshop on Languages,

Compilers, and Run-time Systems for Scalable Computers (LCR98). Pittsburgh. May 28-30, 1998.

L.P. Barreto, R. Douence, G. Muller, and M. SudH#ttogramming OS Schedulers with Domain-Specific

Languages and Aspects: New Approaches for OS KeEmglineering,” International Workshop on

Aspects, Components, and Patterns for Infrastructure Software at AOSD, April 2002.

S. Schonger, E. Pulermiller, and S. Sarstedt, “étsPeiented Programming and Component Weaving:

Using XML Representations of Abstract Syntax Tre@spceedings of the 2nd German Gl Workshop on

Aspect-Oriented Software Development (In: Technical Report No. IAI-TR-2002-1), Univessiof Bonn,

February 2002, pp. 59 — 64.

