Skip to main content

Design of Optimal Autonomous Switching Circuits to Suppress Mechanical Vibration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3414))

Abstract

This paper demonstrates the use of a hybrid system approach to design optimal controllers for smart damping materials. Recently, controllers have been used to switch piezoelectric materials for mechanical vibration suppression. These controllers allow a small implementation and require little or no power. However, the control laws to switch these circuits are derived heuristically and it remains unclear, if better control laws exist. We present a new control approach based on a hybrid system framework. This allows to derive optimal switching laws by solving a receding horizon optimal control problem with multi-parametric programming. Additionally, we show how to implement the optimal switching laws with analog electronic circuitry such that the resulting damping circuits do not require power for operation. Simulations show the improvement of the damping compared with heuristically derived circuits and experiments demonstrate that the autonomous damping circuits can suppress vibration without requiring additional power.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration, Oval Road, London, pp. 24–28. Academic Press Limited (1996)

    Google Scholar 

  2. Elliott, S., Nelson, P.: Active noise control. IEEE-Signal-Processing-Magazine 10, 12–35 (1993)

    Article  Google Scholar 

  3. Hagood, N.W., von Flotow, A.: Piezoelectric materials and passive electrical networks. Journal of Sound and Vibration 146(2), 243–268 (1991)

    Article  Google Scholar 

  4. Tsai, M.S., Wang, K.W.: On the structural damping characteristics of active piezoelectric actuators with passive shunt. Journal of Sound and Vibration 221, 1–22 (1999)

    Article  Google Scholar 

  5. Moheimani, S.: A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers. IEEE Transactions on Control Systems Technology 11, 482–494 (2003)

    Article  Google Scholar 

  6. Niederberger, D., Fleming, A., Moheimani, S., Morari, M.: Adaptive multi-mode resonant piezoelectric shunt damping. Smart Materials and Structures, Institute of Physics Publishing 13, 1025–1035 (2004)

    Article  Google Scholar 

  7. Antoniou, A.: Realization of gyrators using operational amplifiers and their use in rc-active networks synthesis. Proc. IEE 116, 1838–1850 (1969)

    Google Scholar 

  8. Fleming, A.J., Behrens, S., Moheimani, S.O.R.: Synthetic impedance for implementation of piezoelectric shunt-damping circuits. IEE Electronics Letters 36, 1525–1526 (2000)

    Article  Google Scholar 

  9. Wu, S.Y.: Broadband piezoelectric shunts for structural vibration control. Patent No. 6,075,309 (2000)

    Google Scholar 

  10. Niederberger, D., Morari, M., Pietrzko, S.: Adaptive resonant shunted piezoelectric devices for vibration suppression. In: Proc. SPIE Smart Structures and Materials - Smart Structures and Integrated Systems, San Diego, CA USA, vol. 5056, pp. 213–224 (2003)

    Google Scholar 

  11. Clark, W.W.: Vibration control with state-switched piezoelectric materials. Journal of intelligent material systems and structures 11, 263–271 (2000)

    Google Scholar 

  12. Larson, G., Rogers, P., Munk, W.: State switched transducers: a new approach to high-power, low-frequency, underwater projectors. Journal-of-the-Acoustical-Society-of-America 103 (1998)

    Google Scholar 

  13. Richard, C., Guyomar, D., Audigier, D., Bassaler, H.: Enhanced semi-passive damping using continuous switching of a piezoelectric devices on an inductor. In: Proc. SPIE Smart Structures and Materials, Damping and Isolation, Newport Beach, CA, SPIE, vol. 3989, pp. 288–299 (2000)

    Google Scholar 

  14. Corr, L., Clark, W.W.: A novel semi-active multi-modal vibration control law for a piezoelectric actuator. Journal of Vibration and Acoustics, Transactions on the ASME 125, 214–222 (2003)

    Article  Google Scholar 

  15. Morari, M., Baotic, M., Borelli, F.: Hybrid systems modelling and control. European Journal of Control, 177–189 (2003)

    Google Scholar 

  16. Bemporad, A., Morari, M.: Control of systems integrating logic. Automatica 35, 407–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Torrisi, F., Bemporad, A., Mignone, D.: Hysdel - a tool for generating hybrid models. Technical Report AUT00-03, Automatic Control Laboratory, ETH Zurich (2000)

    Google Scholar 

  18. Sakizlis, V., Dua, V., Perkins, J., Pistikopoulos, E.: The explicit control law for hybrid systems via parametric programming. In: Proc. of the 2002 American Control Conference, Anchorage (2002)

    Google Scholar 

  19. Kvasnica, M., Grieder, P., Baotic, M., Morari, M.: Multi-Parametric Toolbox, MPT (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederberger, D. (2005). Design of Optimal Autonomous Switching Circuits to Suppress Mechanical Vibration. In: Morari, M., Thiele, L. (eds) Hybrid Systems: Computation and Control. HSCC 2005. Lecture Notes in Computer Science, vol 3414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31954-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31954-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25108-8

  • Online ISBN: 978-3-540-31954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics