
Automatic Mapping from Statecharts to Verilog

Viet-Anh Vu Tran1, Shengchao Qin2,3 and Wei Ngan Chin2,3

1 Vietsoftware Company, Hanoi, Vietnam
tran.vu.viet.anh@vietsoftware.com

2 Singapore-MIT Alliance
3 National University of Singapore

{qinsc,chinwn}@comp.nus.edu.sg

Abstract. Statecharts is a visual formalism suitable for high-level system spec-
ification, while Verilog is a hardware description languagethat can be used for
both behavioural and structural specification of (hardware) systems. This paper
implements a semantics-preserving mapping from GraphicalStatecharts to Ver-
ilog programs, which, to the best of our knowledge, is the first algorithm to bridge
the gap between Statecharts and Verilog, and can be embeddedinto the hard-
ware/software co-specification process [19] as a front-end.

1 Introduction

Statecharts [6, 7] is a visual formalism catering for high-level behaviourial specification
of embedded systems. Its hierarchical structure, orthogonal and broadcast communica-
tion features make the system specification compact and intuitive to understand. It is
a very good candidate for executable specification in systemdesign [8]. Moreover, the
semantics of Statecharts has been extensively investigated [9, 12, 14, 15, 13] in recent
years. Some works also attempt to provide tools for formal verification of Statecharts
specifications [4], [14], [20].

Verilog [22], [17] is a widely used language for hardware description in industry [2],
[5], [11], [10] and also in research. Verilog is used to modelthe structure and behaviour
of digital systems ranging from simple hardware building block to complete systems.
Verilog semantics is based on the scheduling of events and the propagation of changes.
One early attempt to investigate the semantics of Verilog isthe work of Gordon [5]
which explains how top-level modules can be simulated.

A Verilog program (or specification, as it is more frequentlyreferred to) is a de-
scription of a device or process rather similar to a computerprogram written in C or
Pascal. However, Verilog also includes constructs specifically chosen to describe hard-
ware. One major difference from a language like C is that Verilog allows processes to
run in parallel. This is obviously very desirable if one is toexploit the inherently paral-
lel behaviour of hardware. In this work, we will make use of abstract Verilog [10], [18],
that is described in the next chapter.

On the other hand, Verilog is a hardware description language that has been widely
used by hardware designers. Its rich features make it a good candidate for low–level
system specifications. The formal semantics of Verilog was first given by Gordon [5] in
terms of simulation cycles. It has been thoroughly investigated afterwards [25], [24].

As the advantages of Statecharts and Verilog in embedded system design process
are complementary to each other, a natural question that canbe raised is, can we make
use of both of them in system design? That is, can we use Statecharts as the high level
specification, while use Verilog as the low level description? This question has mo-
tivated our work and this paper shall provide a positive answer by bridging the gap
between Statecharts and Verilog. The compilation from Statecharts to Verilog can be
embedded into the hardware/software co-specification process [19]. A mapping algo-
rithm will be given in the following sections, where the soundness has been given in
Qin and Chin [18].

The rest of this paper is organized as follows. Sec 2 gives a brief introduction to
Statecharts and Verilog. Sec 3 presented the formal definition of the mapping function,
followed by its implementation in Sec 4. Sec 5 illustrates our mapping results using two
examples, while Sec 6 concludes the paper.

2 Preliminaries

2.1 Formal syntax of statecharts

Statecharts is a specification language derived from finite-state machines. The lan-
guage is rather rich in features including state hierarchy and concurrency. Transitions
can perform nontrivial computations unlike finite-state machines where they contain at
most input/output pairs. In this section we will describe Statecharts presented by David
Harel [6], [7], [9].

Statechart diagrams capture the behaviour of entities capable of dynamic behaviour
by specifying their responses to the event occurrences. Typically, it is used for describ-
ing the behaviour of classes, but statecharts may also describe the behaviour of other
model entities such as use cases, actors, subsystems, operations, or methods.

We use a simple textual representation of Statecharts, while our system can auto-
matically translate a graphical representation to the textual representation. The state-
charts language we adopt has some features that are not present in UML statecharts.
For example, broadcast communication is supported in our language but not in UML
statecharts.

As already mentioned in previous section, Statecharts is extensible by hierarchy,
orthogonality or broadcast communication. In this paper, we use the formal syntax of
statechart from [7] and [18]. The syntax of Statecharts formula is defined as follows
(quoting from [18]):
S : a set of names used to denote Statecharts. This is expected to be large enough to
prevent name conflicts.
Πe : a set of all abstract events (signals). We also introduce another setΠ e to denote
the set of negated counterparts of events inΠe , i.e.Π e =df {e | e ∈ Πe}, wheree
denotes the negated counterpart of evente, and we assumee = e.
Πa : a set of all assignment actions of the formv = exp.
σ : V ar → V al is the valuation function for variables, whereV ar is the set of all
variables,V al is the set of all possible values for variables. A snapshot for variablesv
is σ(v).

T : a set of transitions, which is a subset ofS × 2Πe∪Π e × 2Πe∪Πa × Be × S,
whereBe is the set of boolean expressions.

A term-based syntax of statecharts was introduced in [18] and [14], [15]. We re-
introduce it here for the benefit of the reader. The setSC is a set of Statecharts terms
that is constructed by the following inductively defined functions.

Basic : S → SC

Basic(s) =df |[s]|
Or : S × [SC] × T → SC

Or(s, [p1, ..., pl, ..., pn], pl, T) =df |[s : [p1, ..., pl, ..., pn], pl, T]|
And : S × 2SC → SC

And(s, {p1, ..., pn}) =df |[s : {p1, ..., pn}]|

Note that:
– Basic(s) : denotes a basic statechart nameds.
– Or(s, [p1, ..., pl, ..., pn], pl, T) : represents anOr-statechart with a set of sub-states
{p1, ..., pn}, wherep1 is the default sub-state,pl is the current active sub–state,T is
composed of all possible transitions among immediate sub-states ofs.
– And(s, {p1, ..., pn}) is anAnd-statechart nameds, which contains a set of orthogonal
(concurrent) sub-states{p1, ..., pn} .

In this paper we use sub-state interchangeable as children of Or-state. Correspond-
ingly, we use children and region ofAnd-state interchangeably. For statecharts that we
adopted in this work, we shall assume that eachAnd-state will have at least two regions.
Furthermore, each region shall be anOr-state.

We shall take the textual representation of statecharts as input data for our core
mapping program. Our front-end algorithm will translate graphic charts to textual rep-
resentation automatically. As an example, we give below a simple graphical Statechart
and its corresponding textual representation.

P0
P1

P2

P1a P1b

P2a

P2b P2c

t2: b (true)
t3: c (true)

t1: a (true)

P0 = |[S1: P1, P2]|
P1 = |[S2: [P1a, P1b], P1a, t1]|
P2 = |[S3: [P2a, P2b, P2c], P2a, t2, t3]|
P1a = |[S4]|
P1b = |[S5]||
P2a = |[S6]|
P2b = |[S7]|
P2c = |[S8]|

t1 = < P1a, a , , true, P1b >
t2 = < P2a, b , , true, P2a >
t3 = < P2b, c , , true, P2c >

Fig. 1. A simple example of a Statechart and its textual representation.

2.2 Verilog

Verilog is a hardware description language that has been widely used in industry. Al-
though the Verilog IEEE standard [22] was released around ten years ago, the formal

semantics based on simulation cycles [5] has not been well-investigated until recently,
e.g. [11], [10]. In our work, we shall use a behaviourial subset of Verilog introduced in
[10] and [18]. This more abstract version of Verilog can be used to express designs at
various levels of hardware behaviour. Such an abstract design can be gradually refined
into an equivalent counterpart in the Verilog HDL which can provide a closer match
to the underlying architecture of the hardware. This process may be repeated until the
design is at a sufficiently lower level such that the hardwaredevice can be synthesised
from it. There are two main features in abstract Verilog thatare not present in Verilog
HDL, namely guarded choice extension and recursion. The translation from general
guarded choices to parallel composition in normal Verilog is achievable, although non-
trivial. The conversion of recursion to iteration is harderbut there exists standard con-
version techniques to realise some subsets of them. Furthermore, for bounded recursion,
it is possible to inline the abstract Verilog code so as to remove recursion.

A Verilog program can be a parallel or a sequential process, but only parallel process
may contain sequence processes, not vice-versa. Here are some categories of syntactic
elements:

1. Parallel process
P ::= S | P ‖ P
where,S is a sequential process.

2. Sequential process can be formally described as following
S ::= PC (primitive command) | S;S (sequential composition)

| s � b � S (condition) | b ∗ S (iteration)
| (b&g S) [] ... [] (b&g S) (guarded choice) | fix X • S (recursion)

where,b is boolean condition, and
PC ::= skip | sink | ⊥ | → η (output event) | v = ex (assignment)
g ::= → η | @(x = v) (assignment guard))

| #1 (time delay) | eg (event control)
eg ::= η | eg & eg | eg & ¬eg
η ::= ↑ v (value rising) | ↓ v (value falling) | e (a set of abstract events)

Recall that a Verilog program can only be a parallel process at the top level, a se-
quential process cannot contain a parallel process. However, most real systems contain
many parallel processes possibly organised hierarchically. To solve this restriction, we
shall use algebraic laws [10] to expand a parallel process into a sequential one.

Here are some simple code examples:

– (e & (→ f) sink) [] (g & (→ h) sink)
– µX • (e (f X))
– (a & (→ e) sink) ‖ (b & (→ f) sink)

3 Semantic-Preserving Mapping

Our algorithm that takes as input graphical statecharts andgenerates as output Verilog
code is based on the theoretical result presented in [18]. This mapping algorithm works
in a top-down manner starting from the root of the statechartand then moving to its

children. Each time, we consider the input statechart (eachpart of Statecharts) as a
singleton statechart and continue until no further applicable.

We present the mapping functionL as originally proposed in [18] which produces
result based on the type of the source statechart:
Definition of mapping function L:

L : SC → Verilog

maps any statechart description into a corresponding Verilog process. It keeps un-
changed the set of variables employed by the source description, i.e.,

∀sc ∈ SC • vars(L(sc)) = vars(sc)
and it is inductively defined as follows.

– For a statechartsc = |[s]| constructed byBasic, L maps its input into an idle
programsinkwhich can do nothing but let time advance, i.e.,

L(sc) =df sink
– For a statechartsc = |[s : {p1, ..., pn}]| constructed byAnd, L maps its input into

a parallel construct in Verilog.
L(sc) =df ‖1≤i≤n L(pi)

– For a statechartsc = |[s : [p1, ..., pn], pl, T]| constructed byOr, we defineL
by exhaustively figuring out the first possible transitions of sc if any, otherwise it
returnssink.

L(sc) =df

{

sink if T ∗(sc) = ∅
P otherwise

where
P =df []0≤k≤or-depth(sc) []{bτk & giτk & (&0≤j≤k hj) & g0τk L(resc(τk, sc)) |

τk ∈ T (activek(sc)) ∧ src(τk) = activek+1(sc) ∧
hj = &{¬giτ | τ ∈ T (activej−1(sc)) ∧ src(τ) = activej(sc)}}

and
active0(sc) =df sc
active1(sc) =df active(sc)
activei+1(sc) =df active(activei(sc))

For each statechart, we always assume each of its variables has bounded range,
and the set of possible events is finite, which implies that the set of its configurations
is finite. Therefore, the set of configurations (under transition relation) forms a well–
founded quasi order, which indicates the mapping functionL is terminating.

Following are some formal notations used in the above definition. Firstly, the func-
tion or-depth: SC → N to calculate the “or–depth” of a statechart, which is definedas
follows:

- for a statechartsc = |[s]| constructed byBasic, or-depth(sc) =df 0;
- for a statechartsc = |[s : [p1, ..., pn], pl, T]| constructed byOr, or-depth(sc) =df

or-depth(pl) + 1;
- for a statechartsc = |[s : {p1, ..., pn}]| constructed byAnd, or-depth(sc) =df

1.

The or-depthof an Or-chart just records the depth of the path transitively alongits
activeOr-sub-states. We stop going further once anAnd-state is encountered. Theor-
depthof anAnd-chart is simply 1.

Secondly, the source and target state functions,src(τ) andtgt(τ), respectively repre-
sent the source and target state of a transitionτ . Given a transitionτ = &1≤k≤mτik ∈
T , whereτik ∈ T ∗(pik), for 1 ≤ k ≤ m, andi1, ..., in is a permutation of1, ..., n, we
define its source and target state as follow:

src(τ) =df (q1, ..., qn), whereqik = src(τik), for 1 ≤ k ≤ m, and qik =
active(pik), for m < k ≤ n;

tgt(τ) =df (r1, ..., rn), whererik = tgt(τik), for 1 ≤ k ≤ m, and rik =
active(pik), for m < k ≤ n.

Note thatT ∗(p) contains all possible transitions insidep along its transitive ac-
tive sub-state chain, i.e.,T ∗(p) =df {τ | τ ∈ T ∧ src(τ) = pl} ∪ T ∗(pl). And
active(sc) denotes a current active sub-state ofsc. With anOr-statechartsc = |[s :
[p1, ..., pn], pl, T]|, we haveactive(sc) = pl. With an And-statechartsc = |[s :
{p1, ..., pn}]|, we have the active state as a vector of the active states of these con-
stituents, i.e.,active(sc) =df (active(p1), ..., active(pn)).
Thirdly, we need to know the resulting statechart after a transition is taken. When a
transitionτ occurs, any involved statechart can have changes in its (transitive) active
sub-states. We use a function:

resc : T × SC → SC

to return the modified statechart after performing a transition in a statechart. It is defined
inductively with regard to the type of the statechart.

- for aBasic-statechartsc, and any transitionτ , resc(τ, sc) =df sc;
- for anOr-statechartsc = |[s : [p1, ..., pn], pl, T]|, and a transitionτ ,

resc(τ, sc) =df

sc[l 7→a2d(tgt(τ))], if τ ∈ T ∧ src(τ) = pl;
sc[l 7→resc(τ,pl)], if τ ∈ T ∗(pl);
sc, otherwise.

- for anAnd-statechartsc = |[s : {p1, ..., pn}]|, and a transitionτ ,

resc(τ, sc) =df

{

scτ , if τ = &1≤k≤mτik ∈ T (sc);
sc, otherwise.

wherescτ = sc[q1/p1, ..., qn/pn] is the statechart obtained fromsc via re-
placingpi by qi, for 1 ≤ i ≤ n, qik = resc(τik , pik), for 1 ≤ k ≤ m, and
qik = pik , for m < k ≤ n.

The functiona2d(sc) is used to change the active sub-state ofsc into its default
sub-state, and the same change is applied to its new active sub-state. This function is
defined as:

- a2d(|[s]|) =df |[s]|
- a2d(|[s : [p1, ..., pn], pl, T]|) =df |[s : [p1, ..., pn], a2d(p1), T]|
- a2d(|[s : {p1, ..., pn}]|) =df |[s : {a2d(p1), ..., a2d(pn)}]|

The substitutionsc[l 7→pm] for anOr-statechartsc = |[s : [p1, ..., pn], pl, T]| is defined
by sc[l 7→pm] =df |[s : [p1, ..., pn], pm, T]|

4 Implementation

Our implementation consists of two parts: a statechart editor (called StatechartE, is
a stencil of MS Visio) and a mapping program from statechart into abstract Verilog
(called AMSV-Automatic Mapping of Statechart into Verilog).

Statechart
drawing

(Statechart_E)

Mapping
(AMSV)

texture
representation

Code
generation

(AMSV)

abstract
Verilog

Fig. 2. Structure of the implementation.

Fig. 2 shows the stages of using our system. Users first draw their statecharts, using
StatechartE, which also automatically generates the corresponding textual representa-
tions. AMSV will then generate abstract Verilog code from textual representation of
these statecharts. In next two sections, we will discuss about StatechartE, AMSV, and
some other techniques used in the system.

4.1 Statechart editor

StatechartE is built with three main purposes:

– First, of course is for editing Statechart diagrams. The editor should be convenient
to use and easy to draw.

– Second, it should also be easy to export textual representation of statechart. This is
used by the mapping algorithm which converts statechart to abstract Verilog.

– Last, it should be easy to save the statecharts to other graphical formats (like bmp,
jpg, ps, eps, etc) This is important for portability and for documentation.

From these requirements, we built StatechartE as an add-on/embedded stencil in
Microsoft Visio. We make use of MS. Visio because Visio is a very powerful graphical
editor tool for drawing diagrams. Visio also supports many graphical formats for export-
ing our diagrams. Moreover, using Visio, we can not only drawstatechart components
but also other shapes from suitable drawing types or stencils.

Features of StatechartE:

– A menu namedStatechartis added to the menu bar of Visio. This menu contains
two functions, namely:Generate statechartandAdd new statechart page. The first
function is used to export the current statechart to a textual file. This file is used as
input for the mapping program which to transform to abstractVerilog. The second
function is used to add a new page for current statechart diagram. To enable this
menu and its functions, users must allow a macro to be accepted when opening the
stencil.

– A set of masters is added to the stencil and this is used for constructing statecharts.
It consists of a state master, a default master (common for all kind of states), 8 tran-
sition masters (to help build complex statecharts), and vertical/horizontal separators
for And-state.

– Each master is accompanied by a program written in Visual Basic for Application
(VBA) to check data, events and perform actions of each master. Some masters
are linked to a window to allow input of needed data. This program also partially
checks the supplied data such as duplicate name, etc.

– We also allow users to build hierarchical statecharts. Users can easily extend a given
statechart by adding a new page (using the second function inmenuStatechart)
and continue to extend the current statechart in a hierarchical manner in the new
page. Note that thegeneratefunction will read all components in all pages of the
statechart.

4.2 AMSV - Core mapping program

The second part, called AMSV (Automatic Mapping of Statechart into Verilog), is es-
sentially a Java program.

DFS algorithm As presented in section 3, the mapping algorithm has to deal with
each state;Basic, And, andOr states. It can construct the corresponding Verilog
code after the mapping algorithm has been applied to all states of the source statechart.
Nevertheless, how do we traverse all states of the input statechart? In the AMSV, we
make use of depth–first–search (DFS) algorithm [3] to reach all states of the statechart.

However, DFS works on each tree of nodes. To apply DFS we have to reconstruct
the source statechart into a tree of states. Fig. 3 shows an example of hierarchy tree (b)
for a simple statechart (a). Here, dashed arrows denote the children of anAnd-state (like
arrow from P0 to P1, P2), while the doted arrows point to the active sub-states ofOr-
state (like arrow from P1 to P3 or P2 to P6). The solid arrows represent the transitions.

P0
P1

P3

P4

P2

P6

P7

t3: e3

P5

t2: e2t1
:

e1

t4
: e

4

P8

P9t5: e5

a)

P0

P1

P3

P4

P2

P6

P7P5

P8 P9

P0

P1

P3

P4

P2

P6

P7P5

P8 P9

b) c)

Fig. 3.Hierarchy tree. a) Statechart example, b) hierarchy tree, and c) DFS route.

After reconstructing each statechart into a hierarchy tree, we apply a recursive func-
tion which maps each statechart to abstract Verilog. At eachtime, we only consider one
state, called the current state. Through this recursive function, we apply the mapping

algorithm to all states of the source statechart to obtain Verilog process code. These
codes are kept in a hash table for latter use. After that, we gather the output code (from
sub-states or from target states of all transitions to the current state) to generate final
abstract Verilog process.

For example, in the Fig. 3, first we start from the root state (like P0). After that, we
invoke the function itself if it is possible to go to current state’s children (P1, P2) or
target states of transitions (P3 to P4, P5). A systematic wayof finding the next state is
described below. Fig. 3 c shows the route taken by our DFS traversal:

– each state is the target of transition: If there exists any transition from the current
state, go to the target state of the transition. Like transitions from P3 to P4 or P5.
The information of the transition will be memorized to generate output code. If
there are more than one transitions from current state, process it one by one. The
order between these transitions is not important.

– each state is a child of theAnd-state: If the current state isAnd-state, go to all
children. Like from P0 to P1 or P2. Information of children inthatAnd-state will
be memorized during code generation, as acquired by the Verilog language.

– state is sub-state ofOr-state: Just go to active state and continue as before. For
example, P3 and P6 are the active states of P1 and P2.

Recursion During the traversal to the states of a given statechart, it is possible for a
transition to re-occur. This may be due to non-termination.To solve this problem we
use a boolean array to remember all states which the program has already encountered.
If a program reaches a marked state, it just uses that information to generate a loop, and
then go back to previous state. This is meant to terminate a recursive transition.

Parallel expansion Recall from early discussion in Sec 2, we shall take into account
the parallel expansion ofAnd-state. Whenever anAnd-state is reached, all information
(guards, conditions, etc) of the children of a current stateare used for expansion. The
only exception is when the current state is the root. In this case we generate Verilog
code from all its children and gather it using the parallel operation (‖). This situation
was discussed in [23].

5 Examples

In this section, we illustrate the mapping algorithm via thefollowing examples: a CD
player and a washing machine.

5.1 CD-player

Specification Fig. 4 shows the graphical statechart of a CD-player. It contains two or-
thogonal regions:Play control(PlayCtr) andTrack information(TrackCtr), which
are used to control the playing mode and record the track information respectively. The
first region containsStop, Play, Pause sub-states to control the playing mode,

while the second one contains only a sub-state,Track. Three buttons,Next, Prev,
andselect a track, are associated with theTrack state. The variable ct (that is,
current track) is used to keep record of the current positionof the CD being played. We
assumect is initially 0 whenever the CD-player is switched on.

In this model,Stop andTrack are respectively two default sub-states of two
orthogonal regions. So when the CD-Player is switched on, both of them are entered
simultaneously. Upon the arrival of eventPlay pressed(that is, thePlay button is
pressed), transitiont1 is taken and statePlayingCtr is entered, where the default
sub-statePlaying becomes active. Transitionst4 and t3 are used to alter between
statePlaying andPaused. Transition t2 connects statePlayingCtr with state
Stop. When the control is in statePlayingCtr (eitherPlaying or Paused), and
t2 is enabled, it will yield theStop state (that is, the CD-player will stop).

In the orthogonal stateTrackCtr, upon the arrival of eventsNextpressedor
Prev pressed, the variablect (current track) will be changed according to the event.
Conditions(ct > 1) and(ct < Max(track)) are used to check the range of thect. The
transitiont7 is taken if users select any track in the range.

CD-Player-ON

PlayCtr TrackCtr

Stop

t1: P
lay_pressed / c

t=1

(tru
e)

t2: Stop_pressed / ct=1

(true)

PlayingCtr

Playing

Paused

t3
: P

la
y_

pr
es

se
d

(tr
ue

)

t4 : P
 a u s e _ p re s s e d

(tru e)

Track

t5: Next_pressed / ct=ct+1
(ct<max(track))

t7 : T
 ra c k _ s e le c t / c t=

trs l
(0 < c t<

 m
 a x (tra ck)+ 1)

t6: Prev_pressed /
ct=ct-1 (ct>1)

Fig. 4. CD player with track information (ct).

For simplicity, we only added track information in this specification of a CD-player.
A real CD-player may contain other functionalities, like timer, forward, rewind, etc. We
can add these setting as parallel regions in a similar way.

After drawing the statechart specification in StatechartE, the following textual rep-
resentation is automatically generated:

CD-Player-ON = |[S1: { PlayCtr, TrackCtr }]|
PlayCtr = |[S2: [Stop, PlayingCtr], Stop, { t1, t2 }]|
TrackCtr = |[S3: [Track], Track, { t5, t7, t6 }]|
Stop = |[S4]|
PlayingCtr = |[S5: [Playing, Paused], Playing, { t3, t4 }]|
Playing = |[S6]|
Paused = |[S7]|
Track = |[S8]|

t1 = < Stop, { Play_pressed }, { ct=1 }, true, PlayingCtr >
t2 = < PlayingCtr, { Stop_pressed }, { ct=1 }, true, Stop >

t3 = < Paused, { Play_pressed }, { }, true, Playing >
t4 = < Playing, { Pause_pressed }, { }, true, Paused >
t5 = < Track, { Next_pressed }, { ct=ct+1 }, ct<max(track),

Track >
t7 = < Track, { Track_select }, { ct=trsl }, 0<ct<max(track)+1,

Track >
t6 = < Track, { Prev_pressed }, { ct=ct-1 }, ct>1, Track >

The first 8 lines are information of states. The rest are transitions.

Result The textual representation given in last section is taken asthe input of our
algorithm AMSV, the output we obtain is the following code inabstract Verilog:

Result:
L_PlayCtr || L_TrackCtr

Where:
L_PlayCtr = fix X0. (L_Stop)
L_TrackCtr = fix X2. (

(((Next_pressed & @(ct=ct+1) & (ct<max(track)) X2)
[] (Track_select & @(ct=trsl) & (0<ct<max(track)+1) X2))

[] (Prev_pressed & @(ct=ct-1) & (ct>1) X2)))
L_Stop = ((Play_pressed & @(ct=1))

((Stop_pressed & @(ct=1) X0) [] fix X1. (L_Playing)))
L_Playing = ((Pause_pressed & not Stop_pressed)

(((Play_pressed & not Stop_pressed) X1)
[] (Stop_pressed & @(ct=1) X0)))

note that we usefix (rather thanµ) to denote the recursion.L state is the correspond-
ing result fromstate.

Here we can see that the LPlayCtrl and LTrackCtr are processes which are running
in parallel, where the recursive identifiers X0, X1, X2 represent three loop points.

5.2 Washing machine

Specification In this subsection, we discuss a washing machine with five setting func-
tions;Timer,Hot water,Rinse level,Water level, andPre-wash. Fig. 5
shows the user interface of the washing machine. Fig. 6 givesthe statechart specifica-
tion of the washing machine corresponding to the interface,while Fig. 7 zooms into
the sub-stateWashing-Ctr. Statechart in Fig. 6 contains six parallel regions corre-
sponding to five setting functions and the washing progress (Wash-Ctr). Each setting
region contains a sub-statechart to change the value of its function. For example, in the
Timer-Ctr region, the variabletm denotes the time that the washing machine has to
wait before it starts to wash. It can be changed byInc or Dec buttons. Other variables
hw (hot water),rl (rinse level),wl (water level) andpw (pre-wash) are similar, and can
be changed via pressing corresponding buttons. The defaultvalues of these variables
are shown in Fig. 5 with black circles (hw = 0, rl = 0, wl = 0, andpw = 0) and
default timer is 0.

Start

Pre-
wash

Water
level

Yes

No Normal

Half

Full

Rinse

Light

Medium

Extra

Hot
water

Cold

Warm

Hot

Inc

Dec

 0 h

Fig. 5. Interface of the washing machine.

Washing-machine-ON

Wash-Ctr

Idle

Washing-Ctr

t1: Start / washing=true
(true)

Timer-Ctr

Timer

t5: timer-increase / tm=tm+1
(tm<10 & washing=false)

t6: timer-decrease / tm=tm-1
(tm>1 & washing=false)

Water-Ctr

Normal Half

Full

t10: Water-
pressed / wl=1

(true)

t1
1:

 W
at

er
-p

re
ss

ed
 /

w
l=

2
(tr

ue
)

t12: W
ater-pressed /

wl=0 (true)

Light Medium

Extra

t7: Rinse-pressed /
rl=1 (true)

t8
: R

in
se

-p
re

ss
ed

 /

rl=
2

(tr
ue

)

t9: R
inse-pressed /

rl=0 (true)

Prewash-Ctr

Pre-w-no Pre-w-yes

t13: Pre-wash / pw=1
(washing=false)

t14: Pre-wash / pw=0
(washing=false)

Hotwater-Ctr

Cold

Warm

Hot

t2: Hot-water /

hw=1 (true)

t3: H
ot-w

ater /

hw=2 (tr
ue)

t4
: H

ot
-w

at
er

 /
hw

=
0

(tr
ue

)

Rinse-Ctr

Fig. 6. Main statechart of a washing machine.

TheWashing-Ctr is anOr-state as given in Fig. 7. The stateCheck-wait is
activated once stateWashing-Ctr is entered. Iftm is greater than 0, the machine
keeps waiting fortm time before the control moves toPre-wash state. The transition
t18 calculates the value of the variablewashtime based on thepre-washsetting. For
example, ifpw is 0 thenwashtime = 1. The variablewashtime is used to keep record
of the time that the clothes have been washed so far. It is explained as follows:

– washtime = 0: if pw = 1, need pre-wash.
– washtime = 1: if pw = 0, no need pre-wash, need powder, no spin.
– washtime = 2 or 3: wash without powder, spin.
– washtime > 3: finish.

Upon finishing, the machine beeps to inform the user.
The textual representation generated from StatechartE is printed in [23].

Start-washing

Waitt15: / timer-cal
(tm>0)

t16: /
check-pre-wash

(tm=0)
Pre-wash

Washing

water-in

cold-w warm-w hot-w

t22: /
check-wl

(hw=0)

t24: / check-wl
(hw=2)

t23: / check-wl
(hw=1)

washing

t25: / start-wash
(true) t27: /

start-w
ash

(tru
e)

t26: / start-wash
(true)

water-out

t28: / washtime=washtime+1 (true)

Powder-in

t18: / washtime=1-pw (true)

Spin

t29: / start-spin (washtime>1)

Wash-end

t31: / Beep-finish
(washtime=4)

Check-wait

t17: / check-pre-wash
(tm=0)

t19: fill-water
(washtime!=1)

t20: / get-powder-in(washingtime=1)

t30: / re
wash

(washtime<4)

t21: fill-w
ater (true)

Fig. 7.Statechart ofWashing-Ctr in the washing machine.

Result We then run the AMSV algorithm to generate the Verilog program for the
washing machine. We only give some part of the target code here.
First of all, let us regardWashing-Ctr as a basic state (before we zoom into it). We
have the following Verilog program:

Result:
L_Wash-Ctr || L_Timer-Ctr || L_Water-Ctr || L_Prewash-Ctr ||

L_Hotwater-Ctr || L_Rinse-Ctr

Where:
L_Wash-Ctr = L_Idle
L_Idle = (Start & @(washing=true) sink)
L_Timer-Ctr =

fix X0. (((timer-increase & @(tm=tm+1) &
(tm<10 & washing=false) X0)

[] (timer-decrease & @(tm=tm-1) &
(tm>1 & washing=false) X0)))

L_Water-Ctr = fix X1. (L_Normal)
L_Normal = ((Water-pressed & @(wl=1)) L_Half)
L_Half = ((Water-pressed & @(wl=2))

(Water-pressed & @(wl=0) X1))
L_Light = ((Rinse-pressed & @(rl=1)) L_Medium)

L_Medium = ((Rinse-pressed & @(rl=2))
(Rinse-pressed & @(rl=0) X4))

L_Prewash-Ctr = fix X2. (L_Pre-w-no)
L_Pre-w-no = ((Pre-wash & @(pw=1) & (washing=false))

(Pre-wash & @(pw=0) & (washing=false) X2))
L_Hotwater-Ctr = fix X3. (L_Cold)
L_Cold = ((Hot-water & @(hw=1)) L_Warm)
L_Warm = ((Hot-water & @(hw=2)) (Hot-water & @(hw=0) X3))
L_Rinse-Ctr = fix X4. (L_Light)

Thesink process inL Idle is used to denote theWashing-Ctrl process, as we
regard it as a basic state. On the other hand, if we considerWashing-Ctr as a stand-
alone statechart, the corresponding code for it is as follows:

Result:
L_Check-wait =

(((& @(timer-cal) & (tm>0)) L_Wait)
[] ((& @(check-pre-wash) & (tm=0)) L_Pre-wash))

L_Start-washing =
(((fill-water & (washtime!=1)) L_water-in

(& @(rewash) & (washtime<4) X0))
[] ((& @(get-powder-in) & (washingtime=1)) L_Powder-in

(& @(rewash) & (washtime<4) X0)))
L_Wait = ((& @(check-pre-wash) & (tm=0)) L_Pre-wash)
L_Pre-wash = ((& @(washtime=1-pw))

fix X0. (((& @(rewash) & (washtime<4) X0)
[] L_Start-washing)))

L_water-in =
((((& @(check-wl) & (hw=0)) L_cold-w

(& @(rewash) & (washtime<4) X0))
[] ((& @(check-wl) & (hw=2)) L_hot-w

(& @(rewash) & (washtime<4) X0)))
[] ((& @(check-wl) & (hw=1)) L_warm-w

(& @(rewash) & (washtime<4) X0)))
L_cold-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))
L_warm-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))
L_hot-w = ((& @(start-wash)) L_washing

(& @(rewash) & (washtime<4) X0))
L_washing = ((& @(washtime=washtime+1)) L_water-out

(& @(rewash) & (washtime<4) X0))
L_water-out = ((& @(start-spin) & (washtime>1)) L_Spin

(& @(rewash) & (washtime<4) X0))
L_Powder-in = ((fill-water) L_water-in

(& @(rewash) & (washtime<4) X0))
L_Spin = (& @(Beep-finish) & (washtime=4) sink

(& @(rewash) & (washtime<4) X0))

In the final code, thesink process inL Idle is replaced by the processL Check-wait.

6 Conclusion

In this paper we proposed an automatic mapping algorithm to translate high-level Stat-
echarts into low-level Verilog specifications. Our algorithm has been proved sound ear-
lier [18].

The system that we have built in Java provides a graphical interface for users to
draw their statecharts in MS Visio. Our mapping algorithm thus translates the graph-
ical representation into a textual representation, and then generates the corresponding
Verilog programs.

Some of related works on connecting Statecharts with other formalisms are pre-
sented in [1, 4, 16, 21, 20]. Beauvais et.al. [1] and Seshia et.al. [21] translate STATEM-
ATE Statecharts to synchronous languagesSignalandEsterelrespectively, aiming to
use supporting tools provided in the target formalisms for formal verification purposes.
However, all these translations are based on the informal semantics [9] lacking correct-
ness proofs. The authors of [4, 16] transform variants of Statecharts into hierarchical
timed automata and use tools (UPPAAL, SPIN) to model check Statecharts properties.
More recently, a translation from Statecharts to B/AMN is reported in [20]. However,
no correctness issue has been addressed. In comparison, thetranslation from Statecharts
to Verilog in this paper aims at code generation for system design. The mapping func-
tion that we implement in this paper is constructed based on formal semantics for both
the source and target formalisms and has been proven to be semantics-preserving [18].

Our compilation from Statecharts into Verilog can be used asa front-end of hard-
ware design or hardware/software co-design. After translating the input statechart spec-
ification into abstract Verilog code, we can proceed to obtain lower level descriptions,
as a prelude to hardware implementation, or we can pass the Verilog specification to a
hardware/software partitioning system [19].

In order to provide the concrete Verilog programs to users, future works include
guarded choices elimination and the replacement of the other structures of abstract Ver-
ilog, so that the AMSV can generate also concrete Verilog program. This should make
our tool especially useful for hardware designer.

References

1. J.-R. Beauvais, et. al. A Translation of Statecharts to Signal/DC+. Technical report, IRISA,
1997.

2. J. P. Bowen, J.-F. He, and Q.-W. Xu. An Animatable Operational Semantics of the VERILOG
Hardware Description Language. InProc. ICFEM2000: 3rd IEEE International Conference
on Formal Engineering Methods, IEEE Computer Society Press, York, UK, September 2000.

3. T. H. Cormena, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms.MIT
Press; 2nd edition, September 2001.

4. A. David, M. Oliver Möller, and Wang Y. Formal Verification of UML Statecharts with Real-
time Extensions. InProc. of Fundamental Approaches to Software Engineering, number
2306 in Springer LNCS, 2002.

5. M. J. C. Gordon. The Semantic Challenge of Verilog HDL. InProc. Tenth Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press, pages 136–145,
June 1995.

6. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8, 1987.

7. D. Harel. On Visual Formalisms.Communications of the ACM, 31(5), 1988.
8. D. Harel and E. Gery. Executable Object Modeling with Statecharts.Computer, 30(7), 1997.
9. D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions

on Software Engineering and Methodology, 5(4), October 1996.
10. J.-F. He. An Algebraic Approach to the VERILOG Programming. In Proc. of 10th An-

niversary Colloquium of the United Nations University / International Institute for Software
Technology (UNU/IIST). Springer, 2002.

11. J.-F. He and H. Zhu. Formalising Verilog. InProc. IEEE International Conference on
Electronics, Circuits and Systems, IEEE Computer Society Press, Lebanon, December 2000.

12. J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Axiomatization of State-
charts.Theoretical Computer Science, 101, 1992.

13. Q. Long, Z.Y. Qiu, and S.C. Qin. The Equivalence of Statecharts. InInternational Confer-
ence on Formal Engineering Methods, number 2885 in Springer LNCS, Singapore, Novem-
ber 2003.

14. G. Lüttgen, M. von der Beeck, and R. Cleaveland. A Compositional Approach to Statecharts
Semantics. Technical Report 200012, NASA/CR2000210086, ICASE Report, March 2000.

15. A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences of Statecharts. In7th Interna-
tional Conference on Concurrency Theory (CONCUR’96), number 1119 in Springer LNCS,
Pisa, Italy, August 1996.

16. E. Mikk, Y. Lakhnech, M. Siegel, and G. Holzmann. Implementing Statecharts in
Promela/SPIN. Inthe 2nd IEEE Workshop on Industrial-Strength Formal Specification Tech-
niques. IEEE Computer Society, 1999.

17. Open Verilog International (OVI).Verilog Hardware Description Language Reference Man-
ual.

18. S.C. Qin and W.N. Chin. Mapping Statecharts to Verilog for Hardware/Software Co-
Specification. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Formal Methods: Inter-
national Symposium of Formal Methods Europe, volume 2805, pages 282–299. Springer,
2003.

19. S.C. Qin, J.F. He, Z.Y. Qiu, and N.X. Zhang. Hardware/Software Partitioning in Verilog. In
International Conference on Formal Engineering Methods, number 2495 in Springer LNCS,
Shanghai, China, October 2002.

20. E. Sekerinski and R. Zurob. Translating Statecharts to B. In B. Butler, L. Petre, , and
K. Sere, editors,Proc. of the 3rd International Conference on Integrated Formal Methods,
number 2335 in Springer LNCS, Turku, Finland, 2002.

21. S. Seshia, R. Shyamasundar, A. Bhattacharjee, and S. Dhodapkar. A Translation of State-
charts to Esterel. In J. Wing, J. Woodcock, and J. Davies, editors,FM99: World Congress on
Formal Methods, number 1709 in Springer LNCS, 1999.

22. IEEE Standard.IEEE Standard Hardware Description Language based on the Verilogr

Hardware Description Language. 1995.
23. V.-A. V. Tran. Automatic Mapping from Statecharts to Verilog. Master’s Thesis, School of

Computing, The National University of Singapore, 2004.
24. H. Zhu, J. P. Bowen, and J.-F. He. Deriving Operational Semantics from Denotational Se-

mantics for Verilog. Technical report, Technical Report SBU-CISM-01-16, South Bank Uni-
versity, London, UK, June 2001.

25. H. Zhu, J. P. Bowen, and J.-F. He. From Operational Semantics to Denotational Semantics for
Verilog. In Proc. CHARME 2001: 11th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, number 2144 in Springer LNCS, Livingston,
Scotland, September 2001.

