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Abstract. Aspect-oriented programming (AOP) is a promising field for reducing 
application complexity. However, it has proven difficult to implement weavers for 
general purpose languages. Nevertheless, we felt some functionality for our 
information flow abstraction, Infopipes, might be best captured in aspects. In this 
paper, we describe a weaver built for domain specific languages (DSLs) related to 
Infopipes around an off-the-shelf XSLT processor. Aspects are written in XSLT, 
XML annotations are added to existing DSL generation templates, and XML 
directives are added to our Infopipes specification. Finally, we successfully 
demonstrate a generated+woven application that adds the quality of service (QoS) 
dimension of CPU usage awareness to an image streaming application. 

1   Introduction 

Web services are gaining momentum in industry as a paradigm for building and deploying 
applications with a strong emphasis on interoperability between service providers. 
Inherent in this movement is the need to codify and monitor performance of applications 
or application components which are administered or purchased from another party. This 
has led to the recognition and proposal of service level agreements (SLAs), which can 
capture expectations and roles in a declarative fashion [1,2]. One view of such agreements 
is that they constitute a domain specific language. As with any language, then, the 
question becomes how to map the “high” abstraction of the SLA language into a lower-
level implementation. This amounts to run-time measurement, feedback, and adaptation 
interspersed into a web service-enabled application. 

In addition to viewing SLAs as a domain specific language, it is helpful to consider 
them as an aspect of a web-based application in the sense of Aspect Oriented 
Programming (AOP)[3]. This follows from noting that SLAs typically describe some 
application functionality that crosscuts application implementation which means that 
given a complete implementation of the application including service monitoring, then the 
SLA implementation code will be found in multiple components of the main application, 
and furthermore, the crosscutting code is heavily mixed, or tangled, in components where 
this crosscutting occurs. 

AOP centers on the use of source code weavers to attack this problem crosscutting an 
tangling in an organized fashion. Currently, the most significant AOP tool has been the 
AspectJ weaver [4], developed after several years of effort, which supports the addition of 



aspect code to general Java applications. Applying the same techniques to C and C++ 
code, however, has been harder. The question arises, then, as to whether it is difficult to 
implement weavers for any language. 

We built the AXpect weaver into the existing code generation framework, the 
Infopipe Stub Generator [5,6]. The ISG has three important parts: the intermediate 
representation, XIP; a repository of types and Infopipe descriptions; and a collection of 
templates written in XSLT.  

This paper describes the architecture and implementation of the AXpect weaver in 
detail, as well as discusses a prototypical example application whereby a WSLA 
document is used to specify CPU usage policy between a server and client of a media 
stream. In section 2, we introduce the Infopipes abstraction for distributed applications. In 
section 3, we discuss the pre-existing code generator for our project, the ISG. In section 4, 
we present a close look at how we implement AOP in our system, and in section 5, we 
evaluate the weaver in the context of an example media application. 

2   Infopipes 

It has been long-recognized that RPC, while promising, has problems as a distributed 
programming paradigm. This mainly stems from the fact that a distributed application 
may have to deal with comparatively vast time scales, less security, and much greater 
divergence in resource availability than when operating on a single machine, even if it is a 
parallel machine. Consider that memory access and procedure call times may be measured 
in nano- or micro-seconds, but that web applications must address millisecond latencies – 
three to six orders of magnitude longer. 

Infopipes are designed to take these differences into account, particularly for 
information flow applications. One reason for targeting information flow applications is 
that they are difficult to capture abstractly using RPC because their normal operation, 
sending a continuous stream of data, is innately mismatched to RPC’s request/response 
scheme. Second, such applications often involve multiple processing steps, a concept that 
is again not addressed by RPC’s encouragement of the client-server style. Finally, RPC 
completely obscures the communication taking place in the application, so that if latency, 
bandwidth, security, or some other property is needed then a developer must “uncover” 
the communication and insert new code to recover lost data about connection 
performance, and add any new functionality by hand which may be particularly difficult if 
some sort of end-to-end property is desired to be enforced. As we stated before, Infopipes 
expose the communication step, and make it much easier for a developer to capture 
connection information and implement properties around needed communication 
boundaries. 

The Infopipes architecture is service-oriented – it encapsulates granules of distributed 
computation which are intended to be composited together [7] – just like those proposed 
for web service applications. While the ISG does not currently explicitly support XML as 



a wire format as is currently required to be Web Service compliant, it in no way excludes 
such a possibility, and even some previous unpublished Infopipe experiments have used 
XML as an ad hoc wire format. The ISG, in fact, already supports two completely 
different wire formats – PBIO, which is the wire format for ECho, and x86 byte-ordered 
data, as might come directly from a C program. 

We have devised a prototype application to demonstrate Infopipes. The application is a 
video-streaming example in which the receiver of the video stream has Quality of Service 
requirements; it is constrained by its CPU resource and must provide feedback to the 
sender of the stream to control image arrival rate. Our code generator creates the 
communication setup, binding, and marshalling code and then automatically incorporates 
the QoS code which is parameterized in an external WSLA document. In the next section, 
we describe the implementation of our ISG to generate the base communication code. For 
this example, we will denote as our base application the sender and receiver’s 
communication code with no QoS supporting code. 

Fig. 1. The QoS-aware application. 

We can see that there the application requires several functions to be implemented to 
support its QoS needs: a control channel, for feedback information; timing tags and code 
to monitor the CPU usage from times gleaned; and a rate control channel which 
implements the actions to take based on observations from the CPU monitor. 

3   The ISG 

The ISG toolkit has been developed for the Infosphere project to automate the 
programming of Infopipes code for developers. It consists of a human-friendly descriptive 
language Spi (Specifying Infopipes), an intermediate descriptive language XIP (XML for 
Infopipes), a repository for persistence of defined Infopipes structures, and a hybrid 
C++/XSLT code generation engine. 

For a developer, converting a Spi specification to compilable source code is a three-step 
process: 

1. Create a Spi document to describe the information flow system. 
2. Compile the Spi into XIP. 
3. The XIP is then processed with the ISG. 



The ISG can read the XIP, and as 
shown in Fig. 2 below (which also 
includes the AXpect weaver), it proceeds 
through multiple stages to generate the 
communication code for the application: 

1. The XIP is processed; new 
specifications go to the repository. 

2. Previously defined specifications 
are retrieved and ISG constructs a 
full specification for a generated, 
termed a XIP+ document because 
it has a similar format, but is 
augmented with additional data. 

3. Once the XIP+ document is 
completed, the XIP+ document is 
processed with our XSLT code 
generation templates. The result is 
another XIP+ document that also 
includes all the information from 
the source XIP+. 

4. Code weaving can now be 
performed (see Section 4). 

5. Code is written to directories and 
files ready for compilation. 

The choice of XML for our 
intermediate format has proven to be 
beneficial even though XML’s primary 
role is in the data connections between 
organizations. Instead of only inter-
organizational data interchange, however, 
we use it for data interchange during the 
building of an application. This provides 
important advantages. First, it allows us to 
retain and add to semantic information 
that might otherwise be lost from stage-
to-stage within the code generator. In particular, it allows us to capture domain 
information injected by virtue of operating in the Infopipes domain and with the Infopipes 
suite of domain languages. Such information is not readily preserved by general purpose 
programming languages. Second, it allows us to have one common wrapper format for 
multiple languages. Using XML, we can treat our code as data (which it is), and that fact 
allows us to modify the code after the generation phase. This technique is already widely 

 

Fig. 2. ISG with support for AXpect 
weaving. 

<pipe class="ImagePipelinePlain"> 
   <subpipes> 
     <subpipe name="imagesSource" 
              class="SendingPipe"/> 
     <subpipe name="imagesReceive" 
              class="ReceivingPipe"/> 
   </subpipes> 
   <connections> 
     <connection comm="tcp"> 
       <from pipe="imagesSource" 
             port="out"/> 
       <to pipe="imagesReceive"  
           port="in"/> 
     </connection> 
   </connections> 
</pipe> 

Fig. 3. Example XIP Infopipe specification. 



used in programming languages, but is only recently catching on in code transformation. 
Examples in general purpose languages include LISP macros, C++ templates, and Java 
generics. Each of those, in some fashion, allows the programmer to create a type of data-
code hybrid. Later, as needed, certain parameters can be changed and custom code can be 
created for an application.  

4   Weaving 

Weaving is a concept from AOP in which new pieces of code are executed in a controlled 
and automatic fashion near, around, or instead-of code in a core application. We devised a 
source-level weaver to insert new functionality on top of video application. The weaving 
integrates code to measure CPU statistics, provide feedback, and adapt to changing 
transmission environment. It has a goal of maintaining CPU usage receiver-side below a 
given level. 

There are three key concepts that enable the weaver. First, we attach semantic tags to 
the source code that we generate. Second, we use XSLT to execute the weaving of the 
aspect, and third, we insert weaving directives into the Infopipes description file. 

Any weaver must have some points in the target code that it can identify. These are the 
“joinpoints.” In our case, we benefit from our domain specific arena. Because of this, we 
know that specific activities occur within each Infopipe with known ordering. For 
example, we know that each pipe has a start-up phase that includes starting up each inport 
and each outport, resolving bindings and names, and actually making connections. During 
these initializations, our pipe may initialize data structures for each inport or outport. In 
the code generation templates, there is template code for each of these “common tasks.” 

AOP has three types of advice: before, after, and around. A developer chooses a 
joinpoint using a pointcut, and then designates by keyword whether aspect code should 
execute before, after, or around (which subsumes instead-of) the selected joinpoint. One 
interesting subtlety is that in AXpect the explicit XML tags denote a semantic block of 
code, and not just a single point. This most closely relates to AspectJ “around” semantics. 
Still, we retain the before and after capability of the weaving, without loss of “power.” 
One could also view it another way, in which the XML opening tag marks “before,” the 
closing tag marks “after,” and taken together the tags make up “around” semantics. 

For a concrete example, consider a fragment of template for generating C code 
Infopipes. This template excerpt generates a startup function for the Infopipe. The startup 
function name is based on the name of the Infopipe. The XSL commands are XML tags 
which have the xsl  namespace prefix (like the element xsl:value-of which 
retrieves the string representation of some XML element, attribute, or XSLT variable). 
The added joinpoint XML tag is bolded, and it denotes the beginning and ending of the 
code block that implements the startup functionality. We have reverse-printed the 
joinpoint XML for clarity, and printed the C code in bold to distinguish it from the XSLT. 

// startup all our connections                                       



int infopipe_<xsl:value-of select="$thisPipeName"/> _startup()        
{                                                                    
  // insert signal handler startup here                              
  <jpt:pipe point="startup">                                         
  // start up outgoing ports <xsl:for- each select="./ports/outport"> 
  infopipe_<xsl:value-of select="@name"/> _startup(); </xsl:for- each> 
. . . 
  </jpt:pipe>                                                        
  return 0;                                                          
} 

Sometimes a joinpoint does not denote code but language artifacts that are needed for 
code to be written correctly. In following example, we see that we can denote the header 
file for an inport. This allows the C developer of new aspect code to insert new function 
definitions at the appropriate scope. 

#ifndef INFOPIPE<xsl:value-of select="$thisPortName"/> INCLUDED 
#define INFOPIPE<xsl:value-of select="$thisPortName"/> INCLUDED 
 
<jpt:header point="inport"  pipename="{$thisPipeName}" portname="{$thisPortName}"> 
int drive(); 
// init function  
int infopipe_<xsl:value-of select="$thisPortName"/> _startup(); 
int infopipe_<xsl:value-of select="$thisPortName"/> _shutdown(); 
void infopipe_<xsl:value-of select="$thisPortName"/> _receiveloop(); 
// data comes in to this struct 
extern <xsl:value-of select="$thisPortType"/> Struct  
          <xsl:value-of select="$thisPortName"/> ; 
. . . 
</jpt:header>  
#endif // Infopipe<xsl:value-of select="$thisPortName"/> INCLUDED 

Joinpoints remain with the code until the files are written to disk. After the generation 
phase, they serve as signposts to the weaver and aspects. If we consider our first example, 
then after generation for the pipe called “imageReceiver” there is this startup code: 

// startup all our connections 
int infopipe_imageReceiver_startup() 
{  
  <jpt:pipe point="startup">   
  infopipe_inp_startup();    
  infopipe_inp_receiveloop();  
  </jpt:pipe>  
  return 0;  
}    

At this point, obviously, the code looks very much like pure C ready for compilation, 
and most importantly, we and the AXpect weaver know what the code does in the context 
of the Infopipes domain. Interestingly, we find that so far only about 26 joinpoints are 
necessary for quite a bit of flexibility with respect to actions we can perform on the 
generated code. These joinpoints have evolved into some broad categories as evidenced in 
Table 1, below. 

“Language Artifacts” help a developer structure his code properly. “Data” joinpoints 
relate to the structures that hold incoming/outgoing data. “Pipe” joinpoints define actions 
that occur during the overall running of the pipe. Communication layer joinpoints are 
needed because it is common for these packages to need to perform initialization, set-up, 
or tear down functionality only once per-application start, and some applications may 



need to build on this communication layer behavior or modify it. Last, we have joinpoints 
on the inports and outports themselves.  

Table 1. Catalog of joinpoints in the C templates. These are expressed in a shorthand such that in 
the table below type:point equates to <jpt:type point=“point”> in the XML/XSLT  

Language 

Artifacts 
Data Pipe Comm Layer Inport Outport 

make:rule 
header:pipe 
source:pipe 
header:inport 
source:inport 
header:outport 
source:outport 
source:userdeclare  

data:define 
data:initialize  

pipe:userfunction  
pipe:startup 
pipe:shutdown 

socket:socket 
socket:bind 
comm-startup 
comm-shutdown 

inport:startup 
inport:read 
inport:unmarshall  
inport:callmiddle  
inport:shutdown 

outport:marshall  
outport:push 
outport:startup 
outport:shutdown  

The second ingredient of the AXpect weaver is an XSLT file that contains aspect code. 
Every AXpect file has two parts. First, the aspect has some pattern matching statement, 
written using XPath and utilizing the XSLT pattern matching engine, to find the proper 
joinpoint and the code to be inserted. This corresponds to the role of the pointcut in an 
AOP system like AspectJ.  The pointcut in AXpect is an XPath predicate for an XSLT 
match statement in a fashion similar to this: 

//filledTemplate[@name=$pipename][@inside=$inside]/ / jpt:pipe[@point='shutdown']  

We can dissect the elements of the pointcut XPath statement: 
//filledTemplate[@name=$pipename][@inside=$inside]   – structure-
shy specification to find a filledElement template, which is a block of generated 
code and predicates to narrow filled templates returned to one for a particular pipe. 
//jpt:pipe[@point='shutdown']  – a specific joinpoint  

Instead of keywords like AspectJ, the AXpect developer uses placement. The actual 
joinpoint and its contents are copied over by XSLT’s xsl:copy  instruction. A simple 
aspect for AXpect looks like this (the C code is bolded for distinction from the XSLT): 

<xsl:template match="//filledTemplate[@name=$pipena me] 
          [@inside=$inside]// jpt:pipe[@point='shutdown'] ">  
  fclose(afile); 
  <xsl:copy> 
    <xsl:apply-templates select="@*|node()"/> 
  </xsl:copy> 
</xsl:template>  

It is now easy to see how aspect code, pointcuts and joinpoints, and advice mesh. The 
pointcut, in reverse print, we have already discussed, and it is contained in the match  
attribute to the xsl:template  element. We can see the C code to close a file 
(fclose(afile) ) is located before the xsl:copy  command, which means that it will 
be executed before the rest of the shutdown code. The xsl:apply-templates  is 
boilerplate XSLT that ensures the processor continues to pattern match to all elements and 
attributes of the generated document that lie inside the joinpoint element. (It is our plan, in 
fact, to eliminate having to write XSLT for aspects, and the accompanying boilerplate like 



the xsl:copy  elements and to generate them from a higher level description.) 
As a second example, we can examine a case where around is helpful: 

<xsl:template match="//filledTemplate[@name=$pipena me] 
         [@inside=$inside]//jpt:source[@point='pipe ']">  
static  FILE *afile; 
  <xsl:copy> 
    <xsl:apply-templates select="@*|node()"/> 
  </xsl:copy> 
#include &lt;unistd.h&gt; 
int main() 
. . . 

In this case we are structurally bound by the standards of C coding which advocate 
placing variable definitions at the top of a file and having functions declared at file scope. 
This means we weave on the joinpoint that defines the source file of the Infopipe. The 
declaration of the variable occurs before the main code of the Infopipe, and the definition 
and declaration of the main function occur after. Since main()  is not generated by 
default we add it using an aspect and then call the Infopipe startup code which 
subsequently spawns a thread to service our incoming Infopipes connection. 

One of the interesting results of using XSLT and XML for this system is that aspects 
can introduce new joinpoints in the form of new XML tags. This means that one aspect 
can build upon an aspect that was woven into the code earlier (order of aspect weaving 
will be discussed shortly). In our example scenario, we insert timing code to measure how 
long various pieces of Infopipe code take to run the user function which can be used later 
in calculating CPU usage.  

<xsl:template match="//filledTemplate 
                       [@name=$pipename][@inside=$i nside]// jpt:inport ">  
  <jpt:time-probe point="begin"> 
  // take timing here 
  gettimeofday(&amp;inport_<xsl:value-of select="@point"/>_begin,NULL); 
  </jpt:time-probe>  
  <xsl:copy> 
    <xsl:apply-templates select="@*|node()"/> 
  </xsl:copy> 
  <jpt:time-probe point="end"> 
  gettimeofday(&amp;inport_<xsl:value-of select="@point"/>_end,NULL); 
  </jpt:time-probe> 
</xsl:template> 

The timing code is bracketed with XML that declares it, and the CPU monitoring code 
can then select it with a pointcut just like any other joinpoint: 
<xsl:template match="//filledTemplate[@name=$pipena me][@inside=$inside] 
                     // jpt:inport[@point='callmiddle']  
                     // jpt:time-probe[@point='end'] "> 

This brings us to the third part of the AXpect weaver – specifying the aspects to apply 
in the XIP specification. This is a very simple process in which we add <apply-
aspect>  statements to the pipe descriptions: 

<pipe class="vidSink" lang="C">  
  <apply-aspect name="rate_controller.xsl" targetPc t="20"> 



    <apply-aspect name="control_receiver.xsl" targe t="ppmIn"/>  
    <apply-aspect name="cpumon.xsl" target="ppmIn">  
      <apply-aspect name="timing.xsl"/> 
      <apply-aspect name="sla_receiver.xsl" doc="ua v.xml"/> 
    </apply-aspect> 
  </apply-aspect> 
  <ports> 
    <inport name="ppmIn" type="ppm"/> 
  </ports> 
</pipe>  

Note that we can nest the apply-aspect  elements to declare dependencies of one 
aspect upon another. Since we invoke the XSLT processor multiple times, and neither the 
XSLT standard nor Xalan-C supports self-invocation, the evaluation of these statements is 
handled in a C++ program using Xerces-C, which is the platform the ISG is built around. 
The weaver proceeds recursively through the following steps on each pipe: 

1. Retrieves the first <apply-aspect>  element from the pipe specification. 
2. If the aspect contains more <apply-aspect>  statements, then the AXpect 

applies those aspects first, and re-enters the process of weaving at this step. 
3. The weaver retrieves the aspect code from disk (aspects are kept in a well-

known directory). 
4. Apply the aspect to the code by passing the aspect XSLT stylesheet, the 

generated code with joinpoints, and system XML specification to the Xalan-C 
XSLT processor. The result is a new XIP+ document that again contains the 
specification, woven code, and joinpoints. The weaving result serves as input 
for any aspects that follow the current aspect. This includes aspects which 
depend on the current aspect's functionality, or functionally independent 
aspects that are simply applied later. 

5. Once all aspects are applied, the entire XML result document is passed to the 
last stage of the generator. 

This algorithm implementation only required an additional 79 lines of C++ code be 
added to the generator application. The bulk of the weaver complexity is contained by the 
XSLT weaver. 

5   Our Sample Application 

We used the AXpect weaver and Infopipes to implement the sample application which we 
described earlier in the paper. We now discuss the implementation of aspects to fulfill the 
QoS requirements of the rate-adaptive image-streaming application. 

The timing aspect hooks on to all join points that designate an executable block of code. 
This can be done in an efficient fashion by using the pattern matching to select entire sets 
of joinpoints around which to install timing code around. Complementing this is creating 
new variables to hold the timing measurements which we do by creating their names at 
aspect-weaving time.  



On top of this we install the CPU monitoring code. This code installs around the join 
points for timing, specifically the timing points that designate the call to the middle-
method code. Instead of using start-to-end elapsed time which would only provide a 
measure of how long it took to execute a joinpoint, we measure end-to-end so that we 
have a measure of the total time for the application to complete one “round-trip” back to 
that point. We can compare this to the system-reported CPU time to calculate the 
percentage of CPU used by this process. 

The control channel sends data between the two ends of the Infopipe. We used a socket 
independent of the normal Infopipe data socket both to avoid the overhead of 
demultiplexing control information and application data and to piggyback this 
functionality on top of the OS demultiplexing which would be performed, anyway. Also, 
separating these two flows of information should improve the general robustness of the 
application as there is no possibility of errant application data being interpreted as control 
data or of misleading data being injected as control data somehow. 

Finally, there is the SLA aspect. During weaving, it reads an external SLA document 
which specifies the metrics and tolerances of the values the SLA needs to observe and 
report. At run time, the SLA reads the CPU usage values and sends them through the 
control channel to the video; once received, the SLA acts based on the returned value. In 
our example, the SLA can set a variable to control if and for how long the sender enters 
usleep()  to adjust its rate control. 

We compiled the sample application and ran it with a “strong” sender, a dual 866MHz 
Pentium III machine and a “weak,” resource-constrained receiver, a Pentium  II 400MHz. 
Running without any controls on resource usage, the video sender is able to capture 
roughly 36% of the receiver’s CPU. Using the CPU control, we are able to bring the CPU 
usage back to a target 20±5% range. 

We have observed so far that our aspect files are generally larger than they amount of 
code they actually generate. However, this tradeoff is appropriate considering the increase 
in locality of code and reusability (some of these aspects, such as timing and CPU 
monitoring, have been reused already in another demo). In fact, when we examine the 
files altered or created by the aspects in this application, we see that an aspect such as the 
sender-side SLA code can alter four of the generated files and then add two more files of 
its own. In all, the QoS-aware application is 434 lines longer than the base application that 
is not QoS aware. Without support from a weaver to help manage code, it would 
obviously be more difficult to keep track of these 434 lines if they are handwritten into the 
base set of 18 files versus the six AXpect files. 

(See also http://www.cc.gatech.edu/projects/infosphere/online_demos/WeaveDemo) 

6   Related Work 

The AOP and code generation community is actively exploring the new possibilities in 
combining the two including SourceWeave.NET [8], Meta-AspectJ[9], two-level weaving 



[10], and Xaspects [11]. 
Before that, The AOP community has worked diligently on weavers for general 

purpose languages such as Java and C++. This has resulted in tools such as AspectJ, 
AspectWerkz, JBossAOP, and AspectC[4,13,14,15]. Generally, development of weavers 
for these platforms requires continual and concerted effort over a fairly long period of 
time. Other work has tackled separation of concerns for Java through language extensions, 
such as the explicit programming approach of ELIDE project [16]. 

DSLs have also often been implemented on top of weavers. Notable in this area is the 
QuO project, which uses a DSL from which it generates CORBA objects which are called 
during runtime to be executed at the join point to implement quality of service. However, 
the QuO project does not weave source code. Instead, it alters the execution path of the 
application therefore imposes invocation overhead [17]. Bossa uses AOP ideas to abstract 
scheduling points in OS kernels, but again does not do source weaving; each joinpoint 
triggers an event and advice registers at events in order to run [18]. Because of the use of 
aspects in conjunction with DSLs, the XAspects project is studying the use of aspects to 
implement families of DSLs. Still, this project uses AspectJ as the source weaver and 
therefore focuses only on Java as the target language [11]. The Meta-AspectJ package also 
targets enhancing the power of code generators and using code generation plus AOP to 
reduce complexities for implementing security and persistence [9]. Work has been done 
using XML in the AOP arena; however, this work has concentrated on using XML to 
denote the abstract syntax tree [18]; conversely, it has been used as the aspect language 
syntax as in SourceWeave.NET to weave aspect code in the bytecode of the .NET the 
Common Language Runtime (CLR) [8]. 

7   Conclusion and Ongoing Work 

We have shown that even adding a relatively simple QoS requirement can entail 
widespread changes to an application and that those changes can be spread throughout the 
entire application. To address this, we described the AXpect weaver. The AXpect weaver 
can use information from a WSLA and integrate new code into source code generated 
from an Infopipes XML specification. Our target application used the weaver to add new 
functionality to a C program which realized an image-streaming with responsiveness to 
CPU usage constraints on the sender end of the image stream. For future work, we are 
continuing to explore the space of applications for weaving, and we have already 
demonstrated early application of the weaver to C++ programs with further plans for Java. 
Also, we are investigating Infopipes support for Web Service applications. 

8   Acknowledgements 

The authors are grateful for the input of Charles Consel ( INRIA, University of Bordeaux, 
France); Ling Liu, Younggyun Koh, Wenchang Yan, and Sanjay Kumar (Georgia Institute 
of Technology, Atlanta, GA), and Koichi Moriyama (SONY Corp., Japan); Part of this 



work was done under DARPA funding. 

References 

1. M. Debusmann, and A. Keller, “SLA-driven Management of Distributed Systems using the Common 
Information Model,” IFIP/IEEE International Symposium on Integrated Management. 2003. 

2. A. Sahai, S. Graupner, V. Machiraju, and A. van Moorsel, “Specifying and Monitoring Guarantees in 
Commercial Grids through SLA,” Third International Symposium on Cluster Computing and the Grid. 
2003. 

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, J. Irwin. “Aspect-
Oriented Programming.” Proceedings of the 15th European Conference of Object-Oriented Programming 
(ECOOP 2001). June 2001. 

4. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold. “An Overview of AspectJ.” 
Proceedings of the European Conference of Object-Oriented Programming (ECOOP 1997). June 1997. 

5. C. Pu, Galen Swint, C. Consel, Y. Koh, L. Liu, K. Moriyama, J. Walpole, W. Yan. Implementing 
Infopipes: The SIP/XIP Experiment, Technical Report GT-CC-02-31, College of Computing, Georgia 
Institute of Technology, May 2002. 

6. G. Swint, C. Pu, and K. Moriyama, “Infopipes: Concepts and ISG Implementation,” The 2nd IEEE 
Workshop on Software Technologies for Embedded and Ubiquitous Computing Systems, Vienna. 2004. 

7. M. Papazoglou. “Service-Oriented Computing: Concepts, Characteristics, and Directions.”  Fourth 
International Conference on Web Information Systems Engineering (WISE'03). December 2003. 

8. A. Jackson, S. Clarke. “SourceWeave.NET:Cross-Language Aspect-Oriented Programming.” Proceedings 
of the Third International Conference on Generative Programming and Component Engineering (GPCE), 
Vancouver, Canada, October 24-28 2004. 

9. D. Zook, S. S. Huan, Y. Smaragdakis. “Generating AspectJ Programs with Meta-AspectJ.” Proceedings of 
the Third International Conference on Generative Programming and Component Engineering (GPCE), 
Vancouver, Canada, October 24-28 2004. 

10. J. Gray, J. Sztipanovits, D. Schmidt, T. Bapty, S. Neema, and A. Gokhale, “Two-level Aspect Weaving to 
Support Evolution of Model-Driven Synthesis.” Aspect-Oriented Software Development. Robert Filman, 
Tzilla Elrad, Mehmet Aksit, and Siobhan Clarke, eds. Addison-Wesley, 2004. 

11. M. Shonle, K. Lieberherr, and A. Shah. Xaspect: An Extensible System for Domain Specific Aspect 
Languages. OOPSLA 2003. October 2003. 

12. S. Sarkar, “Model Driven Programming Using XSLT: An Approach to Rapid Development of Domain-
Specific Program Generators,” www.XML-JOURNAL.com. August 2002. 

13. J. Bonér, A. Vasseur. AspectWerkz. http://aspectwerkz.codehaus.org/. 
14. JBoss. http://www.jboss.org/products/aop. 
15. Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. “Using AspectC to Improve the Modularity of Path-

Specific Customization in Operating System Code,” in Proceedings of the 8th European software 
engineering conference held jointly with 9th ACM SIGSOFT international symposium on Foundations of 
Software Engineering, Vienna, Austria, 2001, pp. 88-98. 

16. A. Bryant, A. Catton, K. de Volder, G. C. Murphy, “Explicit programming,” 1st International Conference 
on Aspect-Oriented Software Development, Enschede, The Netherlands, April 22-26, 2002. 

17. J. P. Loyall, D.E. Bakken, R.E. Schantz, J.A. Zinky, D.A. Karr, R. Vanegas, and K.R. Anderson, “QoS 
Aspect Languages and Their Runtime Integration,” Proceedings of the 4th Workshop on Languages, 
Compilers, and Run-time Systems for Scalable Computers (LCR98). Pittsburgh. May 28-30, 1998. 

18. L.P. Barreto, R. Douence, G. Muller, and M. Südholt, “Programming OS Schedulers with Domain-Specific 
Languages and Aspects: New Approaches for OS Kernel Engineering,” International Workshop on 
Aspects, Components, and Patterns for Infrastructure Software at AOSD, April 2002.  

19. S. Schonger, E. Pulermüller, and S. Sarstedt, “Aspect-Oriented Programming and Component Weaving: 
Using XML Representations of Abstract Syntax Trees,” Proceedings of the 2nd German GI Workshop on 
Aspect-Oriented Software Development (In: Technical Report No. IAI-TR-2002-1), University of Bonn, 
February 2002, pp. 59 – 64. 


