Skip to main content

Recombination of Similar Parents in EMO Algorithms

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3410))

Abstract

This paper examines the effect of crossover operations on the performance of EMO algorithms through computational experiments on knapsack problems and flowshop scheduling problems using the NSGA-II algorithm. We focus on the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. First we show the necessity of crossover operations through computational experiments with various specifications of crossover and mutation probabilities. Next we examine the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. It is shown that the quality of obtained solution sets is improved by recombining similar parents. Then we examine the effect of increasing the selection pressure (i.e., increasing the tournament size) on the similarity of recombined parent solutions. An interesting observation is that the increase in the tournament size leads to the recombination of dissimilar parents, improves the diversity of solutions, and degrades the convergence performance of the NSGA-II algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branke, J., Schmeck, H., Deb, K., Reddy, S.M.: Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. In: Proc. of 2004 Congress on Evolutionary Computation, pp. 1952–1957 (2004)

    Google Scholar 

  2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  3. Czyzak, P., Jaszkiewicz, A.: Pareto-Simulated Annealing – A Metaheuristic Technique for Multi-Objective Combinatorial Optimization. Journal of Multi-Criteria Decision Analysis 7, 34–47 (1998)

    Article  MATH  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  6. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proc. of 5th International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  7. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation 3, 1–16 (1995)

    Article  Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. Hajela, P., Lin, C.Y.: Genetic Search Strategies in Multicriterion Optimal Design. Structural Optimization 4, 99–107 (1992)

    Article  Google Scholar 

  10. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multi-Objective Optimization. In: Proc. of 1st IEEE International Conference on Evolutionary Computation, pp. 82–87 (1994)

    Google Scholar 

  11. Huang, C.F.: Using an Immune System Model to Explore Mate Selection in Genetic Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1041–1052. Springer, Berlin (2003)

    Chapter  Google Scholar 

  12. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28, 392–403 (1998)

    Article  Google Scholar 

  13. Ishibuchi, H., Shibata, Y.: An Empirical Study on the Effect of Mating Restriction on the Search Ability of EMO Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 433–447. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Ishibuchi, H., Shibata, Y.: A Similarity-based Mating Scheme for Evolutionary Multiobjective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1065–1076. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Ishibuchi, H., Shibata, Y.: Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1259–1271. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)

    Article  Google Scholar 

  17. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Computation 6, 402–412 (2002)

    Article  Google Scholar 

  18. Kim, M., Hiroyasu, T., Miki, M., Watanabe, S.: SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 742–751. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Knowles, J.D., Corne, D.W.: On Metrics for Comparing Non-dominated Sets. In: Proc. of 2002 Congress on Evolutionary Computation, pp. 711–716 (2002)

    Google Scholar 

  20. Okabe, T., Jin, Y., Sendhoff, B.: A Critical Survey of Performance Indices for Multi-Objective Optimization. In: Proc. of 2003 Congress on Evolutionary Computation, pp. 878–885 (2003)

    Google Scholar 

  21. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proc. of 1st International Conference on Genetic Algorithms and Their Applications, pp. 93–100 (1985)

    Google Scholar 

  22. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph. D dissertation, Air Force Institute of Technology (1999)

    Google Scholar 

  23. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8, 125–147 (2000)

    Article  Google Scholar 

  24. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph. D dissertation. Shaker Verlag, Aachen (1999)

    Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective Optimization using Evolutionary Algorithms – A Comparative Case Study. In: Proc. of 5th International Conference on Parallel Problem Solving from Nature, pp. 292–301 (1998)

    Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Trans. on Evolutionary Computation 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishibuchi, H., Narukawa, K. (2005). Recombination of Similar Parents in EMO Algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31880-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24983-2

  • Online ISBN: 978-3-540-31880-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics