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Abstract. In this paper, we study the problem of controlling the ex-
pected exit time from a region for a class of stochastic hybrid systems.
That is, we find the least costly feedback control for a stochastic hybrid
system that can keep its state inside a prescribed region for at least an
expected amount of time. The stochastic hybrid systems considered are
quite general: the continuous dynamics are governed by stochastic dif-
ferential equations, and the discrete mode evolves according to a contin-
uous time Markov chain. Instead of adopting the usual Hamilton-Jacobi
viewpoint, we study the problem directly by formulating it as a PDE
constrained optimization problem, and propose a solution using adjoint-
based gradient descent methods. Numerical results of the proposed ap-
proach are presented for several representative examples, and, for the
simple case, compared with analytical results.

1 Introduction

There has been considerable current research interest in stochastic hybrid sys-
tems (SHSs) [1, 2, 3, 4, 5] due to their ability to represent such systems as maneu-
vering aircraft [6], switching communication networks [7], etc. Most efforts have
been devoted to the analysis of such systems: for control, the main approach to
date relies on solving a dynamic programming problem using a Hamilton-Jacobi
formulation [1]. In this paper, we propose an alternative method for optimal
control of SHSs. The approach poses the optimal control problem as a partial
differential equation (PDE) constrained optimization program, and uses an ad-
joint method to solve this optimization program. The adjoint method, introduced
by Lions [8] and developed by Jameson [9] in the context of aerodynamic de-
sign, computes the gradient of an objective function whose variables are subject
to PDE constraints. It is a powerful method, due mainly to the flexibility with
which the optimal control problem can be formulated. Indeed, once the govern-
ing PDE, encoding the dynamics of the system, has been derived, many types of
optimization problems can be posed. For instance, any constraints on the con-
trol input or on the state variable can be handled, contrary to Hamilton-Jacobi
formulations.
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In this paper, we focus on a particular practical optimal control problem.
Given a domain of the state space of a SHS, we aim to maintain the expected
sojourn time of the state within this domain above a certain threshold, while
minimizing the cost of the control input. Different stochastic differential equa-
tions govern the continuous state in each mode, and a continuous time Markov
chain dictates possible mode switches based on state and/or time. We first re-
view the SHS model [1], and transform the optimal control problem into a PDE
optimization problem. Then, we present and apply the adjoint method to this op-
timization problem. We present a set of interesting examples illustrating, through
numerical solution, the resulting control policies, and we conclude with a note
on further applications of the adjoint-based method in the context of SHSs.

2 Problem Formulation

2.1 Stochastic Hybrid Systems

General frameworks of stochastic hybrid systems have been proposed in [2, 3].
In this paper we focus on a special class called switched diffusions [1]. The state
(Xt,mt) of a switched diffusion system H consists of two parts: Xt ∈ R

n is the
continuous state, and mt ∈ S = {1, . . . , M} is the discrete state (or mode). The
dynamics of the state (Xt,mt) is characterized by the following:

– Continuous Dynamics. The continuous state Xt evolves according to a
stochastic differential equation (SDE) whose drift and variance terms depend
on the discrete mode mt.

dXt = u(Xt,mt) dt + σ(Xt,mt) dBt. (1)

Bt is a d-dimensional Brownian motion in some probability space (Ω,F , P ),
with Ω the sample space, F the σ-field, and P the probability measure, and
u : R

n × S → R
n and σ : R

n × S → R
n×d are functions that are bounded

and Lipschitz continuous in the first argument. Moreover, we assume that
the possible values of σ are bounded away from zero.

– Discrete Dynamics. The discrete mode mt evolves according to a con-
tinuous time Markov chain with a generator matrix Λ(x) = [λkl(x)]1≤k,l≤M

whose components depend on the continuous state Xt = x. Note that, ∀k �= l,
λkl(x) ≥ 0 and λkk(x) = −∑

l �=k λkl(x) ≤ 0. Equivalently, for ∆t > 0, we
have

P (mt+∆t = l |mt = k,Xt = x) =

{
λkl(x)∆t + o(∆t), if l �= k,

1 + λkk(x)∆t + o(∆t), if l = k.
(2)

Thus, given that H is in discrete mode k and continuous state x at time t,
within a short time period ∆t, mt+∆t jumps to a new mode l �= k with an
approximate probability λkl(x)∆t.



Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 559

– Reset Condition. For simplicity, we assume trivial reset condition. In other
words, whenever a jump in mt occurs, Xt remains unchanged. Note that the
methodology developed in this paper is still applicable with general deter-
ministic reset conditions.

We now outline the procedures to obtain stochastic solutions (executions) to
the above stochastic hybrid system. Starting from an initial condition X0 = x and
m0 = k, the discrete state mt remains in mode k for a random amount of time Tk

while the continuous state evolves according to equation (1) with mt ≡ k until it
reaches XTk

. Then at time Tk the discrete state jumps to a new mode l �= k with
probability −λkl(XTk

)/λkk(XTk
) while the continuous state remains unchanged

at XTk
. This step is then repeated an infinite number of times. Note that if Λ is

independent of x, the distribution of Tk is exponential with rate −λkk; however, in
general, the random time Tk has a distribution dependent on the outcome of Xt.

In many practical applications, the variance term σ in the continuous dynam-
ics (1) characterizing the environment noises and the λkl terms in (2) governing
the transitions among operational modes are given and not adjustable, while
the drift term u in (1) can be controlled by users to a certain degree. In this
perspective, u can be treated as the control input of system H.

In the following, we shall use P (x,k) and E(x,k) to denote the probability and
expectation under the initial condition X0 = x and m0 = k.

2.2 Optimal Exit Time Control

Given a switched diffusion system H, we now formulate the problem studied in
this paper. Let U be an open set of R

n with compact support. Let (Xt,mt) be
a stochastic solution to H starting from X0 = x and m0 = k at time 0. We
consider the following stopping time:

τ = inf{t > 0 : Xt /∈ U}, (3)

which is called the exit time from U (or the sojourn time in U).

Remark 1. Note that the definition of τ in (3) does not involve mt. Therefore,
at exit time τ , the switched diffusion can be in any discrete mode mt ∈ S.

Define V (x, k) as the expected exit time from U , starting from (x, k):

V (x, k) = E(x,k)[τ ]. (4)

Treating u as the feedback control of the system H, V (x, k) is determined by the
design of u. In practical situations, U is often referred to as the safe set in which
one wants the system state to stay. Then a natural problem is to find the least
expensive control u : U × S → R

n that can keep the system in U for at least
an expected amount of time. Specifically, let ρ, ξ : U × S → R+ be two positive
functions representing weights. The cost of the control, J(u), is written as

J(u) �
M∑

k=1

∫
U

ξ(x, k)‖u(x, k)‖2 dx , (5)

and the (weighted) cumulative expected exit time from U , Vcee(u), is defined as
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Vcee(u) =
M∑

k=1

∫
U

ρ(x, k)V (x, k) dx. (6)

In particular, if ρ is the probability density function of (X0,m0) over U ×
S, then Vcee(u) coincides with the expected exit time from U with uncertain
(X0,m0).

Problem 1. The problem studied in this paper is

Minimize J(u) subject to Vcee(u) ≥ V0, (7)

for some constant V0 > 0.

For simplicity, but without loss of generality, we shall assume that ρ = ξ ≡ 1,
unless otherwise stated.

2.3 Reformulation as a PDE Constrained Optimization Problem

Problem (1) in its current form is not easy to analyze as the dependence of
Vcee(u) on the control u is implicit. In this section, we shall derive the PDE
satisfied by V (x, k) defined in (4), where u will appear as a coefficient to be
controlled.

Definition 1 (Generator of the Switched Diffusion). To the switched dif-
fusion (Xt,mt)t≥0, we associate an operator L (referred to as the generator) that
maps a function f ∈ C2

0 (Rn ×S) to a new function Lf ∈ C0
0 (Rn ×S) defined by

Lf(x,m) �
n∑

i=1

ui(x,m)
∂f(x,m)

∂xi
+

1
2

n∑
i,j=1

(σ(x,m)σ(x,m)T )ij
∂2f(x,m)
∂xi∂xj

+
M∑

k=1

λmk(x)f(x, k), ∀x ∈ R
n , ∀m = 1, . . . , M.

(8)

Here C2
0 (Rn × S) (resp. C0

0 (Rn × S)) denotes the set of functions on R
n × S

with compact support that are twice differentiable (resp. continuous) with re-
spect to the first argument. ui(x,m) denotes the i-th component of the vector
u(x,m) ∈ R

n.

Lemma 1. For all (x,m) ∈ R
n × S, and for any f ∈ C2

0 (Rn × S),
Mt �f(Xt,mt)−f(X0,m0)−

∫ t

0
Lf(Xs,ms) ds is a Martingale on (Ω,F , P (x,m)).

A proof of the above lemma can be found in [3].

Theorem 1. For all (x,m) ∈ U × S, V (x,m) = Ex,m[τ ] is finite, and is a
solution of the following system of PDEs:

LV (x,m) = −1 , ∀x ∈ U, ∀m ∈ S,
V (x,m) = 0 , ∀x ∈ ∂U, ∀m ∈ S.

(9)
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Proof. 1. By assumption, for each m ∈ S, σ(·,m) : x ∈ U 	→ σ(x,m) ∈ R
n×d

is a continuous function whose values are bounded away from zero. Therefore
the PDE system (9) admits a unique solution V twice differentiable in its first
argument [10]. Since V∂U×S ≡ 0, we can construct Ṽ ∈ C2

0 (Rn × S), such that
Ṽ = V on Ū × S. Applying Lemma 1 to Ṽ , we have that

Mt � Ṽ (Xt,mt) − Ṽ (X0,m0) −
∫ t

0

LṼ (Xs,ms) ds (10)

is a Martingale on (Ω,F , P (x,m)).
Now, for each integer N ∈ N

+, define τN � τ ∧N = min(τ,N). Then τN is a
stopping time with finite expectation Ex,m[τN ] ≤ N < ∞. Therefore, applying
the optional sampling theorem to the Martingale Mt stopped at time τN , we
deduce that Ex,m[MτN

] = 0. In addition, ∀s ∈ [0, τN ], Xs ∈ Ū ; therefore,∫ τN

0
LṼ (Xs,ms) ds =

∫ τN

0
LV (Xs,ms) ds = −τN , and thus,

Ex,m[τN ] = Ex,m[Ṽ (X0,m0) − Ṽ (XτN
,mτN

)] ≤ 2 sup
(x,m)∈U×S

{|Ṽ (x,m)|} < ∞.

Applying the monotone convergence theorem, with τN → τ almost surely, we
deduce that Ex,m[τ ] = sup

N
{Ex,m[τN ]} ≤ 2 sup

(x,m)∈U×S

{|Ṽ (x,m)|} < ∞.

2. Since Ex,m[τ ] < ∞, we can now apply the optional sampling theorem to Mt

stopped at time τ . We obtain Ex,m[Ṽ (Xτ ,mτ )]−Ex,m[Ṽ (x,m)] + Ex,m[τ ] = 0.
Given the boundary conditions satisfied by V , we have Ṽ∂U×S = 0 and therefore,
Ṽ (Xτ ,mτ ) ≡ 0. It follows that ∀(x,m) ∈ U × S, V (x,m) = Ṽ (x,m) = Ex,m[τ ],
which proves the theorem. �

As a result of Theorem 1, Problem (1) can now be reformulated as follows:

Minimize J(u) =
∑M

m=1

∫
U
‖u(x,m)‖2 dx

Subject to
∑M

m=1

∫
U

V (x,m) dx ≥ V0;{
LV (x,m) = −1, ∀x ∈ U, m ∈ S;
V (x,m) = 0, ∀x ∈ ∂U, m ∈ S.

(11)

Note that the constraint on V in the above problem is written explicitly as a
system of coupled PDEs with boundary condition. In the next section, we shall
introduce tools to solve this kind of optimization problem.

3 PDE Constrained Optimization via Adjoint Method

The adjoint method is a gradient-based method which can numerically solve
optimization problems subject to PDE constraints [9, 8]. In Section 3.1, we will
first briefly review the adjoint method in its most general setting, and then apply
it to the optimal exit time control problem for switched diffusions in Section 3.2.
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3.1 Adjoint Method for Solving PDE Constrained Optimization

Consider the following general PDE constrained optimization program.

Minimize J(u, v)
Subject to N (u, v) = 0

r(u, v) ≤ 0.
(12)

Here, N (u, v) = 0 denotes a PDE; v denotes the solution of the PDE; u is the
control variable, which is in general an adjustable coefficient of the PDE or an
adjustable term in the boundary conditions; J is the objective function of the
optimization program and has to be real valued; r is a function of u and v which
characterizes all the inequality constraints of the problem, such as bounds on the
control variable u or on the solution v. J and r are assumed to be differentiable
in u and v.

In order to apply the adjoint-method, we first need to reduce (12) into an
unconstrained optimization problem. For this purpose, we use a (logarithm)
barrier method:

Minimize I(u, v) = J(u, v) − ε1T log(−r(u, v))
Subject to N (u, v) = 0 ,

(13)

where 1T log(−r(u, v)) represents the inner product between the identity 1 and
log(−r(u, v)). Problem (12) and Problem (13) are equivalent when ε → 0. There-
fore solving (13) with ε � 0 will approximately solve (12). The adjoint method
can then be used to derive the gradient of the cost function I with respect to the
control input u, subject to the constraint N (u, v) = 0, thus deriving a descent
direction for u in Problem (13). First, take a first variation of I:

δI =
(∂I

∂u

)T

δu +
(∂I

∂v

)T

δv. (14)

Similarly, a first order variation of the PDE gives the dependence of δv on δu:

δN =
(∂N

∂u

)
δu +

(∂N
∂v

)
δv = 0 , (15)

in which ∂N
∂u and ∂N

∂v are linear operators. Taking the inner product of (15) with
any differentiable function q (named costate) and subtracting it from (14), we
have

∀q , δI =
((∂I

∂u

)T

− qT ∂N
∂u

)
δu +

((∂I

∂v

)T

− qT ∂N
∂v

)
δv. (16)

Choosing q such that it satisfies the following adjoint PDE:

(
∂N
∂v

)T q =
∂I

∂v
, (17)

we derive δI as a function of δu only:

δI =
((∂I

∂u

)T

− qT ∂N
∂u

)
δu, (18)

which precisely defines the gradient of I with respect to the control variable u:
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∇I(u) =
∂I

∂u
−

(
∂N
∂u

)T

q. (19)

With the gradient ∇I(u) in hand, one can then design an iterative algorithm
using gradient descent to solve Problem (13) numerically. Note that in each step
one has to solve the PDE and the adjoint PDE (17) in order to obtain the
gradient.

3.2 Adjoint Method Applied to Optimal Sojourn Time Control

We now demonstrate how the adjoint method can be applied to solve the optimal
sojourn time control Problem (11). We assume that ξ = ρ ≡ 1 on U .

First, we transform Problem (11) into the form of (13) as:

Minimize I(u) =
∑M

m=1

∫
U
‖u(x,m)‖2 dx − ε log(

∑M
m=1

∫
U

V (x,m) dx − V0)

Subject to
{

LV (x,m) = −1, ∀x ∈ U, m ∈ S;
V (x,m) = 0, ∀x ∈ ∂U, m ∈ S.

(20)
Note that instead of writing I(u, V ), we omit V since it depends on u implicitly.
A first variation of the cost function I gives:

δI(u) = 2
M∑

m=1

∫
U

u(x,m)T δu(x,m) dx − ε

∑M
m=1

∫
U

δV (x,m) dx∑M
m=1

∫
U

V (x,m) dx − V0

. (21)

To compute δI as a function of δu only (and not as a function of δV , which
is not directly controllable), one needs to eliminate δV . For this purpose, we
take the first variation of the PDE constraint LV (x,m) = −1, which gives the
dependence of δV on δu:

n∑
i=1

[
δui(x,m)

∂V (x,m)
∂xi

+ ui(x,m)
∂ δV (x,m)

∂xi

]
+

n∑
i,j=1

1
2
(σ(x,m)σ(x,m)T )ij

∂2 δV (x,m)
∂xi∂xj

+
M∑

k=1

λmk(x)δV (x, k) = 0.

(22)

For each m, multiplying (22) by a costate function q(x,m) which is twice dif-
ferentiable in x and which is identically zero on ∂U (required for the integration
by parts in (24)), integrating over the domain U , and then summing over all m,
we obtain:

M∑
m=1

∫
U

(
qm

n∑
i=1

um
i

∂ δV m

∂xi
+

qm

2

n∑
i,j=1

(σm σm T )ij
∂2 δV m

∂xi∂xj

+qm
M∑

k=1

λmkδV k

)
dx = −

M∑
m=1

∫
U

n∑
i=1

qm ∂V m

∂xi
δum

i dx,

(23)
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where for simplicity we drop the explicit dependence on x, and use V m for
V (·,m), um

i for ui(·,m), etc... Integrating by parts in (23) and using the bound-
ary condition that, on ∂U , V m ≡ 0 and qm ≡ 0, we have

M∑
m=1

∫
U

(
−

n∑
i=1

∂(qmum
i )

∂xi
+

1
2

n∑
i,j=1

∂2[qm(σm σm T )ij ]
∂xi∂xj

+
M∑

k=1

λkmqk

)
δV m dx = −

M∑
m=1

∫
U

qm
n∑

i=1

∂V m

∂xi
δum

i dx.

(24)

Suppose for each m we choose qm so that the following adjoint PDE holds:

1
2

n∑
i,j=1

∂2[qm(σm σm T )ij ]
∂xi∂xj

−
n∑

i=1

∂(qmum
i )

∂xi
+

M∑
k=1

λkmqk

=
ε∑M

m=1

∫
U

V m dx − V0

.

(25)

First substituting (25) into (24), and then the result into (21), we have

δI(u) =
M∑

m=1

∫
U

(
2um + qm ∇V m

)T

δum dx.

So the gradient of I with respect to the control u for the discrete mode m is

∇Im = 2um + qm ∇V m, m = 1, . . . , M. (26)

We emphasize here that qm in equation (26) is the solution to the adjoint equa-
tion (25) with boundary condition qm ≡ 0 on ∂U . Furthermore, the quantities
qm, um, etc. represent q, u, etc. in mode m; and not q or u to the power m.

Having obtained the gradient of I with respect to the control u, the gradient
descent algorithm for finding the optimal u can be formulated as follows.

Algorithm 1 (Adjoint based algorithm). Set ε = 1 and guess an initial
value for u.
Repeat (loop a)

Repeat (loop b)
1. Solve equation (9) for V , using the current control u.
2. Solve the adjoint equation (25) for q, using the current u and V .
3. Determine the gradient ∇I according to equation (26).
4. Line search: compute β > 0 so that I(u − β∇I) is minimized.
5. Update u := u − β∇I.

Terminate loop b when ||∇I|| is smaller than the stopping criteria αb.
Decrease ε by letting ε := µε, where µ ∈ [0.1, 0.5].

Terminate loop a when ε is smaller than the stopping criteria αa.
Return uopt = u.
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Remark 2. According to the analysis of Section 2, the admissible control u has to
be bounded and Lipschitz continuous on U . Thus, to be rigorous, a constraint of
the type umin ≤ u(x,m) ≤ umax should be added to the optimization problem to
ensure the boundedness of u. Regarding the Lipschitz continuity, the gradient ∇I
should be projected on a functional subspace of Lipschitz continuous functions
after step 3 of Algorithm 1.

3.3 Validation Against Analytical Solution in a Simple Case

It is possible to solve Problem (1) analytically in some simple cases. In this
section, we shall present such a case studied in [11], and compare the analytical
result with the numerical ones obtained using Algorithm 1.

Suppose that M = 1, U = [−a, a] ⊂ R, and σ = 1 on U . Then the stochastic
hybrid system degenerates into a simple diffusion on the interval [−a, a]:

dXt = u(Xt) dt + dBt.

The expected exit time V (x) from U starting from x ∈ U satisfies
1
2
V ′′(x) + u(x)V ′(x) + 1 = 0 , V (−a) = V (a) = 0. (27)

Assume ξ ≡ 1, and ρ(x) is a unit pulse centered at the origin. Then Problem (11),
which is equivalent to Problem (1), can then be formulated as

Minimize
∫ a

−a

u2(x) dx, subject to equation (27) and V (0) ≥ V0.

Suppose in addition that the control u is odd in x, i.e., u(−x) = −u(x),
∀x ∈ U . Then V as a solution to (27) is even in x. Because of the symmetry, it
suffices to study the problem on the left half interval [−a, 0] only:

Minimize
∫ 0

−a

u2(x) dx , subject to equation (27) and V (0) ≥ V0. (28)

Denote y1 = V and y2 = V ′. Then the above problem is equivalent to the
following optimal control problem:

Minimize
∫ 0

−a

u2(x) dx, subject to

{
y′
1 = y2, y1(−a) = 0, y1(0) = V0,

y′
2 = −2uy2 − 2, y2(0) = 0.

Using the Maximum Principle, and identifying two first integrals in the
Hamiltonian equations, we can determine the optimal trajectory (y1, y2) as

y2(x) = Φ−1(x), y1(x) =
∫ x

−a

y2(x) dx, (29)

where Φ is a function defined by Φ(y) =
∫ y

0
dx

−2
√

1+x2(c1x+c2)
for some suitably

chosen constants c1 and c2. The optimal control u in this case can be determined
from y1 and y2 accordingly. For more details, see [11].

In Figure 1, we plot the analytic and the numerical results for the above
problem. One can see that Algorithm 1 generates results that fit the analytical
one exceedingly well.
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Fig. 1. Validation against analytical results. Left : Optimal control u∗ returned by

Algorithm 1 (solid) and by the analytical solution (circles). Right : Optimal expected

sojourn time returned by Algorithm 1 (solid) and by analytical solution (circles)

4 Simulation Examples for Stochastic Hybrid Systems

We now apply our algorithm to investigate the optimal exit time control problem
for switched diffusions. Two main categories of switched diffusions are consid-
ered: time switching and state switching.

4.1 Time Switching

The time switching case refers to the case in which the variance σ(x,m) and
the mode transition rate Λ(x) are both independent of the continuous state x.
Therefore, for each mode m, the variance σσT is a constant matrix, and the time
the system spends in mode m before jumping to a new mode has an exponential
distribution.

For simplicity, in this section we assume that there are only two modes:
S = {1, 2}, and that, for each mode m = 1, 2, the variance σ(·,m) ≡ σmIn

for constants σ2
1 = 1 and σ2

2 = 2, where In is the n-by-n identity matrix. The
problem is then to determine the control u(·, 1) and u(·, 2) for the two modes.

Example 1 (Switching Between Two Modes in a 2-D Disk). Suppose U = B(0, a)
is the disk of radius a > 0 around the origin in R

2. In cylindrical coordinates
x = (r, θ), the control u = (ur, uθ) is decomposed into the radial component ur

and ortho-radial component rθ, and the PDE (9) governing the expected sojourn
time V (x,m) = V ((r, θ),m) in U becomes

σ2
m

2

(∂2V ((r, θ),m)
∂r2

+
1
r

∂V ((r, θ),m)
∂r

+
1
r2

∂2V ((r, θ),m)
∂θ2

)
+

ur
∂V ((r, θ),m)

∂r
+

uθ

r

∂V ((r, θ),m)
∂θ

+
2∑

k=1

λmkV ((r, θ), k) + 1 = 0,

V ((a, θ),m) = 0 , ∀θ ∈ [0, 2π] ; V ((r, 2π),m) = V ((r, 0),m) , ∀r ∈ [0, a].

(30)
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Fig. 2. Left : Initial guess for the control u in mode 1. Arrows represent the directions

and the amplitudes of the randomly generated control u. Right : Optimal control u∗ in

mode 1 returned by Algorithm 1. Note that it is radially-invariant

So the equivalent PDE-constrained optimization Problem (11) becomes

Minimize
∑2

m=1

∫ 2π

0

∫ a

0

(
u2

r((r, θ),m) + u2
θ((r, θ),m)

)
r dr dθ

Subject to
∑2

m=1

∫ 2π

0

∫ a

0
V ((r, θ),m) r dr dθ ≥ 2V0;

Equation (30).

(31)

Due to the rotational symmetry of the problem: the domain U , the cost
function and the constraints are all invariant under the rotations around the
origin, we conjecture that the optimal solutions are also radially symmetric:

Conjecture 1. The optimal control u∗ is of the form u∗ = ur(r)er, where er is
the radius unit vector.

We verify this conjecture numerically by applying the adjoint algorithm 1
using randomly generated initial guesses for the control u. We assume that the

switching rates are given by Λ =
[−10 10

10 −10

]
. On the left of Fig. 2 we show a

typical initial guess for the control u in mode 1 (guesses for control in mode 2
are similar). The optimal control u∗ returned by the algorithm is shown on the
right of the figure, which is radially symmetric. That the algorithm converges to
the same solution from a wide selection of initial u demonstrates its robustness
with respect to initial guesses.

Two more scenarios are also simulated, one with a higher switching rate

Λ =
[−20 20

20 −20

]
, and the other with no switching at all: Λ =

[
0 0
0 0

]
. In both

cases, the algorithm produces radially symmetric solutions. Thus we only plot
the radial component u∗

r of the solution u∗ in Fig. 3, with controls in mode 1 and
2 on the left and right, respectively. The higher switching rate case is plotted in
circles, and the no switching case in squares. For comparisons, we also plot the
simulation results for the non-hybrid case (only one mode) for three different σ:
σ = σ1 (dash dot lines), σ = σ1+σ2

2 (solid lines), and σ = σ2 (dot lines).
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Fig. 3. Radial component u∗
r of the optimal control u∗ in mode 1 (left) and mode 2

(right) for the high switching rate case (circles) and no switching case (squares). Also

included are the u∗
r for the non-hybrid case (only one mode) with variance σ = σ1

(dash dot), σ = σ1+σ2
2

(solid), and σ = σ2 (dot)

In the higher switching rate case, the optimal controls in the two modes are
almost the same, and also close to the optimal control in the non-hybrid case
with variance σ = σ1+σ2

2 . This is because, due to the very frequent switchings
between the two modes, and the fact that quickly the distribution of mt will
converge to the stationary distribution of equal probability 1

2 in each mode, the
stochastic hybrid system switching between diffusions of variances σ1 and σ2,
can be approximated by a single diffusion with variance σ = σ1+σ2

2 .
For the zero switching rate case, the optimal controls in the two modes are

quite different from each other, and from the other cases as well. Barely any
control is exerted in mode 2 compared with in mode 1. The reason is that it
costs less control input to maintain the expected sojourn time above 2V0 in
mode 1, than maintaining the expected sojourn time above V0 in mode 2.

4.2 State Switching

Consider the following situation. The domain U is partitioned into a finite num-
ber of subdomains Uα. Consider a diffusion process Xt evolving on U accordingly
to dXt = u(Xt)dt+σ(Xt)dBt, where the variance σ(x) takes the constant value
σα for x ∈ Uα. Thus σ is piecewise constant on U . Assume that there is only
one mode m = 1.

Rigorously speaking, for the above Xt to be well defined one needs σ(x) to be
Lipschitz continuous in x, which is not the case here. However, one can “smooth
out” the transition of σ near the boundary of Uα to satisfy this requirement.
Specifically, one can make σ to be constant σα in a compact subset of Uα approx-
imately equal to Uα, and determine the value of σ for points near the boundary
with other subdomains via interpolation. The σ thus obtained is Lipschitz con-
tinuous in x, and using it one gets an approximate of the original process. As
an example, we partition the domain U = [−a, a]× [−b, b] into two subdomains:
Ua = [−a, 0]× [−b, b], and Ub = (0, a]× [−b, b]. We can choose the variance σ(x)
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Fig. 4. Optimal control u∗ for Example 2. A constant nominal drift exists in domain

Ua. σ2
a = 1, while σ2

b = 1.1 (left); σ2
b = 1.4 (center); σ2

b = 2 (right). Note that

in different figures the sizes of the arrows representing the magnitude of the control

u∗ are not in the same scale: Left: ‖u∗‖max = 4.3. Center: ‖u∗‖max = 14.2. Right:

‖u∗‖max = 16.1

to be constant σa on U ε
a = [−a,−ε ]× [−b, b] and σb on U ε

b = [ε, a]× [−b, b], with
ε > 0, and determine σ(x) on (−ε, ε) × [−b, b] by interpolation.

Example 2 (Safe vs. Risky in a 2-D Box). Suppose that U = [−a, a] × [−b, b] =
Ua ∪ Ub as defined above. In this example, we would like to study whether it is
more advantageous to try to stay in Ua with a low uncertainty (low variance) but
a constant drift pushing toward the left boundary, or to try to stay in Ub with no
uncontrollable drift but with high uncertainty (high variance). For this purpose,
we set the following conditions. σ(x) is constant equal to σaI2 on Ua for σ2

a = 1,
and constant equal to σbI2 on Ub for σ2

b = 2. To smooth out the transition of
σ(x), we use the parameter ε = 0.02. Furthermore, assume that on subdomain Ua

there is an uncontrollable constant drift (−10, 0)T to the left, while on Ua there
is no such drift. Thus Xt is governed by dXt = [µ(Xt) + u(Xt)] dt + σ(Xt) dBt ,
with µ(x) = (−10, 0)T if x ∈ Ua and µ(x) = 0 if x ∈ Ub.

First write the PDE governing the expected sojourn time V (x) as

σ2

2

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
+ (µ1 + u1)

∂V

∂x1
+ (µ2 + u2)

∂V

∂x2
= −1, ∀x ∈ U, (32)

with boundary condition V (x) ≡ 0 for x ∈ ∂U . Thus the problem becomes

Minimize
∫ a

−a

∫ b

−b
(u2

1 + u2
2) dx1 dx2

Subject to
∫ a

−a

∫ b

−b
V (x) dx1 dx2 ≥ V0, and equation (32),

(33)

Algorithm 1 can be extended easily to deal with the uncontrollable drift term.
The results are shown in Fig. 4 and are quite interesting. For very small values
of σb, (σ2

b = 1.1), the optimal control concentrates all the energy in the domain
Ub, trying to contain Xt near the center of Ub. However, as σ2

b = 1.4, the optimal
control is distributed on both Ua and Ub. If σ2

b increases further to 2, the optimal
control applies very little force on Ub and concentrates most of its energy near
the center horizontal line in Ua.
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Fig. 5. Top: Optimal controls u∗ in mode 1 (left) and mode 2 (right) for Example 3.

Bottom: Optimal expected exit time V ∗(x, 1) (left) and V ∗(x, 2) (right)

4.3 General Switching

We now consider a general scenario that encompasses the previous two cases
as special instances. In this case, sudden changes in variance can occur either
due to the random discrete mode transitions or due to the state evolving into
different subdomains of U .

Example 3 (General Switching in a 2-D box). Let U = Ua ∪ Ub be as before.
Suppose that there are two discrete modes (M = 2). In subdomain Ua, the
switching rate between the two modes due to the continuous time Markov chain
mt is high, so the diffusion switches rapidly between mode 1 and mode 2. On
the other hand, the switching rate is zero on Ub so that once Xt enters Ub, mt

will remain in the same mode. In addition, assume that the variance on domain
Ua is σaI2 with σ2

a = 1.5, regardless of the discrete mode, while on Ub, the
variance is σbI2, with σ2

b = 1 if m = 1 and σ2
b = 2 if m = 2. To sum up,

we have σ(x, 1) = σ(x, 2) =
√

1.5I2 , Λ(x) =
[−20 20

20 −20

]
, ∀x ∈ Ua ; σ(x, 1) =

I2, σ(x, 2) =
√

2I2 , Λ(x) =
[
0 0
0 0

]
, ∀x ∈ Ub. The optimal control u∗ for this

problem as obtained by Algorithm 1 is shown in Fig. 5. Under mode 1, u∗ tends
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to drive Xt towards subdomain Ub where the variance is lower than in Ua. In
mode 2, u∗ tends to drive Xt towards Ua, in which the average variance is lower
than the variance in Ub. However, the optimal control does not drive the diffusion
near the center of Ua (as it drives the diffusion near the center of Ub, under mode
1). The interpretation is that the diffusion originally in mode 2, in Ub, will tend
to be driven to Ua, switch mode and then go back to Ub in mode 1. This is a
smart optimal control.

5 Conclusions and Extensions

In this paper we proposed to use the adjoint method to solve the optimal sojourn
time control problem for a class of stochastic hybrid systems. We formulated the
problem as a PDE-constrained optimization problem, and devised an algorithm
to solve it using the gradients computed via the adjoint method.

The adjoint method is a powerful tool that can be applied to many other opti-
mal control problems. Examples include optimal control of expected reward over
an infinite time horizon: V (x,m) = Ex,m[

∫ ∞
0

e−αs r(Xs,m) ds], which satisfies

LV (x,m) − αV (x,m) = −r(x,m) , m = 1, . . . , M.

As another example, we can choose V (x, t,m) = Ex,m[f(Xt,m)], which solves
the backward Kolmogorov equation:

∂V (x, t,m)
∂t

= LV (x, t,m). V (x, 0,m) = f(x,m).

Nevertheless, the adjoint method is not without its shortcomings. First, the
dimension of the state of the stochastic hybrid system sets the dimension of
the PDE to optimize. In implementation, PDEs can be numerically solved in
dimension 3 or 4 – for higher dimensions, the memory requirement becomes
problematic. Therefore, the adjoint method, which runs on a modern single pro-
cessor computer in a few seconds for the application presented above, can be
applied only for stochastic hybrid systems of continuous dimension say less than
4. Second, gradient descent methods for large scale optimization programs (n di-
mensions usually results in 100n grid points) might be very slow. Therefore, sec-
ond order optimization should be adopted. We are currently investigating these
issues. The first might be overcome by applying directly the adjoint method
in the Monte-Carlo space. Regarding the second, we are currently developing a
Newton method implementation.
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