Skip to main content

Computing Minimal Multi-homogeneous Bézout Numbers Is Hard

  • Conference paper
Book cover STACS 2005 (STACS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3404))

Included in the following conference series:

Abstract

Computing good estimates for the number of solutions of a polynomial system is of great importance in many areas such as computational geometry, algebraic geometry, mechanical engineering, to mention a few. One prominent and frequently used example of such a bound is the multi-homogeneous Bézout number. It provides a bound for the number of solutions of a system of multi-homogeneous polynomial equations, in a suitable product of projective spaces. Given an arbitrary, not necessarily multi-homogeneous system, one can ask for the optimal multi-homogenization that would minimize the Bézout number. In this paper, it is proved that the problem of computing, or even estimating the optimal multi-homogeneous Bézout number is NP-hard. In terms of approximation theory for combinatorial optimization, the problem of computing the best multi-homogeneous structure does not belong to APX, unless P = NP. As a consequence, polynomial time algorithms for estimating the minimal multi-homogeneous Bézout number up to a fixed factor cannot exist even in a randomized setting, unless BPPNP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York (1992)

    Google Scholar 

  2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation. Springer, Berlin (1999)

    MATH  Google Scholar 

  3. Bernstein, D.N.: The number of roots of a system of equations (in russian). Funkcional. Anal. i Priložen. 9(3) (1975)

    Google Scholar 

  4. Dedieu, J.P., Malajovich, G., Shub, M.: On the curvature of the central path of linear programming theory (2003) (preprint)

    Google Scholar 

  5. Khachiyan, L.G.: The problem of calculating the volume of a polyhedron is enumeratively hard (in Russian). Uspekhi Mat. Nauk 44, 3(267), 179–180 (1989)

    MathSciNet  Google Scholar 

  6. Kushnirenko, A.G.: Newton Polytopes and the Bézout Theorem. Funct. Anal. Appl. 10, 233–235 (1976)

    Article  MATH  Google Scholar 

  7. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta numerica 6, 399–436 (1997)

    Article  Google Scholar 

  8. Li, T., Bai, F.: Minimizing multi-homogeneous Bézout numbers by a local search method. Math. Comp. 70(234), 767–787 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, T., Lin, Z., Bai, F.: Heuristic methods for computing the minimal multi-homogeneous Bézout number. Appl. Math. Comput. 146(1), 237–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Morgan, A.: Solving polynomial systems using continuation for engineering and scientific problems. Prentice Hall Inc., Englewood Cliffs (1987)

    MATH  Google Scholar 

  11. Morgan, A., Sommese, A.: A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 24(2), 101–113 (1987)

    Article  MathSciNet  Google Scholar 

  12. Shafarevich, I.R.: Basic algebraic geometry, Springer Study Edition. Springer, Berlin (1977)

    MATH  Google Scholar 

  13. Wampler, C., Morgan, A., Sommese, A.: Numerical continuation methods for solving polynomial systems arising in kinematics. Journal Mechanical Design 112, 59–68 (1990)

    Article  Google Scholar 

  14. Werschulz, A.G., Woźniakowski, H.: What is the complexity of volume calculation? Journal of Complexity 18(2), 660–678 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malajovich, G., Meer, K. (2005). Computing Minimal Multi-homogeneous Bézout Numbers Is Hard. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31856-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24998-6

  • Online ISBN: 978-3-540-31856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics