Skip to main content

Reverse Observation Equivalence Between Labelled State Transition Systems

  • Conference paper
Theoretical Aspects of Computing - ICTAC 2004 (ICTAC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3407))

Included in the following conference series:

  • 452 Accesses

Abstract

Labelled state transition system (LSTS) is a formalism intended to combine the benefits of both state-based and action-based models. However, its existent equivalence preserves many properties with the cost of poor reduction effects. A new equivalence is presented, namely called reverse observation equivalence which is defined in the opposite direction to observation equivalence and orients the invariant checking of LSTS. Experiments show that the new semantics is efficient in the context of compositional reachability analysis.

Supported by National Natural Science Foundation of China under the grants 60233020, 90104007, and 60303013, and by the National Hi-Tech Programme of China under the grant 2001AA113202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, H., Virtanen, H., Valmari, A.: Merging state-based and action-based verification. In: Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD 2003), pp. 150–156 (2003)

    Google Scholar 

  2. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Alur, R., Henzinger, T.A.: Computer-Aided Verification: An Introduction to Model Building and Model Checking for Concurrent Systems (1998)

    Google Scholar 

  4. Cheung, S.C., Kramer, J.: Checking subsystem safety properties in compositional reachability analysis. In: Proceedings of the 18th international conference on Software engineering, pp. 144–154. IEEE Computer Society Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  5. Cheung, S.C., Kramer, J.: Enhancing compositional reachability analysis with context constraints. In: Proceedings of the 1st ACM SIGSOFT symposium on Foundations of software engineering, pp. 115–125. ACM Press, New York (1993)

    Chapter  Google Scholar 

  6. Tai, K.C., Koppol, V.: Hierarchy-based incremental reachability analysis of communication protocols. In: Proceedings of the IEEE International Conference on Network Protocols (1993)

    Google Scholar 

  7. Yeh, W.J., Young, M.: Compositional reachability analysis using process algebra. In: Proceedings of the symposium on Testing, analysis, and verification, pp. 49–59. ACM Press, New York (1991)

    Chapter  Google Scholar 

  8. Valmari, A.: Compositionality in state space verification methods. In: Billington, J., Reisig, W. (eds.) ICATPN 1996. LNCS, vol. 1091, pp. 29–56. Springer, Heidelberg (1996)

    Google Scholar 

  9. Cheung, S.C., Kramer, J.: Context constraints for compositional reachability analysis. ACM Trans. Softw. Eng. Methodol. 5, 334–377 (1996)

    Article  Google Scholar 

  10. Valmari, A.: Compositional state space generation. Technical Report A-1991-5, Department of Computer Science, University of Helsinki, Finland (1991)

    Google Scholar 

  11. Milner, R.: Communication and concurrency. Prentice-Hall Inc., Englewood Cliffs (1989)

    MATH  Google Scholar 

  12. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. Journal of the ACM (JACM) 31, 560–599 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karsisto, K.: A New Parallel Composition Operator for Verification Tools. PhD thesis, Tampere University of Technology Publications 420, Tampere, Finland (2003)

    Google Scholar 

  14. van Gabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM (JACM) 43, 555–600 (1996)

    Article  Google Scholar 

  15. Lynch, N., Vaandrager, F.: Forward and backward simulations part 1: Untimed systems. Information and Computation 121, 214–233 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sabnani, K., Lapone, A., Uyar, M.: An algorithmic procedure for checking safety properties of protocols. IEEE Trans. Commun. 37, 940–948 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wen, Y., Wang, J., Qi, Z. (2005). Reverse Observation Equivalence Between Labelled State Transition Systems. In: Liu, Z., Araki, K. (eds) Theoretical Aspects of Computing - ICTAC 2004. ICTAC 2004. Lecture Notes in Computer Science, vol 3407. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31862-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31862-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25304-4

  • Online ISBN: 978-3-540-31862-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics