
Replicative - Distribution Rules in P Systems

with Active Membranes

Tseren-Onolt ISHDORJ1,2 and Mihai IONESCU2

1 Computer Science and Information Technology School
Mongolian State University of Education

Baga Toiruu-14, 210648 Ulaanbaatar, Mongolia
2 Research Group on Mathematical Linguistics

Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Abstract. P systems (known also as membrane systems) are biologi-
cally motivated theoretical models of distributed and parallel comput-
ing. The two most interesting questions in the area are completeness
(solving every solvable problem) and efficiency (solving a hard problem
in feasible time). In this paper we define a general class of P systems
covering some biological operations with membranes. We introduce a
new operation, called replicative-distribution, into P systems with active
membranes. This operation is well motivated from a biological point of
view, and elegant from a mathematical point of view. It is both com-
putationally powerful and efficient. More precisely, the P systems with
active membranes using replicative-distribution rules can compute ex-
actly what Turing machines can compute, and can solve NP-complete
problems, particularly SAT, in linear time.

1 Introduction

Traditionally, theoretical computer science has played the role of a scout that
explores novel approaches towards computing well in advance of other sciences.
This did also occur in the case of membrane computation.

In the history of computing, electronic computers are only the latest in a
long chain of man’s attempts to use the best technology available for doing
computations. While it is true that their appearance, some 50 years ago, has
revolutionized computing, computing does not start with electronic computers,
and there is no reason why it should end with them. Indeed, even electronic
computers have their limitations: there is only so much data they can store and
their speed thresholds determined by physical laws will soon be reached. The
latest attempt to break down these barriers is to replace, once more, the tools
for doing computations: instead of electrical use biological ones.

An important achievement in this direction was brought by Leonard Adle-
man in 1994, [1], when he surprised the scientific community by using the tools
of molecular biology to solve a hard computational problem. Adleman’s exper-
iment, solving an instance of the Directed Hamiltonian Path Problem by ma-
nipulating DNA strands marked the first instance of a mathematical problem

being solved by biological means. The experiment provoked an avalanche of com-
puter science/molecular biology/biochemistry/physics research, while generating
at the same time a multitude of open problems.

The understanding of computations in nature – evolutionary computing,
neural computing, and molecular computing – belong to the emerging area of
natural computing, which is concerned with computing which go on in nature or
is inspired by nature.

Membrane computing is a novel emerging branch of natural computing, in-
troduced by Gheorghe Păun in [10]. This area starts from the observation that
certain processes which take place in the complex structure of living cells can be
considered as computations. P systems are a class of distributed parallel com-
puting devices of a biochemical type, which can be seen as a general computing
architecture where various types of objects can be processed by various opera-
tions. For a detailed description of various P system models we refer to [12].

In membrane computing, P systems with active membranes have a special
place, because they provide biologically inspired tools to solve computationally
hard problems. Using the possibility to divide or separate membranes, one can
create an exponential working space in linear time, which can then be used in
a parallel computation for solving, e.g., NP-complete problems in polynomial
or even linear time. Details can be found in [2, 11, 12], as well as in the com-
prehensive page from the web address http://psystems.disco. unimib.it.

Informally speaking, in P systems with active membranes one uses the following
types of rules: (a0) multiset rewriting rules, (b0) rules for introducing objects
into membranes, (c0) rules for sending objects out of membranes, (d0) rules for
dissolving membranes, (e0) rules for dividing elementary membranes, and (f0)
rules for dividing non-elementary membranes, see [3]. In these rules, a single ob-
ject is involved. The following rules are introduced in [2]: (g0) membrane merging
rules, (h0) membrane separation rules, and (i0) membrane release rules, whose
common feature is that they involve multisets of objects.

In this paper, we introduce a new developing rule in P systems, called
replicative-distribution rule, which is motivated from the specific structure and
functioning of living neural-cell (neuron). The universality and efficiency related
to replicative-distribution rules are investigated here.

Let us briefly mention the biological background of our new developing rules.
A neuron has a body, the dendrites, which form a very fine filamentary bush
around the body of the neuron, and the axon, a unique, long filament, which in
turn also ends with a fine filamentous bush; each of the filaments from the end of
the axon is terminated with a small bulb. It is by means of these end-bulbs and
the dendrites that the neurons are linked to each other: the impulses are sent
through the axon, from the body of the neuron to the end-bulbs, and the end-
bulbs transmit the impulses to the neurons whose dendrites they touch. Such
a contact junction between an end-bulb of an axon and dendrites of another
neuron is called cleft. An end-bulb releases an impulse into cleft, the impulse is
replicated in the cleft and distributed into the connected dendrites. Moreover, in
the axon of the neuron, chemicals are replicated at the so-called Ranvier nodes

and transmitted to the adjacent nodes in opposite directions through the axon.
For more details about neural biology, we refer to [17].

2 Preliminaries

We assume the reader to be familiar to the fundamentals of formal language
theory and complexity theory, for instance, from [9, 15, 16], as well as to the
basics of membrane computing, from [12]. We only mention here some notions
and results from formal language theory, complexity theory, as well as from
membrane computing, which are used in this paper.

2.1 Formal Languages

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ. We denote the empty word by
λ, the length of a word w by |w|, and the number of ocuurences of a symbol a in
w by |w|a. The concatenation of two words x and y is denoted by x · y or simply
xy.

A language over Σ is a (possibly infinite) set of words over Σ. The language
consisting of all words over Σ is denoted by Σ∗, and Σ+ denotes the language
Σ∗ −{λ}. A set of languages containing at least one language not equal to ⊘ or
{λ} is also called a family of languages.

We denote by REG, LIN, CF, CS, RE the families of languages generated by
regular, linear, context-free, context-sensitive, and of arbitrary grammars, re-
spectively (RE stands for recursively enumerable languages). By FIN we denote
the family of finite languages. The following strict inclusions hold:

FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

This is the Chomsky hierarchy.
For a family FL of languages, NFL denotes the family of length sets of lan-

guages in FL. Therefore, NRE is the family of Turing computable sets of natural
numbers. For a ∈ Σ and x ∈ Σ∗ we denote by |x|a the number of occurrences
of a in x. Then, for Σ = {a1, · · · , an}, the Parikh mapping associated with Σ
is the mapping on Σ∗ defined by ΨΣ(x) = (|x|a1

, · · · , |x|an
) for each x ∈ Σ∗.

The Parikh images of languages RE is denoted by PsRE (this is the family of all
recursively enumerable sets of vectors of natural numbers).

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies
of an object in a multiset is given by the number of occurrences of the corre-
sponding symbol in the string. Clearly, using strings is only one of many ways
to specify multisets. We suggest the readers refer to [4].

We will now introduce the notion of matrix grammars, used below in proofs.
A matrix grammar with appearance checking is a computationally universal

rewriting system. Details can be found in [5]. For each matrix grammar there is
an equivalent matrix grammar in the binary normal form.

A matrix grammar G = (N,T, S,M,F) is in the binary normal form if N =
N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint, and the matrices in
M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in
the form (S → XinitAinit), in order to fix the symbols X,A present in it), and
F consists exactly of all rules A → # appearing in matrices of type 3; # is a
trap-symbol, because once introduced, it is never removed. A matrix of type 4
is used only once, in the last step of a derivation.

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix in m ∈ M such
that applying once each rule of m to w one can obtain z. A rule can be skipped
if it is in F and it is not applicable.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE.

2.2 P Systems with Active Membranes

In this subsection, we describe P systems with active membranes following the
concept defined in [12], where more details can also be found.

A membrane structure is represented by a Venn diagram and is identified
by a string of correctly matching parentheses, with a unique external pair of
parentheses; this external pair of parentheses corresponds to the external mem-
brane, called the skin. A membrane without any other membrane inside is said
to be elementary. For instance, the structure in Figure 1 contains 8 membranes;
membranes 3, 5, 6 and 8 are elementary. The string of parentheses identifying
this structure is

µ = [[[]5[]6]2[]3[[[]8]7]4]1.

All membranes are labeled; we have used here the numbers from 1 to 8. We say
that the number of membranes is the degree of the membrane structure, while
the height of the tree associated in the usual way with the structure is its depth.
In the example above we have a membrane structure of degree 8 and of depth 3.

1

2
3

4

5

6

7

8

1

2
3

4

5 6

7

8

Figure 1. A membrane structure and its associated tree

The membranes delimit regions precisely identified by the membranes (the re-
gion of a membrane is delimited by the membrane and all membranes placed
immediately inside it, if such a membrane exists). In these regions we place ob-

jects, which are represented by symbols of an alphabet. Several copies of the
same object can be present in a region, so we work with multisets of objects.

We will now define the model which we work with: P systems with active
membranes. A P system with active membranes (without electrical charges) is a
construct

Π = (O,H, µ,w1, . . . , wm, R),

where:

– m ≥ 1 is the initial degree of the system;
– O is the alphabet of objects;
– H is a finite set of labels for membranes;
– µ is a membrane structure, consisting of m membranes, labeled (not neces-

sarily in a one-to-one manner) with elements of H;
– w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of µ;
– R is a finite set of developmental rules, of the following forms:

(a0) [a → v]
h
, for h ∈ H, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label, but not directly involving the membranes, in the sense that
the membranes are neither taking part in the application of these rules
nor are they modified by them);

(b0) a[]
h
→ [b]

h
, for h ∈ H, a, b ∈ O

(communication rules; an object is introduced in the membrane during
this process);

(c0) [a]
h
→ []

h
b, for h ∈ H, a, b ∈ O

(communication rules; an objects sent out of the membrane during this
process);

(d0) [a]
h
→ b, for h ∈ H, a, b ∈ O

(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e0) [a]
h
→ [b]

h
[c]

h
, for h ∈ H, a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by
possibly new objects; and the remaining objects are duplicated);

(f0) [a]
h
→ [b]

h
[c]

h
, for h ∈ H, a, b, c ∈ O

(division rules for non-elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by
possibly new objects; the remaining objects and membranes contained
in this membrane are duplicated, and then are part of the contents of
both new copies of the membrane);

(g0) []
h1

[]
h2

→ []
h3

, for hi ∈ H, 1 ≤ i ≤ 3
(merging rules for elementary membranes; in reaction of two membranes,
they are merged into a single membrane; the objects of the former mem-
branes are put together in the new membrane);

(h0) [O]
h
→ [U]

h
[O − U]

h
, for h ∈ H,U ⊂ O

(separation rules for elementary membranes; the membrane is separated
into two membranes with the same labels; the objects from U are placed
in the first membrane, those from U − O are placed in the other mem-
brane);

(i0) [[O]
h1

]
h2

→ []
h2

O, for h1, h2 ∈ H
(release rule; the objects in a membrane are released out of a membrane,
surrounding it, while the first membrane disappears).

The rules of types (a0), (b0), (c0), (d0), (e0), and (f0) are the polarizationless
version of the corresponding rules in [12]; the rules of (g0), (h0), and (i0) are
introduced in [2]. (In all cases, the subscript 0 indicates the fact that we do not
use polarization for membranes; in [11], [13] the membranes can have one of the
”electrical charges negative, positive, neutral, represented by −, +, 0, respec-
tively. Note that, following [3], we have omitted the label of the left parenthesis
from a pair of parentheses which identifies a membrane.)

The rules of type (a0) are applied in the parallel way (all objects which can
evolve by such rules have to evolve), while the rules of types (b0), (c0), (d0), (e0),
(f0), (g0), (h0), and (i0) are used sequentially, in the sense that one membrane
can be used by at most one rule of these types at a time. In total, the rules
are used in the non-deterministic maximally parallel manner: all objects and all
membranes which can evolve, should evolve.

The result of a halting computation is the vector of natural numbers de-
scribing the multiplicity of objects expelled into the environment during the
computation; the set of vectors computed in this way by all possible halting
computations of Π is denoted by Ps(Π). A P system is called deterministic if
there is a single computation. A P system is called confluent if all of its compu-
tations reach the same halting configuration.

By PsOPm(r) we denote the family of sets Ps(Π) computed as described
above by P systems with at most m membranes using rules of types listed in r.

When the rules of a given type (α0) are able to change the label(s) of the
involved membranes, then we denote that type of rules by (α′

0).
P systems with certain combinations of these rules are universal and efficient.

Further details can be found in [2, 3, 8].
To understand what solving a problem in a semi-uniform/uniform way means,

we briefly recall here some related notions. Consider a decisional problem X.
A family ΠX = (ΠX(1),ΠX(2), · · ·) of P systems (with active membranes in
our case) is called semi-uniform (uniform) if its elements are constructible in
polynomial time starting from X(n) (from n, respectively), where X(n) denotes
the instance of size n of X. We say that X can be solved in polynomial (linear)
time by the family ΠX if the system ΠX(n) will always stop in a polynomial
(linear, respectively) number of steps, sending out the object yes if and only

if the instance X(n) has a positive answer. For more details about complexity
classes for P systems see [12, 13].

3 Replicative-Distribution Rules

The biological motivations of replicative-distribution operations are mentioned in
Section 1. Mathematically, we capture the idea of replicative-distribution rules
as following:

(k0) a[]
h1

[]
h2

→ [u]
h1

[v]
h2

, for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗

(replicative-distribution rule (for sibling membranes); an object is replicated
and distributed into inner two adjacent membranes);

(l0) [a[]
h1

]
h2

→ [[u]
h1

]
h2

v, for h1, h2 ∈ H, a ∈ O, u, v ∈ O∗

(replicative-distribution rule (for nested membranes); an object is replicated
and distributed into a directly inner membrane and outside the directly
surrounding membrane).

The rules are applied non-deterministically, in the maximally parallel man-
ner. Note that the multisets u and v might be empty.

As we have mentioned before, we use the primed versions to indicate the fact
that the labels of membranes can be changed. The primed versions of replicative-
distribution rules are of the following form:

(k′

0) a[]
h1

[]
h2

→ [u]
h3

[v]
h4

for hi ∈ H, 1 ≤ i ≤ 4
(the label of both or only one membrane can be changed);

(l′0) [a[]
h1

]
h2

→ [[u]
h3

]
h4

v, for hi ∈ H, 1 ≤ i ≤ 4
(the label of both or only one membrane can be changed).

3.1 Computational Universality

P systems with active membranes and with particular combinations of several
types of rules can reach universality. Here, we show that P systems with active
membranes and with only one type of rules, namely (l′0), is Turing complete. The
proof is based on the simulation of matrix grammars with appearance checking.

Theorem 1. PsOP4(l
′

0) = PsRE.

Proof. It is enough to prove that any recursively enumerable set of vectors of
non-negative integers can be generated by a P system with active membranes
using rules of type (l′0) and four membranes.

Consider a matrix grammar G = (N,T, S,M,F) with appearance checking,
in the binary normal form, hence with N = N1 ∪ N2 ∪ {S,#} and with the
matrices of the four forms introduced in Section 2.1. Assume that all matrices
are injectively labeled with elements of a set B. Replace the rule X → λ from
matrices of type 4 by X → f , where f is a new symbol.

We construct the P system of degree 4

Π = (O,H, µ,w0, w1, w2, wXinit
, R),

O = T ∪ N2 ∪ {Am | A ∈ N2,m ∈ B} ∪ {c, c′, c′′, c′′′, λ,#},

H = N1 ∪ {Xm | X ∈ N1,m ∈ B} ∪ {0, 1, 2, f},

µ = [[[[]2]1]Xinit

]0,

w0 = cAinit, wXinit
= w1 = w2 = λ.

and the set R containing the rules below.
The simulation of a matrix m : (X → Y,A → x), with X ∈ N1, Y ∈ N1∪{f},

and A ∈ N2, is done in two steps, using the following replicative-distribution
rules:

1. [A[]
X

]0 → [[Am]
Ym

]0λ,
2. [Am[]

1
]
Ym

→ [[λ]
1
]
Y

x.

The first rule of the matrix is simulated by the change of the label of membrane
X, and the correctness of this operation is obvious (one cannot simulate one rule
of the matrix without simulating at the same time also the other rule).

The simulation of a matrix m : (X → Y,A → #), with X,Y ∈ N1, and
A ∈ N2, is done in four steps, using the rules:

3. [c[]
X

]
0
→ [[c′]

Ym

]
0
λ,

4. [c′[]1]Ym

→ [[c′′]1]Y ′

m

λ,

5. [A[]
Y ′

m

]0 → [[#]
f
]0λ,

[c′′[]2]1 → [[λ]2]1c
′′′,

6. [c′′′[]1]Y ′

m

→ [[λ]1]Y
c.

By using rule 3, object c replicates to c′ and λ which are distributed, in the same
time, as follows: c′ enters membrane X changing its label to Ym and λ is send
out of the skin membrane. The second step (rule 4) makes c′ to evolve to λ and
c′′; c′′ will be sent to membrane 1 and λ gets out of membrane Ym changing it
to Y ′

m. In the next step, if any copy of A is present, then, it introduces the trap-
object # and the computation never stops. Otherwise, c′′ following the same
replicative-distribution rule transforms into λ and c′′′, which enter membranes 1
and Y ′

m, respectively. The last computational step produces the result we were
looking for by replicating c′′′ to λ and c and distributing λ to membrane 1 and c
to the skin membrane, changing label Ym to Y . Now, the process can be iterated
having c in the skin membrane as in its initial configuration.

We also consider the following rules (applicable in the case A is present in
the skin membrane):

7. [#[]1]f
→ [[λ]1]f

#,

8. [#[]
f
]0 → [[#]

f
]0λ.

The equality ΨT (L(G)) = Ps(Π) easily follows from the above explanations.
⊓⊔

3.2 Efficiency Result Using Pre-computed Resources

The SAT problem (satisfiability of propositional formula in the conjunctive nor-
mal form) is probably the most known NP-complete problem [6]. It asks whether
or not for a given formula in the conjunctive normal form there is a truth-
assignment of variables such that the formula assumes the value true.

Let us consider a propositional formula in the conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where

yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β of SAT will be encoded in the rules of P system by multisets
vj and v′

j of symbols, corresponding to the clauses satisfied by true and false

assignment of xj , respectively:

vj = {ci | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n,

v′

j = {ci | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m}, 1 ≤ j ≤ n.

A computation in a P systems with active membranes always starts from
a given initial configuration, and we usually create an exponential workspace
in linear time by membrane division, membrane creation, string replication, and
membrane separation (all of them with biological motivation). In this subsection
we use a different strategy (which is already discussed in [12]): we start from
an arbitrarily large initial membrane structure, without objects placed in its
regions, and we trigger a computation by introducing objects related to a given
problem in a specified membrane. We use object replicative-distribution rules,
as discussed in the previous sections. In this way, the number of objects can
increase exponentially.

Theorem 2. P systems with rules of types (k′

0) and (l′0), constructed in a semi-

uniform manner, can solve SAT in linear time.

Proof. Given a propositional formula β as above, we construct the P system

Π = (O,H, µ,wa, wb, wc, wd, we, w0, w1, w2, w4n+5−m, w4n+6, R),with

O = {ai | 0 ≤ i ≤ n} ∪ {di | 1 ≤ i ≤ m} ∪ {ei | 0 ≤ i ≤ 4n + m + 1}

∪ {ti, fi | 1 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ m} ∪ {yes, no, d, λ},

µ = [[[[]
a
]
b
]
c
[· · · []

d
[]

e
· · ·]1[· · · []

d
[]

e
· · ·]2]0

︸ ︷︷ ︸

2n+4+2

,

w0 = a0, wc = e0, w1 = w2 = wa = wb = wd = we = w4n+5−m = w4n+6 = λ,

H = {0, · · · , 4n + 6, a, b, c, d, e}.

The membrane structure has to be a complete binary tree with n + 2 internal
levels for the constructions of truth value assignments except the membranes
for global counting. In the skin membrane, 3 “nested” membranes with labels

a, b, and c are used to count the computations of the system. The “sibling
membranes”, those placed in the same upper membrane, directly under it, are
labeled with 1 and 2. We consider the skin membrane as being level 0 (root) of
our binary tree. It is obvious that on level 1 we have 2 (21) membranes, on level
2 we have 4 (22) membranes, and so on. The membranes on levels 1, · · · , n are
labeled 1 and 2, of level n+1 are labeled 4n+5−m and 4n+6, and elementary
membranes are labeled by d and e. The skin membrane is labeled 0.

We give the set of rules R accompanying them with their use explanations:

– Global control:
E1. [ei[]

b
]
c
→ [[ei+1]b

]
c
λ,

E2. [ei[]
a
]
b
→ [[λ]

a
]
b
ei+1, 0 ≤ i ≤ 4n + m − 1,

The control variables ei count the computing steps in the “nested” control mem-
branes. As we shall see at the end of the description of the whole algorithm, after
4n + m derivation steps in the corresponding P system Π the answer yes ap-
pears outside the skin membrane if the given satisfiability problem has a solution,
whereas in the case that no solution exits, in one or two more steps the answer
no appears in the environment.

The main task of the algorithm is accomplished in the generation phase
where, for each possible truth assignment to the n variables. After 2n − 1 steps
it will contain all the informations needed to decide whether it represents a
solution to the given problem or not:

– Generation phase:
G1. ai[]1[]2 → [ai+1ti+1]3[ai+1fi+1]4, 0 ≤ i ≤ n − 1,
G2. ti[]

i+2
[]

i+3
→ [ti] i+4

[ti] i+5
,

fi[]
i+2[]

i+3 → [fi] i+4[fi] i+5, 1 ≤ i ≤ n,

Starting the computation (rule G1 in skin membrane), object a0 is replicated
into objects a1t1 and a1f1, which are distributed into direct inner membranes
with label 1 and 2 of level 2, changing the labels to 3 and 4.

Let us consider step i of the generation phase: By applying rule G1 in the
membranes of level i, 2i number of couples of objects aiti and aifi are produced
and took place in the 2i number of membranes, which will change the label
from 1 or 2 to 3 or 4, respectively. Each membrane among the 2i−j membranes
on levels i − j, 1 ≤ j ≤ [i/2] of hierarchal binary tree structure contains
couple of objects pi−j and qj , (pr, qr ∈ {tr, fr}), 1 ≤ j ≤ [i/2] if j is an
odd number. Otherwise, in the membranes of [i/2] th level only objects pi−j

are placed. Up to now, t1, · · · , ti, f1, · · · , fi, and ai different 2i number of objects
have been produced and distributed in the membranes of levels between i−j and
i, 1 ≤ j ≤ [i/2] presenting the truth value assignments for variables x1, · · · , xi

of β. Objects tk, 1 ≤ k ≤ i correspond to the true value of variables xk, and
objects fk correspond to the false value of variables xk, 1 ≤ k ≤ i. In the next
step, rule G1 is applied and objects ai+1ti+1 and ai+1fi+1 are produced and
took place in inner membranes, changing the labels of them to 3 and 4. At the
same time, rules

tk[]
k+2[]

k+3 → [tk]
k+4[tk]

k+5,

fk[]
k+2[]

k+3 → [fk]
k+4[fk]

k+5

are applied simultaneously in each membranes of levels i − j, 1 ≤ j ≤ [i/2] ,
objects tk and fk are replicated and distributed in one deeper level. Membrane
labels are changed from k+2 and k+3 to k+4 and k+5, respectively, which guar-
antees that in each step only a single object, tk or fk, enters into a membrane,
since active membranes work in sequential manner.

At the nth step of the computation, 2n number of couple objects anpn,
pn ∈ {tn, fn}, were in 2n membranes with label 3 and 4 on nth level, then rule
G1 will not apply anymore since there is no membrane with label 1 and 2 at
the next level. The iteration is continued n − 1 more steps, all objects tk, fk,
1 ≤ k ≤ n−1 are within the membranes of level n, then, those membranes’ label
being 2n+1 and 2n+2. Therefore all possible 2n truth assignments of variables
x1, x2, · · · , xn are generated and placed in the corresponding 2n membranes.
Objects ti correspond to the true value of variables xi, and objects fi correspond
to the false value of variables ¬xi.

G3. ti[]
4n+5−m

[]
4n+6

→ [vi]4n+5−m
[d]

4n+6
,

fi[]4n+5−m
[]4n+6 → [v′

i]4n+5−m
[d]4n+6, 1 ≤ i ≤ n.

By using rule G3, in n steps, every object ti and fi evolve into objects ci (cor-
responding to clauses Ci, satisfied by the true or false values chosen for xi)
and ”dummy” object d, then they are distributed into membranes with label
4n + 5 − m and 4n + 6 in one deeper level, respectively.

– Checking phase:
C1. [ci[]

d
]4n+4−m+i

→ [[ci]d
]4n+5−m+i

di, 1 ≤ i ≤ m.

In the checking phase, by using rule C1, object ci, 1 ≤ i ≤ n, is placed in
membranes labeled 4n + 5 − m of level n + 1, and replicated into object ci and
counter object di. Object ci is sent into the direct inner elementary membrane
with label d, which is on the deepest level (n + 2) of our membrane structure,
and object di is sent out the surrounding membrane on nth level. Meanwhile, the
label of the surrounding membrane is incremented by one. If at the beginning
of the checking phase c1, · · · , ci are present (1 ≤ i < m), and ci+1 is absent, in
the membrane, after i + 1 steps rule C1 will no longer be applicable and the
membrane will never change the label again. If all objects ci, 1 ≤ i ≤ m, are
present in some membrane, then after m steps, objects dm are produced into the
membranes with label 2n + 1 and 2n + 2 of level n.

– Output phase:
O1. [dm[]2n+5+2i

]1+2i
→ [[d]2n+5+2i

]2n+3+2i
dm,

O2. [dm[]
2n+6+2i

]
2+2i

→ [[d]
2n+6+2i

]
2n+4+2i

dm, 1 ≤ i ≤ n
O3. [dm[]2n+5]0 → [[d]2n+5]1yes,

If β has solutions, the process starts when objects dm are placed in membranes
with label 2n + 1 and/or 2n + 2 of level n. Object dm is replicated to objects d
and dm, object dm is sent out the current membrane, and ”dummy” object d is

sent into the inner membrane with label 2n + 5 + 2i. The process is recurrently
done following objects dm through levels n · · · 1 in n steps by using rule O1 and
O2. During the output phase, in each membranes with label 1 + 2i and 2 + 2i
possible taken at most two objects dm, then one of them non-deterministically
chosen send out the surrounding membrane, while membrane label is changed to
2n+3+2i and 2n+4+2i. Then, in membranes 2n+3+2i and 2n+4+2i no rule
can be applied. Thus, the system works fine in a sequential manner. However, in
n steps, totally speaking in the (4n+m− 1)th step of the computation, at most
two objects dm arrive in the skin membrane. Then rule O3 is applied, an object
dm ejects positive answer yes and changes skin membrane label to 1 in order
to prevent further output. Thus, the formula is satisfiable and the computation
stops. That was the (4n + m)th step of the whole computation.

E3. [e4n+m(−1)[]
b
]
c
→ [[λ]

b
]
c
e4n+m(+1),

E4. [e4n+m(+1)[]
c
]0 → [[λ]

c
]0no.

If β has no solution and if 4n+m−1 is an odd step, counter object e4n+m−1 must
be placed in the membrane a, then rules E3 and E4 are applied in two steps,
the counter object e4n+m+1 will eject the correct answer no to the environment.
Otherwise after one more step object e4n+m will eject the correct answer no to
the environment by applying rule E4. Since rule O3 did not apply (the case in
which β has no solution), the label of the skin membrane is still 0, so rule E3 is
applicable. The 3 “nested” control membranes guarantee that no object tries to
cross the skin membrane at the same time with yes.

The labels of membranes of level i, in the constructing phase, are 3+2(i−1)
and 4 + 2(i − 1), 1 ≤ i ≤ n, and in the output phase it would be 3 + 2(i + n)
and 4 + 2(i + n) , 1 ≤ i ≤ n. ⊓⊔

Theorem 3. P systems with rules of types (k′

0) and (c′0), constructed in a semi-

uniform manner, can solve SAT in linear time.

Proof. The proof of the theorem follows the idea of Theorem 2. Since rules of
type (l′0) are not used in the proof, we do not need membranes of level n + 2 in
the checking phase, and we change the “nested” couple membrane structure by
“eyes” structure for the global control.

We now construct the P system

Π = (O,H, µ,wa, wb, w0, w1, w2, w4n+5−m, w4n+6, R),with

O = {ai | 0 ≤ i ≤ n} ∪ {di | 1 ≤ i ≤ m} ∪ {ei | 0 ≤ i ≤ 4n + m + 1}

∪ {ti, fi | 1 ≤ i ≤ n} ∪ {ci | 1 ≤ i ≤ m} ∪ {yes, no, d, λ},

µ = [[]
a
[]

b
[· · · []

4n+5−m
[]

4n+6
· · ·]

1
[· · · []

4n+5−m
[]

4n+6
· · ·]

2
]
0

︸ ︷︷ ︸

2n+3+1

,

w0 = a0e0, w1 = w2 = wa = wb = w4n+5−m = w4n+6 = λ,

H = {0, · · · , 4n + 6, a, b}.

The global control rules are as following:

– Global control in skin membrane:
E1. ei[]

a
[]

b
→ [ei+1]a

[λ]
b
,

E2. [ei]a
→ []

a
ei+1, 0 ≤ i ≤ 4n + m + 1,

Here we use rules of types (k0) and (c0) for counting the computation steps
of the system.

– Generation phase:

We reuse rules G1-G3 of the generation phase in Theorem 2, then generate 2n

number of truth-assignments in level n of the membrane structure.

– Checking phase:
C1. [ci]4n+4−m+i

→ []
4n+5−m+i

di, 1 ≤ i ≤ m.

In the checking phase of satisfiability truth-assignments of propositional for-
mula, rules of type (c′0) are used instead of rules (l′0).

– Output phase:
O1. [dm]

1+2i
→ []

2n+3+2i
dm,

O2. [dm]
2+2i

→ []
2n+4+2i

dm, 1 ≤ i ≤ n
O3. [dm]0 → []1yes,
E3. [e4n+m(+1)]0 → []0no.

If β has solutions, in n steps, totally speaking in (4n + m − 1)th step of the
computation, at most two objects dm arrive in the skin membrane by using rules
O1 and O2, then rule O3 is applied, an object dm ejects positive answer yes and
changes the skin label to 1 in order to prevent further output. Thus, the formula
is satisfiable and the computation stops. That was the (4n + m)th step of the
whole computation.

If β has no solution and if 4n + m − 1 is an odd step, after two more steps
the counter object e4n+m+1 will eject the correct answer no to the environment.
Otherwise, after one more step object e4n+m will perform this operation. Since
rule O3 did not apply (the case in which β has no solution), the label of the skin
membrane is still 0, so rule E3 is applicable. ⊓⊔

3.3 Efficiency Result Using Membrane Division to Obtain

Exponential Work Space

In Theorem 2 and Theorem 3 we have shown that the NP-complete problem
SAT can be decided by a P system with active membranes in linear time with
replicative-distribution rules of types (k′

0) and (l′0) and replicative-distribution
rules of type (k′

0) and communication rules of type (c′0), respectively, using pre-
computed exponential work space.

Here, we reuse the most investigated way to obtain exponential work space–
membrane division. The following theorem shows that SAT can be solved by P
systems with active membranes using the rules of types (f0) and (l′0), in linear
time. We recall here the propositional formula β in Section 3.2.

Theorem 4. P systems with rules of types (f0), (l
′

0), constructed in a semi-

uniform manner, can deterministically solve SAT in linear time with respect to

the number of the variables and the number of clauses.

Proof. We construct the P system

Π = (O,H, µ,w0, · · · , w7, R), with

O = {di | 1 ≤ i ≤ m} ∪ {ai | 1 ≤ i ≤ n}

∪ {ci | 1 ≤ i ≤ m} ∪ {bi | 0 ≤ i ≤ n}

∪ {ei | 0 ≤ i ≤ 2n + m + 4} ∪ {yes, no}

∪ {ti, fi | 1 ≤ i ≤ n},

µ = [[[[]3]4]2[[[]6]7]5]0,

w2 = a1 · · · anb0, w5 = e0, w0 = w2 = w3 = w4 = w6 = w7 = λ

H = {i | 0 ≤ i ≤ 9},

and the following rules (we accompany them with explanations about their use):
The global control rules are as follows:

– Global control:
E1. [ei[]

7
]
5
→ [[ei+1]7]5λ,

E2. [ei[]6]7 → [[λ]6]7ei+1, 0 ≤ i ≤ 2n + m + 1,

The “nested” membranes with label 5,7, and 6 are used only to globally control
of the computation, and rules E1 and E2 are used to count the computation
steps as we used in the proof of Theorem 2.

G1. [ai]2 → [ti]2[fi]2, 1 ≤ i ≤ n,

Using rule G1, with ai non-deterministically chosen, we produce the truth
values true and false assigned to variable xi, placed in two separate copies of
membrane 2. In this way, in n steps we assign truth values to all variables, hence
we get all 2n truth-assignments, placed in 2n separate copies of membrane 2.

G2. [bi[]
4
]
2
→ [[bi+1]4]2λ,

[bi[]3]4 → [[λ]3]4bi+1, for all 0 ≤ i ≤ n − 1,
G3. [bn[]

3
]
4
→ [[λ]

3
]
1
λ,

G4. [bn[]4]2 → [[λ]1]2λ,

Initially, object b0 is placed in membrane 2. Rule G2 works simultaneously with
division and increment the subscript of bi by one in each step. If in the nth step
of the computation, object bn takes place in membrane 2, it was an odd number.
If it was an even number, object bn takes place in membrane 4. In the next step
rule G3 or G4 perform, and change the label of membrane 4 to 1, while object
bn disappears. This ensure rule G5 will perform.

G5. [ti[]
1
]
2
→ [[vi]1]2λ,

[fi[]1]2 → [[v′

i]1]2λ, 1 ≤ i ≤ n.

– Checking phase:

C1. [ci[]
3
]
i
→ [[ci]3] i+1

di, 1 ≤ i ≤ m.

The checking phase idea is the same from the proof of Theorem 2.

– Output phase:

O1. [dm[]
m+1

]
2
→ [[λ]

m+1
]
8
dm,

O2. [dm[]8]0 → [[λ]8]9yes,

If β has solutions, after 2n + m + 2 steps, objects dm appear in the skin
membrane using rules O1, and again one object dm, non-deterministically chosen,
ejects object yes into environment, while the skin label changes to 9 using rule
O2 in order to prevent further output. Thus, the formula is satisfiable and the
computation stops. That was the (2n+m+3)th step of the whole computation.

E3. [e2n+m+2(3)[]
7
]
5
→ [[λ]

7
]
5
e2n+m+3(4),

E4. [e2n+m+3(4)[]5]0 → [[λ]5]0no.

If β has no solution and if 2n + m + 2 is an odd step, after two more steps
the counter object e2n+m+4 will eject the correct answer no to the environment.
Otherwise, after one more step object e2n+m+3 will perform this operation. Since
rule O2 did not apply (the case in which β has no solution), the label of the skin
membrane is still 0, so rule E4 is applicable. ⊓⊔

4 Final Remarks

We have considered a new type of rules in P systems with active membranes: (k0)
and (l′0) replicative-distribution rules with deep relations to cell biology. We have
illustrated here how this type of rules can solve NP-complete problems in linear
time using pre-computed resources and obtaining an exponential work space
during the computation, by membrane division. Universality was also shown
here, but we want to emphasize that we have used only one type of rules in
our proof. However, in the efficiency results, we have used very few types of
rules compared to the previous results in [2, 3, 7, 8, 11]. This reveals the fact that
replicative-distribution type of rules is a powerful and efficient tool in P systems.
The following problems are expecting a future work: What simulations of other
classes of P systems with active membranes using these new types of rules can
be obtained? What other computational hard problems can be solved with these
types of rules in feasible time and space?

Acknowledgments. The first author acknowledges the State Training Fund
of the Ministry of Science, Technology, Education and Culture of Mongolia. The
work of second author was supported by the FPU fellowship from the Spanish
Ministry of Education, Culture and Sport.

References

1. L.M. Adlmen, Molecular computation of solutions to combinatorial problems, Sci-

ence v.266, Nov.1994, 1021–1024.
2. A. Alhazov, T.-O. Ishdorj, Membrane Operations in P Systems with Active Mem-

branes, In: Gh. Păun, et all (eds.) Second Brainstorming Week on Membrane

Computing, Sevilla, 2-7 February, 2004, Research Group in Natural Computing
TR 01/2004, University of Sevilla, 37–44.

3. A. Alhazov, L. Pan, Gh. Păun, Trading Polarizations for Labels in P Systems with
Active Membranes, submitted, 2003.

4. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa (eds.): Multiset Processing, LNCS
2235, Springer-Verlag, Berlin, 2001.

5. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, Berlin, 1989.

6. M.R. Garey, D.J. Johnson: Computers and Intractability. A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco, 1979.
7. L. Pan, A. Alhazov, T.-O. Ishdorj, Further Remarks on P Systems with Active

Membranes, Separation, Merging and Release Rules, Soft Computing, 8(2004), 1–5.
8. L. Pan, T.-O. Ishdorj, P Systems with Active Membranes and Separation Rules,

Journal of Universal Computer Science, 10(5)(2004), 630–649.
9. Ch. P. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA,

1994.
10. Gh. Păun, Computing with membranes, Journal of Computer and Sys-

tem Sciences, 61(1), (2000), 108–143, and TUCS Research Report 208, 1998
(http://www.tucs.fi).

11. Gh. Păun, P Systems with Active Membranes: Attacking NP-Complete Problems,
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

12. Gh. Păun, Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

13. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity Classes
in Models of Cellular Computation with Membranes, Natural Computing, 2, 3
(2003), 265–285.

14. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Com-

plejidad en Modelos de Computatión Celular con Membranas, Editorial Kronos,
Sevilla, 2002.

15. A. Salomaa, Formal Languages, Academic Press, New York, 1973.
16. A. Salomaa, G. Rozenberg (eds.), Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
17. G.M. Shepherd, Neurobiology, Oxford University Press, NY Oxford, 1994.

