
 DSL Weaving for Distributed Information Flow Systems

Calton Pu, Galen Swint

CERCS, College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,
Atlanta, Georgia, 30332-0280 USA

calton@cc.gatech.edu, swintgs@acm.org
http://www.cc.gatech.edu/projects/infosphere/

Abstract. Aspect-oriented programming (AOP) is a promising field for reducing
application complexity. However, it has proven difficult to implement weavers for
general purpose languages. Nevertheless, we felt some functionality for our
information flow abstraction, Infopipes, might be best captured in aspects. In this
paper, we describe a weaver built for domain specific languages (DSLs) related to
Infopipes around an off-the-shelf XSLT processor. Aspects are written in XSLT,
XML annotations are added to existing DSL generation templates, and XML
directives are added to our Infopipes specification. Finally, we successfully
demonstrate a generated+woven application that adds the quality of service (QoS)
dimension of CPU usage awareness to an image streaming application.

1 Introduction

Web services are gaining momentum in industry as a paradigm for building and deploying
applications with a strong emphasis on interoperability between service providers.
Inherent in this movement is the need to codify and monitor performance of applications
or application components which are administered or purchased from another party. This
has led to the recognition and proposal of service level agreements (SLAs), which can
capture expectations and roles in a declarative fashion [1,2]. One view of such agreements
is that they constitute a domain specific language. As with any language, then, the
question becomes how to map the “high” abstraction of the SLA language into a lower-
level implementation. This amounts to run-time measurement, feedback, and adaptation
interspersed into a web service-enabled application.

In addition to viewing SLAs as a domain specific language, it is helpful to consider
them as an aspect of a web-based application in the sense of Aspect Oriented
Programming (AOP)[3]. This follows from noting that SLAs typically describe some
application functionality that crosscuts application implementation which means that
given a complete implementation of the application including service monitoring, then the
SLA implementation code will be found in multiple components of the main application,
and furthermore, the crosscutting code is heavily mixed, or tangled, in components where
this crosscutting occurs.

AOP centers on the use of source code weavers to attack this problem crosscutting an
tangling in an organized fashion. Currently, the most significant AOP tool has been the
AspectJ weaver [4], developed after several years of effort, which supports the addition of

aspect code to general Java applications. Applying the same techniques to C and C++
code, however, has been harder. The question arises, then, as to whether it is difficult to
implement weavers for any language.

We built the AXpect weaver into the existing code generation framework, the
Infopipe Stub Generator [5,6]. The ISG has three important parts: the intermediate
representation, XIP; a repository of types and Infopipe descriptions; and a collection of
templates written in XSLT.

This paper describes the architecture and implementation of the AXpect weaver in
detail, as well as discusses a prototypical example application whereby a WSLA
document is used to specify CPU usage policy between a server and client of a media
stream. In section 2, we introduce the Infopipes abstraction for distributed applications. In
section 3, we discuss the pre-existing code generator for our project, the ISG. In section 4,
we present a close look at how we implement AOP in our system, and in section 5, we
evaluate the weaver in the context of an example media application.

2 Infopipes

It has been long-recognized that RPC, while promising, has problems as a distributed
programming paradigm. This mainly stems from the fact that a distributed application
may have to deal with comparatively vast time scales, less security, and much greater
divergence in resource availability than when operating on a single machine, even if it is a
parallel machine. Consider that memory access and procedure call times may be measured
in nano- or micro-seconds, but that web applications must address millisecond latencies –
three to six orders of magnitude longer.

Infopipes are designed to take these differences into account, particularly for
information flow applications. One reason for targeting information flow applications is
that they are difficult to capture abstractly using RPC because their normal operation,
sending a continuous stream of data, is innately mismatched to RPC’s request/response
scheme. Second, such applications often involve multiple processing steps, a concept that
is again not addressed by RPC’s encouragement of the client-server style. Finally, RPC
completely obscures the communication taking place in the application, so that if latency,
bandwidth, security, or some other property is needed then a developer must “uncover”
the communication and insert new code to recover lost data about connection
performance, and add any new functionality by hand which may be particularly difficult if
some sort of end-to-end property is desired to be enforced. As we stated before, Infopipes
expose the communication step, and make it much easier for a developer to capture
connection information and implement properties around needed communication
boundaries.

The Infopipes architecture is service-oriented – it encapsulates granules of distributed
computation which are intended to be composited together [7] – just like those proposed
for web service applications. While the ISG does not currently explicitly support XML as

a wire format as is currently required to be Web Service compliant, it in no way excludes
such a possibility, and even some previous unpublished Infopipe experiments have used
XML as an ad hoc wire format. The ISG, in fact, already supports two completely
different wire formats – PBIO, which is the wire format for ECho, and x86 byte-ordered
data, as might come directly from a C program.

We have devised a prototype application to demonstrate Infopipes. The application is a
video-streaming example in which the receiver of the video stream has Quality of Service
requirements; it is constrained by its CPU resource and must provide feedback to the
sender of the stream to control image arrival rate. Our code generator creates the
communication setup, binding, and marshalling code and then automatically incorporates
the QoS code which is parameterized in an external WSLA document. In the next section,
we describe the implementation of our ISG to generate the base communication code. For
this example, we will denote as our base application the sender and receiver’s
communication code with no QoS supporting code.

Fig. 1. The QoS-aware application.

We can see that there the application requires several functions to be implemented to
support its QoS needs: a control channel, for feedback information; timing tags and code
to monitor the CPU usage from times gleaned; and a rate control channel which
implements the actions to take based on observations from the CPU monitor.

3 The ISG

The ISG toolkit has been developed for the Infosphere project to automate the
programming of Infopipes code for developers. It consists of a human-friendly descriptive
language Spi (Specifying Infopipes), an intermediate descriptive language XIP (XML for
Infopipes), a repository for persistence of defined Infopipes structures, and a hybrid
C++/XSLT code generation engine.

For a developer, converting a Spi specification to compilable source code is a three-step
process:

1. Create a Spi document to describe the information flow system.
2. Compile the Spi into XIP.
3. The XIP is then processed with the ISG.

The ISG can read the XIP, and as
shown in Fig. 2 below (which also
includes the AXpect weaver), it proceeds
through multiple stages to generate the
communication code for the application:

1. The XIP is processed; new
specifications go to the repository.

2. Previously defined specifications
are retrieved and ISG constructs a
full specification for a generated,
termed a XIP+ document because
it has a similar format, but is
augmented with additional data.

3. Once the XIP+ document is
completed, the XIP+ document is
processed with our XSLT code
generation templates. The result is
another XIP+ document that also
includes all the information from
the source XIP+.

4. Code weaving can now be
performed (see Section 4).

5. Code is written to directories and
files ready for compilation.

The choice of XML for our
intermediate format has proven to be
beneficial even though XML’s primary
role is in the data connections between
organizations. Instead of only inter-
organizational data interchange, however,
we use it for data interchange during the
building of an application. This provides
important advantages. First, it allows us to
retain and add to semantic information
that might otherwise be lost from stage-
to-stage within the code generator. In particular, it allows us to capture domain
information injected by virtue of operating in the Infopipes domain and with the Infopipes
suite of domain languages. Such information is not readily preserved by general purpose
programming languages. Second, it allows us to have one common wrapper format for
multiple languages. Using XML, we can treat our code as data (which it is), and that fact
allows us to modify the code after the generation phase. This technique is already widely

Fig. 2. ISG with support for AXpect
weaving.

<pipe class="ImagePipelinePlain">
 <subpipes>
 <subpipe name="imagesSource"
 class="SendingPipe"/>
 <subpipe name="imagesReceive"
 class="ReceivingPipe"/>
 </subpipes>
 <connections>
 <connection comm="tcp">
 <from pipe="imagesSource"
 port="out"/>
 <to pipe="imagesReceive"
 port="in"/>
 </connection>
 </connections>
</pipe>

Fig. 3. Example XIP Infopipe specification.

used in programming languages, but is only recently catching on in code transformation.
Examples in general purpose languages include LISP macros, C++ templates, and Java
generics. Each of those, in some fashion, allows the programmer to create a type of data-
code hybrid. Later, as needed, certain parameters can be changed and custom code can be
created for an application.

4 Weaving

Weaving is a concept from AOP in which new pieces of code are executed in a controlled
and automatic fashion near, around, or instead-of code in a core application. We devised a
source-level weaver to insert new functionality on top of video application. The weaving
integrates code to measure CPU statistics, provide feedback, and adapt to changing
transmission environment. It has a goal of maintaining CPU usage receiver-side below a
given level.

There are three key concepts that enable the weaver. First, we attach semantic tags to
the source code that we generate. Second, we use XSLT to execute the weaving of the
aspect, and third, we insert weaving directives into the Infopipes description file.

Any weaver must have some points in the target code that it can identify. These are the
“joinpoints.” In our case, we benefit from our domain specific arena. Because of this, we
know that specific activities occur within each Infopipe with known ordering. For
example, we know that each pipe has a start-up phase that includes starting up each inport
and each outport, resolving bindings and names, and actually making connections. During
these initializations, our pipe may initialize data structures for each inport or outport. In
the code generation templates, there is template code for each of these “common tasks.”

AOP has three types of advice: before, after, and around. A developer chooses a
joinpoint using a pointcut, and then designates by keyword whether aspect code should
execute before, after, or around (which subsumes instead-of) the selected joinpoint. One
interesting subtlety is that in AXpect the explicit XML tags denote a semantic block of
code, and not just a single point. This most closely relates to AspectJ “around” semantics.
Still, we retain the before and after capability of the weaving, without loss of “power.”
One could also view it another way, in which the XML opening tag marks “before,” the
closing tag marks “after,” and taken together the tags make up “around” semantics.

For a concrete example, consider a fragment of template for generating C code
Infopipes. This template excerpt generates a startup function for the Infopipe. The startup
function name is based on the name of the Infopipe. The XSL commands are XML tags
which have the xsl namespace prefix (like the element xsl:value-of which
retrieves the string representation of some XML element, attribute, or XSLT variable).
The added joinpoint XML tag is bolded, and it denotes the beginning and ending of the
code block that implements the startup functionality. We have reverse-printed the
joinpoint XML for clarity, and printed the C code in bold to distinguish it from the XSLT.

// startup all our connections

int infopipe_<xsl:value-of select="$thisPipeName"/> _startup()
{
 // insert signal handler startup here
 <jpt:pipe point="startup">
 // start up outgoing ports <xsl:for- each select="./ports/outport">
 infopipe_<xsl:value-of select="@name"/> _startup(); </xsl:for- each>
. . .
 </jpt:pipe>
 return 0;
}

Sometimes a joinpoint does not denote code but language artifacts that are needed for
code to be written correctly. In following example, we see that we can denote the header
file for an inport. This allows the C developer of new aspect code to insert new function
definitions at the appropriate scope.

#ifndef INFOPIPE<xsl:value-of select="$thisPortName"/> INCLUDED
#define INFOPIPE<xsl:value-of select="$thisPortName"/> INCLUDED

<jpt:header point="inport" pipename="{$thisPipeName}" portname="{$thisPortName}">
int drive();
// init function
int infopipe_<xsl:value-of select="$thisPortName"/> _startup();
int infopipe_<xsl:value-of select="$thisPortName"/> _shutdown();
void infopipe_<xsl:value-of select="$thisPortName"/> _receiveloop();
// data comes in to this struct
extern <xsl:value-of select="$thisPortType"/> Struct
 <xsl:value-of select="$thisPortName"/> ;
. . .
</jpt:header>
#endif // Infopipe<xsl:value-of select="$thisPortName"/> INCLUDED

Joinpoints remain with the code until the files are written to disk. After the generation
phase, they serve as signposts to the weaver and aspects. If we consider our first example,
then after generation for the pipe called “imageReceiver” there is this startup code:

// startup all our connections
int infopipe_imageReceiver_startup()
{
 <jpt:pipe point="startup">
 infopipe_inp_startup();
 infopipe_inp_receiveloop();
 </jpt:pipe>
 return 0;
}

At this point, obviously, the code looks very much like pure C ready for compilation,
and most importantly, we and the AXpect weaver know what the code does in the context
of the Infopipes domain. Interestingly, we find that so far only about 26 joinpoints are
necessary for quite a bit of flexibility with respect to actions we can perform on the
generated code. These joinpoints have evolved into some broad categories as evidenced in
Table 1, below.

“Language Artifacts” help a developer structure his code properly. “Data” joinpoints
relate to the structures that hold incoming/outgoing data. “Pipe” joinpoints define actions
that occur during the overall running of the pipe. Communication layer joinpoints are
needed because it is common for these packages to need to perform initialization, set-up,
or tear down functionality only once per-application start, and some applications may

need to build on this communication layer behavior or modify it. Last, we have joinpoints
on the inports and outports themselves.

Table 1. Catalog of joinpoints in the C templates. These are expressed in a shorthand such that in
the table below type:point equates to <jpt:type point=“point”> in the XML/XSLT

Language

Artifacts
Data Pipe Comm Layer Inport Outport

make:rule
header:pipe
source:pipe
header:inport
source:inport
header:outport
source:outport
source:userdeclare

data:define
data:initialize

pipe:userfunction
pipe:startup
pipe:shutdown

socket:socket
socket:bind
comm-startup
comm-shutdown

inport:startup
inport:read
inport:unmarshall
inport:callmiddle
inport:shutdown

outport:marshall
outport:push
outport:startup
outport:shutdown

The second ingredient of the AXpect weaver is an XSLT file that contains aspect code.
Every AXpect file has two parts. First, the aspect has some pattern matching statement,
written using XPath and utilizing the XSLT pattern matching engine, to find the proper
joinpoint and the code to be inserted. This corresponds to the role of the pointcut in an
AOP system like AspectJ. The pointcut in AXpect is an XPath predicate for an XSLT
match statement in a fashion similar to this:

//filledTemplate[@name=$pipename][@inside=$inside]/ / jpt:pipe[@point='shutdown']

We can dissect the elements of the pointcut XPath statement:
//filledTemplate[@name=$pipename][@inside=$inside] – structure-
shy specification to find a filledElement template, which is a block of generated
code and predicates to narrow filled templates returned to one for a particular pipe.
//jpt:pipe[@point='shutdown'] – a specific joinpoint

Instead of keywords like AspectJ, the AXpect developer uses placement. The actual
joinpoint and its contents are copied over by XSLT’s xsl:copy instruction. A simple
aspect for AXpect looks like this (the C code is bolded for distinction from the XSLT):

<xsl:template match="//filledTemplate[@name=$pipena me]
 [@inside=$inside]// jpt:pipe[@point='shutdown'] ">
 fclose(afile);
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

It is now easy to see how aspect code, pointcuts and joinpoints, and advice mesh. The
pointcut, in reverse print, we have already discussed, and it is contained in the match
attribute to the xsl:template element. We can see the C code to close a file
(fclose(afile)) is located before the xsl:copy command, which means that it will
be executed before the rest of the shutdown code. The xsl:apply-templates is
boilerplate XSLT that ensures the processor continues to pattern match to all elements and
attributes of the generated document that lie inside the joinpoint element. (It is our plan, in
fact, to eliminate having to write XSLT for aspects, and the accompanying boilerplate like

the xsl:copy elements and to generate them from a higher level description.)
As a second example, we can examine a case where around is helpful:

<xsl:template match="//filledTemplate[@name=$pipena me]
 [@inside=$inside]//jpt:source[@point='pipe ']">
static FILE *afile;
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
#include <unistd.h>
int main()
. . .

In this case we are structurally bound by the standards of C coding which advocate
placing variable definitions at the top of a file and having functions declared at file scope.
This means we weave on the joinpoint that defines the source file of the Infopipe. The
declaration of the variable occurs before the main code of the Infopipe, and the definition
and declaration of the main function occur after. Since main() is not generated by
default we add it using an aspect and then call the Infopipe startup code which
subsequently spawns a thread to service our incoming Infopipes connection.

One of the interesting results of using XSLT and XML for this system is that aspects
can introduce new joinpoints in the form of new XML tags. This means that one aspect
can build upon an aspect that was woven into the code earlier (order of aspect weaving
will be discussed shortly). In our example scenario, we insert timing code to measure how
long various pieces of Infopipe code take to run the user function which can be used later
in calculating CPU usage.

<xsl:template match="//filledTemplate
 [@name=$pipename][@inside=$i nside]// jpt:inport ">
 <jpt:time-probe point="begin">
 // take timing here
 gettimeofday(&inport_<xsl:value-of select="@point"/>_begin,NULL);
 </jpt:time-probe>
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 <jpt:time-probe point="end">
 gettimeofday(&inport_<xsl:value-of select="@point"/>_end,NULL);
 </jpt:time-probe>
</xsl:template>

The timing code is bracketed with XML that declares it, and the CPU monitoring code
can then select it with a pointcut just like any other joinpoint:
<xsl:template match="//filledTemplate[@name=$pipena me][@inside=$inside]
 // jpt:inport[@point='callmiddle']
 // jpt:time-probe[@point='end'] ">

This brings us to the third part of the AXpect weaver – specifying the aspects to apply
in the XIP specification. This is a very simple process in which we add <apply-
aspect> statements to the pipe descriptions:

<pipe class="vidSink" lang="C">
 <apply-aspect name="rate_controller.xsl" targetPc t="20">

 <apply-aspect name="control_receiver.xsl" targe t="ppmIn"/>
 <apply-aspect name="cpumon.xsl" target="ppmIn">
 <apply-aspect name="timing.xsl"/>
 <apply-aspect name="sla_receiver.xsl" doc="ua v.xml"/>
 </apply-aspect>
 </apply-aspect>
 <ports>
 <inport name="ppmIn" type="ppm"/>
 </ports>
</pipe>

Note that we can nest the apply-aspect elements to declare dependencies of one
aspect upon another. Since we invoke the XSLT processor multiple times, and neither the
XSLT standard nor Xalan-C supports self-invocation, the evaluation of these statements is
handled in a C++ program using Xerces-C, which is the platform the ISG is built around.
The weaver proceeds recursively through the following steps on each pipe:

1. Retrieves the first <apply-aspect> element from the pipe specification.
2. If the aspect contains more <apply-aspect> statements, then the AXpect

applies those aspects first, and re-enters the process of weaving at this step.
3. The weaver retrieves the aspect code from disk (aspects are kept in a well-

known directory).
4. Apply the aspect to the code by passing the aspect XSLT stylesheet, the

generated code with joinpoints, and system XML specification to the Xalan-C
XSLT processor. The result is a new XIP+ document that again contains the
specification, woven code, and joinpoints. The weaving result serves as input
for any aspects that follow the current aspect. This includes aspects which
depend on the current aspect's functionality, or functionally independent
aspects that are simply applied later.

5. Once all aspects are applied, the entire XML result document is passed to the
last stage of the generator.

This algorithm implementation only required an additional 79 lines of C++ code be
added to the generator application. The bulk of the weaver complexity is contained by the
XSLT weaver.

5 Our Sample Application

We used the AXpect weaver and Infopipes to implement the sample application which we
described earlier in the paper. We now discuss the implementation of aspects to fulfill the
QoS requirements of the rate-adaptive image-streaming application.

The timing aspect hooks on to all join points that designate an executable block of code.
This can be done in an efficient fashion by using the pattern matching to select entire sets
of joinpoints around which to install timing code around. Complementing this is creating
new variables to hold the timing measurements which we do by creating their names at
aspect-weaving time.

On top of this we install the CPU monitoring code. This code installs around the join
points for timing, specifically the timing points that designate the call to the middle-
method code. Instead of using start-to-end elapsed time which would only provide a
measure of how long it took to execute a joinpoint, we measure end-to-end so that we
have a measure of the total time for the application to complete one “round-trip” back to
that point. We can compare this to the system-reported CPU time to calculate the
percentage of CPU used by this process.

The control channel sends data between the two ends of the Infopipe. We used a socket
independent of the normal Infopipe data socket both to avoid the overhead of
demultiplexing control information and application data and to piggyback this
functionality on top of the OS demultiplexing which would be performed, anyway. Also,
separating these two flows of information should improve the general robustness of the
application as there is no possibility of errant application data being interpreted as control
data or of misleading data being injected as control data somehow.

Finally, there is the SLA aspect. During weaving, it reads an external SLA document
which specifies the metrics and tolerances of the values the SLA needs to observe and
report. At run time, the SLA reads the CPU usage values and sends them through the
control channel to the video; once received, the SLA acts based on the returned value. In
our example, the SLA can set a variable to control if and for how long the sender enters
usleep() to adjust its rate control.

We compiled the sample application and ran it with a “strong” sender, a dual 866MHz
Pentium III machine and a “weak,” resource-constrained receiver, a Pentium II 400MHz.
Running without any controls on resource usage, the video sender is able to capture
roughly 36% of the receiver’s CPU. Using the CPU control, we are able to bring the CPU
usage back to a target 20±5% range.

We have observed so far that our aspect files are generally larger than they amount of
code they actually generate. However, this tradeoff is appropriate considering the increase
in locality of code and reusability (some of these aspects, such as timing and CPU
monitoring, have been reused already in another demo). In fact, when we examine the
files altered or created by the aspects in this application, we see that an aspect such as the
sender-side SLA code can alter four of the generated files and then add two more files of
its own. In all, the QoS-aware application is 434 lines longer than the base application that
is not QoS aware. Without support from a weaver to help manage code, it would
obviously be more difficult to keep track of these 434 lines if they are handwritten into the
base set of 18 files versus the six AXpect files.

(See also http://www.cc.gatech.edu/projects/infosphere/online_demos/WeaveDemo)

6 Related Work

The AOP and code generation community is actively exploring the new possibilities in
combining the two including SourceWeave.NET [8], Meta-AspectJ[9], two-level weaving

[10], and Xaspects [11].
Before that, The AOP community has worked diligently on weavers for general

purpose languages such as Java and C++. This has resulted in tools such as AspectJ,
AspectWerkz, JBossAOP, and AspectC[4,13,14,15]. Generally, development of weavers
for these platforms requires continual and concerted effort over a fairly long period of
time. Other work has tackled separation of concerns for Java through language extensions,
such as the explicit programming approach of ELIDE project [16].

DSLs have also often been implemented on top of weavers. Notable in this area is the
QuO project, which uses a DSL from which it generates CORBA objects which are called
during runtime to be executed at the join point to implement quality of service. However,
the QuO project does not weave source code. Instead, it alters the execution path of the
application therefore imposes invocation overhead [17]. Bossa uses AOP ideas to abstract
scheduling points in OS kernels, but again does not do source weaving; each joinpoint
triggers an event and advice registers at events in order to run [18]. Because of the use of
aspects in conjunction with DSLs, the XAspects project is studying the use of aspects to
implement families of DSLs. Still, this project uses AspectJ as the source weaver and
therefore focuses only on Java as the target language [11]. The Meta-AspectJ package also
targets enhancing the power of code generators and using code generation plus AOP to
reduce complexities for implementing security and persistence [9]. Work has been done
using XML in the AOP arena; however, this work has concentrated on using XML to
denote the abstract syntax tree [18]; conversely, it has been used as the aspect language
syntax as in SourceWeave.NET to weave aspect code in the bytecode of the .NET the
Common Language Runtime (CLR) [8].

7 Conclusion and Ongoing Work

We have shown that even adding a relatively simple QoS requirement can entail
widespread changes to an application and that those changes can be spread throughout the
entire application. To address this, we described the AXpect weaver. The AXpect weaver
can use information from a WSLA and integrate new code into source code generated
from an Infopipes XML specification. Our target application used the weaver to add new
functionality to a C program which realized an image-streaming with responsiveness to
CPU usage constraints on the sender end of the image stream. For future work, we are
continuing to explore the space of applications for weaving, and we have already
demonstrated early application of the weaver to C++ programs with further plans for Java.
Also, we are investigating Infopipes support for Web Service applications.

8 Acknowledgements

The authors are grateful for the input of Charles Consel (INRIA, University of Bordeaux,
France); Ling Liu, Younggyun Koh, Wenchang Yan, and Sanjay Kumar (Georgia Institute
of Technology, Atlanta, GA), and Koichi Moriyama (SONY Corp., Japan); Part of this

work was done under DARPA funding.

References

1. M. Debusmann, and A. Keller, “SLA-driven Management of Distributed Systems using the Common
Information Model,” IFIP/IEEE International Symposium on Integrated Management. 2003.

2. A. Sahai, S. Graupner, V. Machiraju, and A. van Moorsel, “Specifying and Monitoring Guarantees in
Commercial Grids through SLA,” Third International Symposium on Cluster Computing and the Grid.
2003.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, J. Irwin. “Aspect-
Oriented Programming.” Proceedings of the 15th European Conference of Object-Oriented Programming
(ECOOP 2001). June 2001.

4. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold. “An Overview of AspectJ.”
Proceedings of the European Conference of Object-Oriented Programming (ECOOP 1997). June 1997.

5. C. Pu, Galen Swint, C. Consel, Y. Koh, L. Liu, K. Moriyama, J. Walpole, W. Yan. Implementing
Infopipes: The SIP/XIP Experiment, Technical Report GT-CC-02-31, College of Computing, Georgia
Institute of Technology, May 2002.

6. G. Swint, C. Pu, and K. Moriyama, “Infopipes: Concepts and ISG Implementation,” The 2nd IEEE
Workshop on Software Technologies for Embedded and Ubiquitous Computing Systems, Vienna. 2004.

7. M. Papazoglou. “Service-Oriented Computing: Concepts, Characteristics, and Directions.” Fourth
International Conference on Web Information Systems Engineering (WISE'03). December 2003.

8. A. Jackson, S. Clarke. “SourceWeave.NET:Cross-Language Aspect-Oriented Programming.” Proceedings
of the Third International Conference on Generative Programming and Component Engineering (GPCE),
Vancouver, Canada, October 24-28 2004.

9. D. Zook, S. S. Huan, Y. Smaragdakis. “Generating AspectJ Programs with Meta-AspectJ.” Proceedings of
the Third International Conference on Generative Programming and Component Engineering (GPCE),
Vancouver, Canada, October 24-28 2004.

10. J. Gray, J. Sztipanovits, D. Schmidt, T. Bapty, S. Neema, and A. Gokhale, “Two-level Aspect Weaving to
Support Evolution of Model-Driven Synthesis.” Aspect-Oriented Software Development. Robert Filman,
Tzilla Elrad, Mehmet Aksit, and Siobhan Clarke, eds. Addison-Wesley, 2004.

11. M. Shonle, K. Lieberherr, and A. Shah. Xaspect: An Extensible System for Domain Specific Aspect
Languages. OOPSLA 2003. October 2003.

12. S. Sarkar, “Model Driven Programming Using XSLT: An Approach to Rapid Development of Domain-
Specific Program Generators,” www.XML-JOURNAL.com. August 2002.

13. J. Bonér, A. Vasseur. AspectWerkz. http://aspectwerkz.codehaus.org/.
14. JBoss. http://www.jboss.org/products/aop.
15. Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. “Using AspectC to Improve the Modularity of Path-

Specific Customization in Operating System Code,” in Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT international symposium on Foundations of
Software Engineering, Vienna, Austria, 2001, pp. 88-98.

16. A. Bryant, A. Catton, K. de Volder, G. C. Murphy, “Explicit programming,” 1st International Conference
on Aspect-Oriented Software Development, Enschede, The Netherlands, April 22-26, 2002.

17. J. P. Loyall, D.E. Bakken, R.E. Schantz, J.A. Zinky, D.A. Karr, R. Vanegas, and K.R. Anderson, “QoS
Aspect Languages and Their Runtime Integration,” Proceedings of the 4th Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR98). Pittsburgh. May 28-30, 1998.

18. L.P. Barreto, R. Douence, G. Muller, and M. Südholt, “Programming OS Schedulers with Domain-Specific
Languages and Aspects: New Approaches for OS Kernel Engineering,” International Workshop on
Aspects, Components, and Patterns for Infrastructure Software at AOSD, April 2002.

19. S. Schonger, E. Pulermüller, and S. Sarstedt, “Aspect-Oriented Programming and Component Weaving:
Using XML Representations of Abstract Syntax Trees,” Proceedings of the 2nd German GI Workshop on
Aspect-Oriented Software Development (In: Technical Report No. IAI-TR-2002-1), University of Bonn,
February 2002, pp. 59 – 64.

