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Abstract. Obtaining a well distributed non-dominated Pareto front is one of the
key issues in multi-objective optimization algorithms. This paper proposes a new
variant for the elitist selection operator to the NSGA-II algorithm, which promotes
well distributed non-dominated fronts. The basic idea is to replace the crowding
distance method by a maximin technique. The proposed technique is deployed in
well known test functions and compared with the crowding distance method used
in the NSGA-II algorithm. This comparison is performed in terms of achieved
front solutions distribution by using distance performance indices.

1 Introduction

Multi-objective techniques using genetic algorithms (GAs) have been increasing in rel-
evance as a research area. In 1989, Goldberg [1] suggested the use of a GA to solve
multi-objective problems and since then other investigators have been developing new
methods, such as multi-objective genetic algorithm (MOGA) [2}, non-dominated sorted
genetic algorithm (NSGA) {3] and niched Pareto genetic algorithm (NPGA) [4], among
many other variants [3].

Achieving a well-spread and well-diverse Pareto solution front can be a time con-
suming computational problem, associated with multi-objective evolutionary algorithms
(MOEAs). A good background review about the use of bounded archive population in
MOEAS can be found in [6]. The computational complexity is directly related with the
level of diversity and distribution the MOEAs aims to obtain. The higher this level,
the larger computational power will be required. Indeed, as it was stated in [7] “For
example, NSGA-II uses a crowding approach which has a computational complexity
of O(N log N), where N is the population size. On the other hand, SPEA uses a clus-
tering approach which has computational complexity of O(N 3). Also it was found
that while for two objectives problems the difference in terms of the achieved solution
diversity with NSGA-II and SPEA is not significant, for three objectives problem the
SPEA proved to be clearly better, but at the expensive of a higher computational load.
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Thus, new computational schemes which can find good distributed Pareto fronts with
reasonable computational effort are a highly desired feature.

Maximin is a well known method used in classic multi-attribute problems [8] and in
the game theory [9, 10]. Recently Balling [11] proposed a multi-objective optimization
technique based on a fitness function derived from using the maximin strategy [9] and
Li [12] used the maximin fitness in a particle swarm multi-objective optimizer.

Bearing these ideas in mind, this paper, proposes a sorting scheme to select the
best solutions in order to promote its diversity within MOEAs. In each generation, the
achieved set is initially formed by the best solutions for each objective. Then, the achieved
population is completed, one solution at a time, by the maximum of the minimal norm
between a solution and the set of solutions already selected.

The article is organized as follows: section 2 describes the proposed method. Section
3 presents the MOEA settings, test functions and performance indices used for perfor-
mance comparison. Section 4 shows the results and analysis of experiments carried out
with maximin sorting scheme. Finally, section 5 outlines the main conclusions.

2 MaxiMin Sorting Scheme

This section presents the maximin sorting algorithm to render the following generation,
having a good solution distribution.

The problem addressed by the proposed sorting scheme (maximin) is the selection of
the best distributed N solutions from an original population with size M (M > N). As
it is well known, this is a very useful feature in elitism MOEAs when it is necessary to
choose the solutions which passes to the following generation. Similarly to the NSGA-II,
the proposed algorithm is based on non-dominated fronts [13]. However, when the last
allowed front is being considered, and there are more solutions in the last front than the
remaining slots in the population, a maximin function is called to select the last solutions,
in spite of using the crowding distance.

The main idea behind the maximin sorting scheme is to select the solutions in order
to decrease the large gap areas existing in the already selected population. For example,
let us consider the non-dominated solutions in figure 1. Initially the extreme solutions
are selected S = {a, b}. Then, solution c is selected because it has the greater distance
to the set S. After that, solutions d and e are selected into the set S = {a, b, ¢}, for the
same reason, The process is repeated until the S set is completed.

The maximin sorting scheme is depicted in algorithm 1, assuming a minimization
problem. Table 1 presents the notation used in algorithm 1. In each generation the new
population is merged with the archive population, resulting in set T, from with the
new archive is obtained by applying the proposed algorithm (lines 0-1). After that, the
algorithm selects the best solutions for each objective (lines 2-4) into the S set. Then
the non-dominated front is removed from the non-selected population T into .S set until
the last allowed front being considered does not fit into the S set (lines 5-9). Therefore,
the square of the distance, ¢; (1a), between each non-dominated solution and the set of
solutions already selected, S, is evaluated, selecting the solution whose distance to the
set is greater (1b). Every time a solution enter to the set S the cost ¢;, of non-dominated
solutions, is reevaluated (lines 10-19). This process ends when the .S set is completed.
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Fig. 1. Non-dominated front solutions

Table 1. Description of variables and functions used in maximin algorithm

Description
D Offspring population
AT Auxiliary populations
) Archive or Parent population
k Actual maximum
a, Minimum euclidian norm between solution ¢ and set §
getMin( X ,?) [Remove from set X the solution whose objective ¢ is minimal
getMaxCi(X) remove the solution whose norm value ¢; is maximum
getND(X) Remove all non-dominated solutions from set X
ca,- = gllleng " faj - .fsi “ (la)
S =SUmaxa; (1b)
a; €A

We verify that the different bulk of this algorithm, in relation to the crowding
method (lines 10-19), requires at most O(N?) computations, which is worst than the
O(N log N) computations required by the crowding distance scheme.

3  Test Problems and Performance Indices
In this section the maximin sorting scheme performance is compared to the crowding

distance performance used in the NSGA-IL In order to study the diversity obtained by
the two algorithms, they will be studied using some functions and performance indices.
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Algorithm 1 MaxiMin Sorting Scheme

T=8UD
S=02
Jor i =1 to Nu do
8§ = SU getMin(T), 1)
end for
A = getND(T)
while ( #S + #A < popsize )
S§=5UA
A = getND(T)
end while
for =1 to #Ado
Ca; = I?Gug.{”fa_; - fSi"}
end for
. while { #S < pOPsize )
k = getMaxCi{A)
S=5Uk
for l=1 10 #Ado
Ca, = min{l| fa, — fell,ca; }
end for
end while

i A S 4
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3.1  Genetic Settings

To compare the results a gray binary MOEA is used, with 24 bits by parameter, crossover
probability p. = 0.8, mutation provability p,, = 1/l (I is the string length), niching
parameter ognare = 0.5, dominance pressure of 100%, population size of 100 strings.
Moreover, the algorithm is executed in 1000 generations per test.

3.2 Functions Used

The test bed is formed by a total of five functions. Three functions { F;, F2, F3}, proposed
by Zitzler et al. [14] as ZDT1 (2), ZDT2 (3) and ZDT3 (4), each with two objectives
{f1, f2}. Two other functions {F}, F5}, used by Deb et al. in [15] as DTLZ2 (5) and
DTLZA, each with three objectives { f1, f2, f3}.

(A(X) =z m
. 9{X) =1+9i2=:2;f—_‘7 )
h'(flag) =1- \/g
| f2(X) = 9(XD)h(f1,9)
[ f1(X) == _
9(X) =1+49% s
F2 —_ t=22 (3)
h’(.flvg) =1- (LgL)
[ f2(X) = g(X)h(f1,9)
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(fi(X) =z _
9(X) =1+93 21
Fy =« i=2 4
A(f1,0) = 1= /& - Lsin(10nfy)
| f2(X) = g(X)h(f1,9)
f1(X) =1 + g(X)] cos(z17/2) cos(z27/2)
f2(X) = [+ g(X)] cos(z17/2) sin(z27/2)
Fy = f3(X) = {1 + g(X)]sin(z,7/2) &)

g(X) = 1493 (z; - 0.5)2
i=3

Function Fj is similar to Fy but it has a meta-variable mapping z; — = withx =
100. The vector X is formed by m parameters, m; = {30, 30,30,12,12},5 = 1,...,5,
for F; = {Fy, Fy, F3, Fy, F5}, with each value z; € [0,1],2 = 1,...,m;.

33 Performance Indices

To study the solution diversity the following indices are used: the spacing index (SP)
[16] (6), the distance-based distribution index (A" [17] (7) and the minimal distance
graph (M DG) (8). In all indices d is the average of d; distances.

1 o
SP(S) = rry ;(di —d)? (6a)
di = skeg\l‘:}c# s Z=: | fn{si} — fm(sx)] (6b)

The distance d; of A’ index is evaluated by euclidian distance between consecutive
solutions in S. Therefore, this index can only be used in two objective problems.

#Sl

A'(8) = }: #3_1 (7)

The M DG performance index is calculatcd based on the minimal distances, d;, that
links all the non-dominated solutions of the population. For example, considering the so-
lutions {s1 = (3,5,7),s2 = (2,6,5),83 = (7,7,2),84 = (5,4,8),85 = (4,5,6), 56 =
(1,6, 5)} the minimal distances that link all the solutions are: {313z, 3184, 5135, 5256,
3355}, as it is illustrated in figure 2(a). The M DG index has some advantage over the
S P index because it never uses the same distance more than once and relates all solu-
tions together (see figure 2). Moreover, the M DG index can be used in any dimensional
space in spite of the A’ index.

#5-1

MDG(S) = \\ prye > (di — d)? (8)

i=1
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Fig. 2. Distances used by M DG and SP indices

1 1
0.8 “x.. 0.8
\ ..
. 's,
~0.6 . ~0.8 .,
5 ) Y 5 ""'-.
0.4 4 0.4 -
o, Ay
0.2 0.2
I 3
0 N N " 0 N N A
0 02 04 086 08 1 0 02 04 06 0.8 1
f1(X) f1{X)
(a) Iy optimization front (b) F» optimization front

Fig.3. F) and F» optimization with maximin sorting scheme

4 Simulation Results

To compare the maximin sorting scheme and the crowding distance technique several
simulations were conducted involving n = 101 runs each. For the results analysis are
considered the median, average, standard deviation, and the minimum and the maximal
solutions obtained.

Table 2. F; test results

Maximin sorting scheme Crowding distance
SP A" MDG SP A" MDG
Median  0.005  0.067 0.005 0008 0.075 0.007
Average  0.005  0.067 0.005 0008 0.075 0.007
Stddev  0.000 0.001 0.000 0001 0.003 0.001
Min 0.004 0.064 0.005 0006 0.068 0.006
Max 0.006 0.069 0006 0009 0.083 0.009
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Fig. 5. A F3 optimization front with maximin sorting scheme

Table 3. F5 test results

Maximin sorting scheme Crowding distance
SP A MDG SP 4" MDG
Median 0.005  0.067 0.005 0008 0.075 0.007
Average 0.005  0.067 0005 0008 0.075 0.007
Std dev 0.000 0.001 0.000 0.001 0.002 0.001
Min 0.004  0.064 0.005 0.006 0.066 0.006
Max 0.006 0.070 0.006 0010 0.086 0.009

For the F} and F, optimizations both schemes obtain good diversity (figures 3 and 4).
Nevertheless, the maximin sorting scheme achieved better performance indices (tables 2
and 3), reaching better results, even though, the worst results obtained with the maximin
sorting scheme are in the same range of the best results with the crowding distance.
Due to the proximity of achieved indices values, it is difficult to conclude about the
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Table 4. F; test results

Maximin sorting scheme

Crowding distance

SP A" MDG SP A" MDG

Median 0014  0.122 0.039 0.008 0.121 0.034
Average  0.015  0.121 0.037 0011 0121 0.035
Stddev  0.011  0.006 0.006 0.007 0.005 0.006
Min 0.004 0.109 0.027 0006 0.111 0.027
Max 0.052  0.138 0.049 0052 0.138 0.054

superiority of any algorithm. Thus, this results were subjected to the Mann-Whitney test

which shows that the proposed method is significantly better for p > 0.05.

For F3 the crowding distance method presents better performance indices (see ta-
ble 4). However, the maximin sorting scheme reaches the best results in terms of the
achieved distribution, The reason for this is due to the maximin algorithm has difficulty
in converging for some tests to the entire non-dominate fronts (see figure 5).
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Table 5. F} test results

Maximin sorting scheme Crowding distance
sp A MDG sp A MDG
Median 0.028 - 0.017 0.060 - 0.048
Average  0.028 - 0.017 0.060 - 0.047
Std dev 0.003 - 0.002 0.005 - 0.003
Min 0.021 - 0.013 0.044 - 0.040
Max 0.038 - 0.025 0.073 - 0.055

Table 6. F; test results

Maximin sorting scheme Crowding distance
sP A MDG sp A MDG
Median 0.029 - 0.019 0.060 - 0.048
Average  0.029 -~ 0.020 0.061 - 0.049
Std dev 0.004 - 0.004  0.006 - 0.003
Min 0.020 - 0.015 0.049 - 0.043
Max 0.048 - 0.043 0.078 - 0.060

For F; and F the maximin scheme leads to much better results, as can be seen by
figures 6 to 8 and tables 5 and 6. In these simulations the worst test case obtained by the
maximin scheme is superior to the best case obtained by the crowding distance method.

5 Conclusions and Further Work

A maximin sorting algorithm to select non-dominated solutions which complete the new
population was proposed. The new algorithm was integrated in a MOEA in order to test
its capacity to generate well distributed non-dominated Pareto fronts. This technique was
deployed in well known test functions and the results compared with the ones obtained
by using the NSGA-II crowding distance method. The analysis was made considering
some distance performance indices and points out that the algorithm reaches a set of
non-dominated solutions, along the Pareto front, with a good spread, outperforming
the crowding method in most of the test functions, particularly when involving three
objectives. The proposed algorithm is more demanding in terms of computational load.
However, the improvement gained in terms of diversity compensates this cost.

In the nearby future the proposed method will be compared with other techniques such
as the C-NSGAIl, e-MOEA, and SPEA. These tests will incorporate more performance
criteria and access the execution computational time.
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