
From Conditional to Unconditional Rewriting

Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign.

grosu@cs.uiuc.edu

Abstract. An automated technique to translate conditional rewrite rules
into unconditional ones is presented, which is suitable to implement, or
compile, conditional rewriting on top of much simpler and easier to opti-
mize unconditional rewrite systems. An experiment performed on world’s
fastest conditional rewriting engines shows that speedups for conditional
rewriting of an order of magnitude can already be obtained by applying
the presented technique as a front-end transformation.

1 Introduction

Conditional term rewriting is a crucial paradigm in the algebraic specification of
abstract data types, since it provides a natural means for executing equational
specifications. Many specification languages today, including Maude [4], ELAN
[3], OBJ [9], CafeOBJ [6], provide conditional rewriting engines to allow users to
execute and reason about specifications. Conditional rewriting also plays a foun-
dational role in functional logic programming [10]. Additionally, there are many
researchers, including the author, considering rewriting a powerful programming
paradigm by itself, who are often frustrated that conditional rewrite “programs”
are significantly slower than unconditional ones doing the same thing.

Conditional rewriting is, however, rather inconvenient to implement directly.
To reduce a term, a rewriting engine needs to maintain a control context for
each conditional rule that is tried. Due to the potential nesting of rewrite rule
applications, such a control context may grow arbitrarily. Our technique auto-
matically translates conditional rewrite rules into unconditional rules, by encod-
ing the necessary control context into data context. The obtained rules can be
then executed on (almost) any unconditional rewriting engine, whose single task
is to match-and-apply unconditional rules. Such a simplified engine can be seen
as a rewrite virtual machine, which can be even implemented in hardware for
increased efficiency, and our transformation technique can be seen as a compiler.

Experiments performed on two fast rewriting engines show that speedups of
an order of magnitude can be obtained right now if one uses our transformation
technique as a front-end. However, since these rewrite engines are optimized for
conditional rewriting, we expect significant further increases in efficiency if one
just focus on the much simpler problem of developing optimized unconditional
rewrite engines and use our technique as a front-end. Even though presented as a
translation of conditional rewrite systems into unconditional ones, our technique

can easily be adapted and used as a means to implement conditional rewriting
also without applying an explicit transformation. We will discuss this elsewhere.

Related work. Stimulated by the benefits of transforming conditional term
rewrite systems (CTRSs) into equivalent unconditional term rewrite systems
(TRSs), there has been much research on this topic. Despite the apparent sim-
plicity of most transformations, they typically work for restricted CTRSs and
their correctness, when they are correct, is quite technical and tricky to prove. A
large body of literature has been dedicated to transformations preserving only
certain properties of CTRSs, e.g., termination and/or confluence. We do not
discuss these here; the interested reader is referred, e.g., to Ohlebusch [14].

In this paper we focus on transformations that generate TRSs computation-
ally equivalent to CTRSs, i.e., the TRSs can be transparently used to reduce
terms in the original CTRSs. The first attempt in this category is due to Bergstra
and Klop [2], for a restricted class of CTRSs (whose underlying unconditional
TRS is left-linear and without superposition); unfortunately, this transformation
was shown to be unsound by Dershowitz and Okada [5]. The transformation in
Giovannetti and Moiso [8] works only under severe restrictions on the original
CTRS: no superposition, simply terminating (enforced by the requirement of a
simplification ordering), and non-overlapping of conditions with left-hand-side
(lhs) terms. Hintermeier [11] proposes a technique where an “interpreter” for
CTRS is defined as a TRS, providing explicit rewrite definitions for matching
and applications of rewrite rules. Besides being technically very intricate and
practically inefficient, this transformation is proven to be correct only when the
original CTRS is confluent and strictly terminating (i.e., decreasing). Our work
in this paper was motivated by efforts in rewriting logic semantics [12], where
rewriting logic is used as a core mechanism to give operational semantics to con-
current programming languages. In this framework, as well as in many others,
restrictions such as termination and/or confluence are unacceptably strong. In-
deed, in any programming language there are programs which do not terminate,
and concurrency leads quickly to non-confluence (e.g., data-races).

Our technique was presented at WADT’04 and was developed independently
from that of Viry [16]. However, the two techniques have many similarities1.
They are both based on decorations of terms, obtained by adding as many aux-
iliary arguments to each operation f as conditional rules in the original CTRS
having f at the top of their lhs. The procedure in [16] encodes the condition
of each rule within a special data-structure that occurs as the corresponding
auxiliary argument associated to the operation occurring at the top of its lhs.
Two unconditional rules are added in the generated TRS for each conditional
rule in the original CTRS, one for initializing the special data-structure and the
other for continuing the rewriting process when the condition was evaluated. For
example, the CTRS (taken from [16]) R below is transformed into R′:

1 We thank Bernhard Gramlich for making us aware of Viry [16].

2

(R)

f(g(x)) → p(x) if c(x) →∗ true
f(h(x)) → q(x) if d(x) →∗ true
c(a) → true

(R′)

f(g(x) | ⊥, z) → f(g(x) | [c(x), (x)], z)
f(x | [true, (y)], z) → p(y)
f(h(x) | z,⊥) → f(h(x) | z, [d(x), (x)])
f(x | z, [true, (y)]) → q(y)
c(a) → true

where “|” is syntactic sugar for “,”, separating the normal arguments from the
auxiliary ones; “⊥” is a special constant whose occurrence states that the cor-
responding conditional rule has not been tried yet on the current position; a
structure [u,

→
s] occurring during a rewriting sequence as an auxiliary argument

of an operation, means that u is the current reduction status of the correspond-
ing condition that started to be evaluated at some point, and that

→
s was the

substitution at that point that allowed the lhs of that rule to match. The sub-
stitution is needed by the second unconditional rule associated to a conditional
rule, to correctly initiate the reduction of the rhs of the original conditional rule.

Despite being proved sound and complete by Viry [16], the procedure above,
unfortunately, cannot be used as is to interpret any CTRS on top of a TRS.
That is because it destroys the confluence of the original CTRS, thus leading to
normal forms in the TRS which can be further reduced in the CTRS. Indeed, let
us consider the following CTRS R, from Antoy, Brassel and Hanus [1], together
with Viry’s transformation R′:

(R)

{
f(g(x)) → x if x →∗ 0
g(g(x)) → g(x)

(R′)

f(g(x) | ⊥) → f(g(x) | [x, (x)])
f(x | [0, (y)]) → y
g(g(x)) → g(x)

R is confluent but R′ is not: f(g(g(0)) | ⊥) can be reduced to both 0 and
f(g(0) | [g(0), (g(0))]); the latter occurs because the “conditional” rule is first
tried and “failed”, then the “unconditional” one is applied successfully thus
changing the context so that the “conditional” rule becomes conceptually ap-
plicable, but it fails to apply since it was already marked as “tried”. To solve
this problem, Viry [16] proposes a reduction strategy within the generated TRS,
called conditional eagerness, stating that t1, ..., tn must be already in normal form
before a “conditional” rule can be applied on a term f(t1, ..., tn | ⊥, ...,⊥). This
way, in the example above, g(g(0)) is enforced to be first evaluated to g(0) and
only then f(g(0) | ⊥) is applied the “conditional” rule and eventually reduced
to 0. However, conditional eagerness does not seem to be trivial to enforce in an
unconditional rewriting engine, unless that is internally modified. One simple,
but very restrictive, way to ensure conditional eagerness is to enforce innermost
rewriting both in the original CTRS and in the resulting TRS.

A different fix to Viry’s technique was proposed by Antoy, Brassel and Hanus
[1], namely to restrict the input CTRSs to constructor-based ones, i.e., ones in
which the operations are split into constructors and defined, and the lhs of each
rule is a term of the form f(t1, ..., tn), where f is defined and t1, ..., tn are all

3

constructor terms. The problematic CTRS above is not constructor-based, so
Viry’s procedure is not guaranteed to work correctly on it. While constructor-
baseness is an easy to check and automatic correctness criterion, we believe that
it is an unnecessary strong restriction on the input CTRS, which may make the
translation useless in many situations of practical interest.

An additional drawback of Viry’s transformation is that it increases the num-
ber of rewrite rules having the same operator at the root of their lhs, which
tends to be a source of matching overhead on many rewrite engines, especially
in the context of very large CTRSs2. Therefore, we are still left with no sat-
isfactory translation of CTRSs into equivalent TRSs. In this paper we give a
practical solution to this problem, which imposes no restrictions on the original
CTRS, which adds exactly one unconditional rule for each conditional rule in
the original CTRS, and which is shown to bring a significant speedup on cur-
rent conditional rewrite engines if applied as a front-end transformation. Our
translation is almost ideal, in that it still requires some special support from the
underling unconditional rewrite engine: to provide (1) a binary equality opera-
tion, denoted equal?(t, t′) in this paper, returning true iff the normal forms of t
and t′ are identical, and (2) a conditional if (b, t, t′) which is eager in b and lazy
in t and t′. However, all rewriting engines that we know provide them [9, 3, 4, 6,
17]. They can also be easily defined if the rewriting engine provides support for
simple contextual strategies, which all rewriting engines that we know do.

2 Preliminaries

We recall some basic notions of conditional rewriting, referring the interested
reader to [14] for more details. An (unsorted) signature Σ is a finite set of
operational symbols, each having zero or more arguments. We let Σn ⊆ Σ denote
the set of operations of n arguments. The operations of zero arguments in Σ0 are
called constants. We assume an infinite set of variables X . Given a signature Σ
and a set of variables X ⊆ X , we let TΣ(X) denote the algebra of Σ-terms over
variables in X. A term without variables is called ground. A map θ : X → TΣ(X)
can be uniquely extended to a morphism of algebras TΣ(X)→ TΣ(X) replacing
each variable in x by a term θ(x); to keep the notation simple, we let θ also
denote this map. A conditional Σ-rewrite rule has the form

l→ r if u1 = v1, · · · , um = vm,

where l, r, u1, v1, ..., um, vm are Σ-terms in TΣ(X). The term l is called the left-
hand-side (lhs), r is called the right-hand-side (rhs), and u1 = v1, · · · , um = vm is
called the condition of the rewriting rule above. As usual, we disallow rewriting
rules whose lhs is a variable. Further, we assume that the lhs of a rewriting
rule contains all the variables that occur in that rule, that is, following the
terminology in [13] our rewrite systems are of type 1. If m = 0, the rewrite

2 We have encountered CTRSs of thousands of rules in the context of rewriting logic
semantics of programming languages [12]

4

rule is called unconditional and written l → r. Unless specified differently, by
conditional rule we mean a rule with m ≥ 1. A conditional (unconditional)
Σ-term rewrite system R = (Σ, R), abbreviated CTRS (TRS), consists of a
finite set R of conditional (unconditional) Σ-rewrite rules. Any Σ-rewrite system
R = (Σ, R) generates a relation →R on TΣ(X), defined recursively as follows.
For any θ : X → TΣ(X), t[θ(l)] →R t[θ(r)] whenever there exists some si such
that θ(ui) →?

R si and θ(vi) →?
R si for any 1 ≤ i ≤ m, where t is a term

having one occurrence of a special variable, say ∗, t[θ(l)] is the term obtained
by substituting ∗ with θ(l) in t, and →?

R is the reflexive and transitive closure
of →R. Hence, α →R β iff α has a subterm matching the lhs of a rule in R
via some substitution, s.t. all the terms in each equality in the condition can
be iteratively reduced to a common term. Such CTRSs are also called join or
standard [14]. Alternative interpretations of equalities are also possible, and we
will discuss transformations of those elsewhere soon. However, as their name
suggests, standard conditional rewrite systems are the most common ones and
major rewriting engines, e.g., Maude [4] and ELAN [3], support them. These
systems perform millions of rewrites per second on standard PCs and are, at our
knowledge, the fastest rewriting engines.

Terms which cannot be reduced any further in R are called normal forms
for R. Rewriting of a given term may not terminate for two reasons: either
the reduction of the condition of a rule does not terminate, or there are some
rules that can be applied infinitely often on the given term. On systems like
Maude or ELAN, the effect in both situations is the same: the system loops
forever unless it crashes running out of memory. Because of this reason, we do
not make any distinction between the two causes, and simply call a Σ-rewriting
system terminating iff it always reduces any Σ-term to a normal form (we let
this notion at an intuitive level here, but it can be formalized). Letting ; denote
the composition of relations, a relation → is confluent iff ←?;→?⊆→?;←?.

3 Defining the Basic Infrastructure

We define several operators together with appropriate (unconditional) rules.
Most rewriting engines have these basic operators built-in, but here we do not
assume any existing operators and therefore define everything needed.

Let true and false be two constants which are assumed not defined within any
given CTRS (otherwise change their name). Let us also assume a fresh binary
operator ∧, written in infix associative notation, together with the rules:

true ∧ true → true, true ∧ false → false,
false ∧ true → false, false ∧ false → false.

These will be needed to evaluate conditions that will be translated into corre-
sponding conjunctions of equalities; equalities will be defined shortly.

Let us now consider a special operator if (, ,), together with the rules:

if (true, x, y) → x, if (false, x, y) → y.

5

This operator is assumed eager in its first argument and lazy in the others. Most
rewrite engines provide it as builtin, so the two rules above are not needed.

We need another special operator, equal?(,), that reduces its arguments
and returns true if they are identical and false otherwise. One obvious rule to
add is equal?(x, x)→ true. Moreover, for all σ ∈ Σn we add

equal?(σ(x1, . . . , xn), σ(y1, . . . , yn)) → equal?(x1, y1)∧· · ·∧equal?(xn, yn), (1)

where x1, ..., xn, y1, ..., yn are disjoint variables. These rules propagate the equal-
ity of two terms having the same operator as root to the equality of their cor-
responding sub-terms. Note that σ may be a constant in Σ0, in which case, by
convention, equal?(x1, y1) ∧ · · · ∧ equal?(xn, yn) is true, the unit of ∧. The fol-
lowing rules, one for each pair σ ∈ Σn, τ ∈ Σm of different operations in Σ,
state that terms having different operations at root are not equal:

equal?(σ(x1, . . . , xn), τ (y1, . . . , ym)) → false.

Note that equal? needs to be eager in both its arguments. All rewrite engines we
know have such an operator builtin, so these rules are not needed in practice.

For a given signature Σ, let Σ′ denote the signature Σ extended with all the
auxiliary operations above, and let I(Σ) be the Σ′-rewriting system containing
all the rules above. We call I(Σ) the infrastructure rewriting system of Σ.

Proposition 1. Let R be a Σ-rewrite system, conditional or not. Then

1. I(Σ) is a confluent and terminating unconditional Σ′-rewrite system;
2. If u, v ∈ TΣ(X) then u (→?

R;←?
R) v iff equal?(u, v)→?

R∪I(Σ) true;
3. If u, v are ground Σ-terms then a normal form of equal?(u, v) in R∪ I(Σ)

is either true or false;
4. R terminates if and only if R∪ I(Σ) terminates;
5. If R is confluent and terminates, i.e., it has unique normal forms, then
R∪ I(Σ) is also confluent and terminates.

Proof. 1. It can be proved independently, but we prefer to prove the more general
result 5., and then to derive this one by taking R to be the empty Σ-rewrite
system in 5.
2. If u (→?

R;←?
R) v then it is relatively clear that equal?(u, v) →?

R∪I(Σ) true,
because any two rewrite sequences proving the first translates into a possible
rewriting sequence of the second. Indeed, let us assume the following rewriting
sequences in R, u = u0 → u1 → · · · → un and v = v0 → v1 → · · · → vm,
where un = vm for some n, m ≥ 0. Then one can generate the following rewrit-
ing sequence in R ∪ I(Σ): equal?(u, v) = equal?(u0, v0) → equal?(u1, v0) →
· · · equal?(un, v0) → equal?(un, v1) → · · · equal?(un, vm). Further, since un =
vm, one can now apply the rule equal?(x, x)→ true.

Before we prove the other implication, we prove the following lemma:

6

Lemma 1. If u, v, u′, v′ are all terms in TΣ(X) and equal?(u, v)→k
R∪I(Σ)

equal?(u′, v′), i.e., there are k rewriting steps in R∪ I(Σ), such that the
rule (1) of equal? is not used in this rewriting sequence, then u →n

R u′

and v →m
R v′ with k = n + m.

Proof. Since true and false are in normal form, which means that the
rewriting sequence equal?(u, v) →k

R∪I(Σ) equal?(u′, v′) cannot use any
of the rules of equal?, there is only one way to apply a rewriting rule
in R ∪ I(X) to the term equal?(u, v): to apply a rewriting rule in R to
either u or v. The term to rewrite will have the same form, an operator
equal? with two Σ-terms as arguments. Therefore, k will be equal to the
number of rules in R applied to any of the arguments of equal?.

Conversely, we can prove by well-founded induction on the length of the rewriting
sequence in R∪ I(Σ) that if equal?(u, v) →?

R∪I(Σ) true then there is some Σ-
term w such that u→?

R w and v →?
R w. There are two situations to analyze. If

the rewriting rule (1) is not used in the rewriting sequence equal?(u, v)→? true
inR∪ I(Σ), then the only way for the rewriting sequence to exist is to reduce the
true using the rule equal?(x, x)→ true, so equal?(u, v)→? equal?(w, w)→ true
for some Σ-term w. By Lemma 1, it follows that u →? w and v →? w in R, so
the claim holds in this case.

If the rewriting rule (1) generating conjuncts of equalities is used one or more
times in the rewriting sequence equal?(u, v)→? true, then let us consider its first
use, that is, equal?(u, v)→? equal?(σ(u1, ..., un), σ(v1, ..., vn))→ equal?(u1, v1)∧
· · · ∧ equal?(un, vn)→? true for some σ ∈ Σn and some Σ-terms u1, v1, ..., un,
vn. Since we considered the first use of rule (1), it follows by Lemma 1 that in fact
u→? σ(u1, ..., un) and v →? σ(v1, ..., vn) in R. The only way for the conjunction
of equalities to reduce to true is that each of the equalities reduces to true, that is,
equal?(ui, vi)→? true for each 1 ≤ i ≤ n. By the induction hypothesis, there are
some Σ-terms wi such that ui →? wi and vi →? wi for each 1 ≤ i ≤ n. Then one
can combine all these rewriting sequences and construct the rewriting sequences
σ(u1, ..., un) →? σ(w1, ..., wn) and σ(v1, ..., vn) →? σ(w1, ..., wn). Letting now
w denote the Σ-term σ(w1, ..., wn), we can construct the rewriting sequences
u→? w and v →? w in R, which completes the proof.
3. Suppose that u, v are ground Σ-terms and that w is a normal form of
equal?(u, v) in R ∪ I(Σ) different from true or false. We claim that in this
case w must contain some subterm equal?(u′, v′) for some ground Σ-terms u′

and v′. Indeed, note that the operation equal? must occur in w because the rule
(1) propagates it. Moreover, since rule (1) propagates as arguments of equal?
subterms of the original argument terms of equal?, it follows that at any moment
during the rewriting sequence of equal?(u, v) any terms u′′ and v′′ that occur in
any subterm equal?(u′′, v′′) are Σ-terms; further, since rules do not contain new
variables in their rhs, u′′ and v′′ are ground.

Therefore, the normal form w contains some subterm equal?(u′, v′) for some
ground Σ-terms u′ and v′. However, this is a contradiction because equal? is
completely defined on any terms having operations in Σ as roots, i.e., ground
Σ-terms, so equal?(u′, v′) cannot be in normal form.

7

4. If R ∪ I(Σ) terminates then R also terminates, because any infinite rewrite
sequence in R translates into an infinite rewrite sequence in R∪ I(Σ).

For the other implication, we first prove the following lemma:

Lemma 2. Let R = (Σ, E) be any terminating finite term rewriting
system, let σ be a new operation of n arguments, and let Rσ be a finite
set of rewriting rules of the form

σ(α1, . . . , αn)→ γ,

where α1, . . . , αn are Σ-terms and γ is a (Σ ∪ {σ})-term whose sub-
terms rooted in σ have the form σ(β1, . . . , βn) with β1, . . . , βn subterms
of α1, . . . , αn, respectively, at least one of them being a proper subterm.
Then R′ = (Σ ∪ {σ}, R ∪Rσ) also terminates.

Proof. We show by well-founded induction on the number of operations σ
that a (Σ∪{σ})-term t contains that any rewriting sequence starting with
t must be finite. If t contains no σ then the result is immediate, because
R terminates. Let us assume that t contains at least one operation σ and
that there is some infinite rewrite sequence in R′ starting with t. Since
R terminates, the only way to have an infinite rewriting of t is that t has
some maximal subterm rooted in σ, i.e., one which is not a subterm of
any other subterm of t rooted in σ, which generates an infinite rewriting
sequence in R′. Let σ(t1, . . . , tn) be such a subterm of t which can be
rewritten infinitely.
By the induction hypothesis, since t1, . . . , tn contain fewer operations
σ than t, neither of t1, . . . , tn can be rewritten infinitely. Note that if a
(Σ∪{σ})-term δ cannot be rewritten infinitely in R′ then there is only a
finite number of terms that δ can be rewritten to: indeed, supposing that
there are infinitely many terms that δ can be rewritten to then, since
δ can be rewritten in one step to only a finite number of terms, there
must be such a successor term δ′ that can be rewritten to infinitely many
terms. Iterating this argument on δ′, one an obtain an infinite rewriting
sequence δ → δ′ → · · ·, violating the property that δ cannot be rewritten
infinitely. For such a term δ, let [δ] be the finite set of all the subterms
of all the terms that δ can be rewritten to in R′.
Due to the form of the rewrite rules in Rσ, at any moment during the
infinite rewriting sequence of σ(t1, . . . , tn), the current term contains
only maximal subterms rooted in σ of the form σ(u1, . . . , un), where
(u1, . . . , un) is a tuple in the finite set [t1]×· · ·× [tn]. Since R terminates
and since t1, . . . , tn cannot be reduced infinitely, it follows that the rules
in Rσ are applied infinitely often on maximal subterms rooted in σ of the
current term during the infinite rewriting of σ(t1, . . . , tn). Since there is
only a finite number of tuples in [t1]×· · ·× [tn], there must be some tuple
(u1, . . . , un) ∈ [t1]× · · · × [tn] such that σ(u1, . . . , un) rewrites in one or
more steps to some term containing σ(u1, . . . , un) as a subterm, that is,
(u1, . . . , un) ∈ [u1]× · · · × [un]. Since the rules in Rσ require that among

8

the arguments of any σ in the rhs of any rule there is least one which is
a proper subterm of the corresponding subterm of the lhs of that rule,
it follows that there is some i ∈ {1, . . . , n} and some proper subterm
u′i of ui such that ui ∈ [u′i]. This implies that there is some rewriting
sequence u′i →? c[ui] in R′ for some non-empty context c. But this leads
to a contradiction, because ui ∈ [ti] and ti cannot be rewritten infinitely
by the induction hypothesis.

We can now prove the termination of R∪I(Σ) by applying the lemma above
incrementally for the infrastructure operators in this order: true, false, if (, ,),
∧ , equal?. Only the last operator is interesting, the others using degenerated

variants of the lemma above, when the new operator does not occur in rhs of
any newly added rule.
5. Let t be a Σ′-term and let t→ t1 and t→ t2 be one step rewrites in R∪I(Σ).
We need to show that there is some t′ such that t1 →? t′ and t2 →? t′ in
R∪I(Σ). Therefore, there are some contexts c1, c2 and some rules l1 → r1 if C1,
l2 → r2 if C2 in R ∪ I(Σ) (the rules in I(Σ) are unconditional), such that
t = c1[θ1(l1)] = c2[θ2(l2)], t1 = c1[θ1(r1)], and t2 = c2[θ1(r2)] for some maps θ1,
θ2 with θ1(C1) and θ2(C2) properly reducible in R ∪ I(Σ). If the two rewrites
are applied at disjoint positions, i.e., if there is some two-hole context c[?1, ?2]
such that c1 = c[?1, θ2(l2)] and c2 = c[θ1(l1), ?2], then one can simply choose t′

to be the term c[θ1(r1), θ2(r2)] and note that t1 → t′ and t2 → t′ in one step in
R∪ I(Σ).

Next suppose that the two rules are not applied at disjoint positions, that
is, there is some context δ such that, for example, c2 = c1[δ]. There are several
cases to analyze.

Suppose first that l1 → r1 if C1 is in R. There are now two subcases to
discuss. First, if δ contains any infrastructure operation on the path to its hole
or if l2 has an infrastructure operation at its top (in other words the second
rule is in I(Σ)), then, since R does not involve any infrastructure operator in
its rewriting rules, the term θ2(l2) occurs as a subterm of a subterm θ1(x) of
θ1(l1) for some variable x; more precisely, θ1(x) = ρ[θ2(l2)] for some context ρ.
Then note that t1 = c1[θ1(r1)] rewrites in as many steps as occurrences of x
in r1 to a term t′ = c1[θ′1(r1)], where θ′1 is defined like θ1 with the exception
that θ′1(x) = ρ[θ2(r2)]. Note that t2 also rewrites to t′, because t2 = c2[θ2(r2)] =
c1[δ[θ2(r2)]] and δ[θ2(r2)] rewrites in zero or more steps (as many as occurrences
of x in l1 minus one) to θ′1(l1). Second, if δ contains only operations in Σ on the
path to its hole and so does l2 at its top (so the second rule is also in R), then
we can “freeze” all the subterms of θ1(l1) = δ[θ2[l2]] rooted in an infrastructure
operator, e.g., by temporarily replacing them with some fresh constants, and
then use the confluence of R to get a term u such that θ1(r1)→? u←? δ[θ2(r2)].
Now we can take t′ to be the term c1[u].

Suppose now that l1 → r1 if C1 is not in R, that is, it is one of the uncon-
ditional infrastructure rules l1 → r1 defined in subsection 3. Note that l1 → r1

cannot be any of the four rules for boolean simplification, because otherwise the
application of the other rule would not be possible. If it is one of the two rules

9

for if then note that the other rule may only apply to a subterm of an instance
of x or y. If for example the first rule l1 → r1 is if (true, x, y)→ x and the second
rule applies to a subterm of an instance of x, then the same rule for if can apply
to t2 to generate the same term as the one obtained from t1 by appropriately
applying the second rule. If the second rule applies to a subterm of an instance of
y, then note that after applying the rule for if to t2 one gets exactly t1. Finally,
recall that the operation equal? is assumed to be reduced eagerly, so the concrete
subterms of equal? are assumed in normal form whenever a rule for equal? is
applied. This means that l1 → r1 cannot be any of the rules of equal?.

By 2., one can replace any equality u = v in the condition of a rule in R by
equal?(u, v) = true. Note that the restriction on u and v to be ground is crucial
in 3. Suppose, e.g., that u is a variable, say x. Then there is no rule to reduce the
term equal?(x, v) to true or false. Moreover, one does not want to add rules of
the form equal?(x, τ(y1, . . . , ym))→ false to I(Σ) because one would destroy the
confluence of I(Σ) and thus the correctness of the definition of equal?: indeed,
equal?(τ (y1, . . . , ym), τ (y1, . . . , ym)) would reduce to both true and false in I(Σ).

4 The Main Transformation

The major reason for which conditional rules are inconvenient to implement in
a rewriting engine is because, in order to reduce a term, the rewriting engine
needs to maintain a control context for each conditional rule that is tried to be
applied. By control context we here mean the status of the evaluation of the
condition (note that a condition is a set of equalities) plus the right hand term
that needs to replace the left hand one in case the condition evaluates to true.
Due to the potential nesting of rewrite rule applications, such a control context
may grow arbitrarily, meaning that the rewriting engine needs to pay special
care to choosing appropriate data-structures to maintain it and to recover the
computation in case the evaluation of a condition fails.

Example 1. Let us consider natural numbers built with 0 and successor s, to-
gether with the following, on purpose inefficient, conditional rules defining odd
and even operators on natural numbers:

odd(0) → 0,
odd(s(x)) → 0 if even(x) = 0,
odd(s(x)) → s(0) if even(x) = s(0),

even(0) → s(0),
even(s(x)) → 0 if odd(x) = 0,
even(s(x)) → s(0) if odd(x) = s(0).

In order to check whether a natural number n, i.e., a term consisting of n succes-
sor operations applied to 0, is odd, a rewriting engine may need O(2n) rewrites
in the worst case. Indeed, if n > 0 then either the second or the third rule of
odd can be applied at the first step; however, in order to apply any of those
rules one needs to reduce the even of the predecessor of n, twice. Iteratively, the
evaluation of each even involves the reduction of two odds, and so on. Moreover,
the rewriting engine needs to maintain a control context data-structure, storing

10

the status of the application of each (nested) rule that is being tried in a reduc-
tion. It is the information stored in this control context that allows the rewriting
engine to backtrack and find an appropriate rewriting sequence. �

A challenging question motivating the present work is the following: would it
be possible to automatically replace conditional rules like the above by uncondi-
tional ones, so that a rewriting engine’s single job would be to match-and-apply
rules, without worrying about any control context aspects? A positive answer
to this question could potentially lead to a new generation of efficient rewrit-
ing engines, which would take advantage of today’s increasingly highly parallel
computing architectures and would potentially allow optimizations that were
not possible for conditional rewriting. In this section we show how a conditional
rewrite system R can be automatically transformed into an unconditional one
R, which practically preserves all the properties of R. The major idea is, like in
the use of continuations (see [15] for a discussion on several independent discov-
eries of continuations, and [7] for a pragmatic presentation of continuation), to
convert the control context into data context. This way, the term to be rewrit-
ten is enriched at appropriate positions to contain all the information needed
to continue its reduction. The rewriting engine does not need to maintain any
auxiliary information about the status of the rewriting process: it only needs
to find a redex in the term to rewrite and apply a corresponding unconditional
rewrite rule, a simple process amenable to high parallelization and optimization.

4.1 An Unsatisfactory Transformation

Once one generates the infrastructure (unconditional) Σ′-rewrite system I(Σ),
a simple-minded way to transform a conditional Σ-rewrite system R into an
unconditional one is to translate each conditional rule

l → r if u1 = v1, · · · , um = vm

into an unconditional rewrite rule

l → if (equal?(u1, v1) ∧ · · · ∧ equal?(um, vm), r, l).

Such a transformation has the desirable property that both the conditional
rewrite system and its unconditional variant can “reach”, by reduction in zero
or more steps starting with a given Σ-term, the same set of Σ-terms. In other
words, if a and b are Σ-terms then a →? b in the conditional Σ-rewrite sys-
tem if and only if a →? b in the unconditional Σ′-rewrite system. Therefore,
if reachability analysis is what one is interested in then this simple translation
provides an effective method to reduce the problem to unconditional rewrite sys-
tems. This rewrite system transformation can be useful in systems like Maude,
providing commands of the form “search a =>* b” searching for a sequence of
applications of rewrite rules transforming a into b.

However, this translation cannot be used to execute conditional rewriting on
top of an unconditional rewriting engine. Indeed, if the conjunction of equali-
ties reduces to false then the unconditional rewrite system leads to an infinite

11

rewriting sequence, by keeping applying the rule above. Would it be possible
to properly mark the term to rewrite whenever a rule is tried and its condition
reduces to false, so that that rule will not be applied anymore on that position?.

4.2 Adding Control Context Arguments

Like in Viry [16], the idea is to add a few auxiliary arguments to some operators
to keep the necessary control context information. This way, terms to rewrite
will store information about the conditional rules that can be potentially applied
on each of their subterms. Let R = (Σ, E) be any Σ rewriting system. For each
n and each σ ∈ Σn, let us associate a unique number between 1 and kσ to each
conditional rewrite rule in R whose lhs is rooted in σ, that is, a rule of the form

σ(t1, . . . , tn) → r if u1 = v1, · · · , um = vm,

with t1, . . . , tn, r, u1, v1, . . . , um, vm terms and m ≥ 1, where kσ is the total num-
ber of such rules. Note that kσ is 0 if there is no rule having σ as a root of its
lhs, or if all such rules are unconditional.

Let us next define a signature Σ, replacing each σ ∈ Σn by an operator
of n + kσ arguments, σ ∈ Σn+kσ

. The additional kσ arguments are written at
the right of the other n arguments, and they can take only two possible values
(or constant terms): true or false. An important step in our transformation
technique is to replace all the operations in Σ by corresponding operations in Σ.
The intuition for the additional arguments comes from the overall idea of passing
the control context (due to conditional rules) into data context: the additional
i-th argument of an operation σ staying at some position in a term to rewrite,
tells whether the i-th rule having σ at the root of its lhs is enabled or not at
that position; if true then it means that the rule can potentially be applied, and
if false then it means that the rule has been already tried at that position but
its condition failed to evaluate to true, so there is no need to try it anymore.
Let us extend this to Σ-terms, by letting the variables unchanged and replacing
each operator σ by σ with the kσ additional arguments all true. Formally, let
· : TΣ(X)→ TΣ(X) be a map from Σ-terms to Σ-terms defined inductively as

– x = x for any variable x ∈ X , and
– σ(t1, . . . , tn) = σ(t1, . . . , tn, true, . . . , true) for any σ ∈ Σn and any terms

t1, . . . , tn ∈ TΣ(X).

Let’s define another useful map from Σ-terms to Σ-terms, ·̃X : TΣ(X)→ TΣ(X),
but this time indexed by a finite set of variable X ⊆ X , as follows:

– x̃X = x for any variable x ∈ X, and

– ˜σ(t1, . . . , tn)
X

= σ(t̃1
X

, . . . , t̃n
X

, b1, . . . , bkσ
) for any σ ∈ Σn and any terms

t1, . . . , tn ∈ TΣ(X), where b1, . . . , bkσ
∈ X −X are some arbitrary but fixed

different fresh variables that do not occur neither in X nor in t̃1
X

, . . . , t̃n
X

.

12

Therefore, t̃X transforms the Σ-term t into a Σ-term, replacing each opera-
tion σ ∈ Σ by σ ∈ Σ and adding distinct variables for the additional argu-
ments, following some arbitrary but deterministic conventions. Given a Σ-term
t in TΣ(X) of the form σ(t1, . . . , tn) for some operation σ ∈ Σn, and given
a natural number i between 1 and kσ, then we let t̃Xi/true denote the Σ-term

σ(t̃1
X

, . . . , t̃n
X

, b1, . . . , bi−1, true, bi+1, . . . , bkσ
), that replaces bi in t̃X by true.

Similarly, t̃Xi/false denotes σ(t̃1
X

, . . . , t̃n
X

, b1, . . . , bi−1, false, bi+1, . . . , bkσ
), that

replaces bi in t̃X by false. Thus, t̃Xi/true (resp. t̃Xi/false) contains the additional
control context information whether the i-th conditional rule of σ is enabled.

4.3 An Almost Correct Transformation

For a given conditional Σ-rewrite system R, we can now define an unconditional
Σ
′
-rewrite system3 R′ by adding to I(Σ) the following unconditional Σ

′
-rewrite

rules. For each conditional (m ≥ 1) rule l → r if u1 = v1, · · · , um = vm over
variables X in R, say the i-th among the conditional rewrite rules in R having
the root operation of l as a root of their lhs, add to R′ the unconditional rule

l̃Xi/true → if (equal?(u1, v1) ∧ · · · ∧ equal?(um, vm), r, l̃Xi/false).

For each unconditional rewrite rule l → r in R over variables X, add to R′ an
unconditional rewriting rule l̃X → r.

Therefore, for each conditional rule in R we add an unconditional one in
R′, whose corresponding additional argument of its transformed lhs is true. By
throwing the control context’s ball into matching’s court, this intuitively says
that such a rule can be applied on a (sub)term only if it is “enabled” in that
(sub)term. Its rhs term has a conditional operation at its root, which first evalu-
ates the conjunction of all the equalities of pairs of terms occurring in the condi-
tion of the conditional rule; note that these terms are properly transformed into
Σ-terms enabling all possible rules at any of their positions. If the conjunction
evaluates to true then the rhs of the conditional rule is returned, also modified
to enable all possible rules on it. If the condition reduces to false then the only
thing to do is to “disable” this current rule. Due to the change of the correspond-
ing argument from true to false, note that matching will disallow this rule to
be applied anymore on that (sub)term. Since unconditional rules are always en-
abled, they are transformed into unconditional rules ignoring the control context
arguments in the lhs and enabling all possible rules on its rhs. Note that R′ does
not modify any rule in R if R already contains only unconditional rules.

Example 2. Let us apply the translation technique above on the conditional
rewriting system for odd/even in Example 1. Since there are two conditional
rules whose root of lhs is odd and two whose root of lhs is even , each of these op-
erators will be enriched with two additional arguments. The new, unconditional
rewriting system is then:

3 Note that (Σ′) = (Σ)′, so we take the liberty to denote this signature Σ
′
.

13

odd(0, b1, b2) → 0,

odd(s(x), true, b2) → if (equal?(even(x, true, true), 0), 0, odd(s(x), false, b2)),

odd(s(x), b1, true) → if (equal?(even(x, true, true), s(0)), s(0), odd(s(x), b1, false)),
even(0, b1, b2) → s(0),

even(s(x), true, b2) → if (equal?(odd(x, true, true), 0), 0, even(s(x), false, b2)),

even(s(x), b1, true) → if (equal?(odd(x, true, true), s(0)), s(0), even(s(x), b1, false)).

The unconditional rule for odd says that 0 is not an odd number, regardless
of the control context. The first conditional rule for odd has the constant true as
the first auxiliary argument of its lhs, telling the matching procedure that this
rule can be applied only if it was not previously disabled. If the condition of if
evaluates to true then 0 is returned, otherwise the same term as the lhs, except
that true is replaced by false, thus disabling the current conditional rule to avoid
getting into non-terminating rewriting. The variable argument b2 says that it
does not matter whether the second conditional rule is enabled or not (but this
information will be preserved in case the first conditional rule is disabled). The
other conditional equations are similar. If one wants to test whether a number
n, i.e., n consecutive applications of successor on 0, is odd, one should reduce
the term odd(n), i.e., odd(n, true, true), under the unconditional rewrite system.
Note that the operations 0 and s are not added auxiliary arguments because they
do not occur as a root of a lhs of any conditional rule in the original conditional
rewriting system. �

Unfortunately, the translation above suffers from the same problem as that
of Viry [16]: for some CTRSs, the generated TRSs have additional normal forms
corresponding to terms which could be further reduced in the original CTRS.

Example 3. Consider the problematic CTRS from Section 1:

f(g(x)) → x if x = 0,
g(g(x)) → g(x),

whose corresponding TRS, according to the transformation above, is:

f(g(x), true) → if (equal?(x, 0), x, f(g(x), false)),
g(g(x)) → g(x).

Then note that even if f(g(g(0))) admits a unique normal form in the original
CTRS, f(g(g(0)), true) admits two normal forms in its corresponding TRS:

f(g(g(0)), true) → f(g(0), true) → if (equal?(0, 0), 0, f(g(0), false)) →∗ 0,
f(g(g(0)), true) → if (equal?(g(0), 0), g(0), f(g(g(0)), false)) →∗

→∗ f(g(g(0)), false) → f(g(0), false).

The latter cannot be further reduced with the rules in the TRS. �

14

The problem here, like in Viry’s transformation [16], is that a successful ap-
plication of a rewrite rule may enable some application of a conditional rule that
has already been tried before, but at that time failed to apply. One unsatisfac-
tory way to fix this problem is, like in [16], to enforce conditional eagerness on
the generated TRS; another, even more unsatisfactory, is to reduce the applica-
bility of the transformation to only innermost, or eager, CTRSs. We next show
how to fix this problem in general.

4.4 The Correct Transformation

To fix the problem in the previous subsection, we need a mechanism to “inform”
the term to reduce, after each successful application of a rewrite rule, that some
“conditional” rules that have been tried before and failed may succeed now. More
precisely, we need to traverse the term along the path from the current position
(where the successful rule was applied) to its root, and make all the auxiliary
arguments of the operations on this path true. This can be accomplished, for
example, by considering a new (unary) operator, say { }, stating that the en-
closed term has just been modified, together with appropriate rewrite rules to
propagate this information upwards, updating the “applicability bits”: for each
σ ∈ Σn and each 1 ≤ i ≤ n, consider a rule

σ(x1, ..., xi−1, {xi}, xi+1, ..., xn, b1, ..., bkσ
)→

→ {σ(x1, ..., xi−1, xi, xi+1, ..., xn, true, ..., true)}.

The applicability information of an operation can be updated from several of its
subterms; to keep this operation idempotent, we also consider the rule

{{x}} → {x}.
Formally, for a given conditional Σ-rewrite system R, we let Σ

′
{} define the

signature Σ
′

in the previous subsection extended with the unary operator { }
above, and we let R be the unconditional Σ

′
{}-rewrite system extending I(Σ)

with the operator { } together with its unconditional rewrite rules above, as well
as with the following rules. For each conditional (m ≥ 1) rule l → r if u1 =
v1, · · · , um = vm over variables X in R, say the i-th among the conditional
rewrite rules in R having the root operation of l as a root of their lhs, add to R:

l̃Xi/true → if (equal?({u1}, {v1}) ∧ · · · ∧ equal?({um}, {vm}), {r}, l̃Xi/false).

For each unconditional rewrite rule l → r in R over variables X, add to R an
unconditional rewriting rule l̃X → {r}.

Before we formalize the exact relationship between CTRSs and their uncon-
ditional variants, let us define another map of terms, this time from Σ-terms to
Σ-terms. Let ·̂ : TΣ(X)→ TΣ(X) be the map defined inductively as

15

– x̂ = x for any variable x ∈ X , and
– ̂σ(t′1, . . . , t′n, s1, . . . , skσ

) = σ(t̂′1, . . . t̂′n) for any operator σ ∈ Σn and any
terms t′1, . . . , t

′
n, s1, . . . , skσ

∈ TΣ
′(X).

Therefore, t̂′ forgets all the auxiliary arguments of each operation occurring in
t′. Note in particular that t̂ = ̂̃t = t for any t ∈ TΣ(X).

Example 4. Let us consider the problematic CTRS in example 3. Its correspond-
ing TRS generated as above contains the following rules:

{{x}} → {x}
f({x}, b) → {f(x, true)}
g({x}) → {g(x)}

f(g(x), true) → if (equal?({x}, {0}), {x}, f(g(x), false)),
g(g(x)) → {g(x)}.

Then the term f(g(g(0)), true) admits the normal form {0}:

f(g(g(0)), true) → if (equal?({g(0)}, {0}), {g(0)}, f(g(g(0)), false)) →∗

→∗ f(g(g(0)), false) → f({g(0)}, false) →
→ {f(g(0), true)} → {0}.

Note that the normal form {0} is possible exactly because the information
that a subterm has been rewritten is transmitted upwards via the operator { }
and its associated rules. The obtained TRS is not confluent, because the term
above also admits the normal form 0, but this time the (at most two) normal
forms that a term can have (t and/or {t}) are very closely related and one can
easily infer the desired normal form in the original CTRS. In order to have a
unique normal form in the TRS, we will actually enclose the original term into
curly brackets before we reduce it, as the theorem below suggests.

Theorem 1. If R is a conditional Σ-rewriting system then

1. For any ground Σ-terms α and β, α →?
R β if and only if there is some

ground Σ-term γ such that γ̂ = β and {α} →?
R {γ};

2. R terminates on a ground Σ-term α if and only if R terminates on {α};
3. R terminates if and only if it terminates on all terms {α} with α a Σ-term;
4. If γ in 1. is a normal form (in R) then β is also a normal form (in R);
5. If R terminates then R is ground confluent iff R is ground confluent.

Proof. 1. Let us first prove that if α→?
R β then there is some ground Σ-term γ

such that {α} →?
R {γ} and γ̂ = β. We can show it by well-founded induction on

the total number of applications of rewrite rules, including those to derive the
equalities in conditions. If α = β then the property is true because α̂ = α. Let
us isolate the first rewrite step in the derivation of α: let τ be a ground σ-term
such that α →R τ →?

R β. Let l → r if u1 = v1, · · · , um = vm be a rule in

16

R, let θ be an appropriate substitution such that θ(ui) →?
R;←?

R θ(vi) for each
1 ≤ i ≤ n, and let c be a context such that α = c[θ(l)] and τ = c[θ(r)]. By
the induction hypothesis, there are some ground Σ-terms ρui

and ρvi
such that

{θ(ui)} →?
R {ρui

}, {θ(vi)} →?
R {ρvi

}, and ρ̂ui
= ρ̂vi

. Let us prove the following
lemma:

Lemma 3. If α1, α2 are Σ-terms and γ1, γ2 are Σ-terms such that
{α1} →?

R {γ1}, {α2} →?
R {γ2}, and γ̂1 = γ̂2, then {α1} →?

R;←?
R {α2}.

Proof. Since γ1 and γ2 may differ only in the corresponding true/false
constant subterms, where the false ones reflect the the fact that corre-
sponding “conditional” rules have been tried and failed, one can generate
another ground Σ-term, written ∧(γ1, γ2), with ̂∧(γ1, γ2) = γ̂1 = γ̂2, as
follows:
– If γ1 = γ2 then ∧(γ1, γ2) is the same Σ-term;
– If

γ1 = σ(t11, ..., t
1
n, b1

1, ..., b
1
kσ

), and
γ2 = σ(t21, ..., t

2
n, b2

1, ..., b
2
kσ

),

then
∧(γ1, γ2) = σ(∧(t11, t

2
1), ...,∧(t1n, t2n), b1, ..., bkσ

),

where bi is true if and only if both b1
i and b2

i are true.
The definition of ∧(γ1, γ2) above is correct because γ̂1 = γ̂2. We next
show by structural induction (note that γ1, γ2, and ∧(γ1, γ2) have the
same structure, except for the constants true and false) that {γ1} →?

R{∧(γ1, γ2)} ←?
R {γ2}. The case when γ1 = γ2 is trivial. Otherwise, if

γ1 and γ2 are as above, then by the induction hypothesis it follows that
{t1i } →?

R {∧(t1i , t
2
i)} ←?

R {t2i } for any 1 ≤ i ≤ n, so

{γ1} →?
R {σ(∧(t11, t21), ...,∧(t1n, t2n), b1

1, ..., b
1
kσ

)}, and
{γ2} →?

R {σ(∧(t11, t
2
1), ...,∧(t1n, t2n), b2

1, ..., b
2
kσ

)}.
If (b1

1, ..., b
1
kσ

) and (b2
1, ..., b

2
kσ

) are not already equal, then let i be some
index with 1 ≤ i ≤ n such that b1

j = b2
j for all 1 ≤ j < i and b1

i 6=
b2
i . Suppose that b1

i = true and b2
i = false (the other case is treated

similarly). Since there is only one way for the i-th auxiliary argument of
the operation σ to become false, namely when the i-th rule having σ at
the top of its left-hand-side term, say

l̃Xi/true → if (equal?({u1}, {v1})∧ · · · ∧ equal?({um}, {vm}), {r}, l̃Xi/false),
is applied and the conjunction of equalities reduces to false, one can
replay the exact rewriting sequence that led to b2

i = false in γ2 on γ1

and thus obtain

{γ1} →?
R {σ(∧(t11, t

2
1), ...,∧(t1n, t2n), b1

1, ..., b
1
i−1, false, b1

i+1, ..., b
1
kσ

)}.
Iterating this process for the remaining pairs of unequal auxiliary sub-
terms true or false, we eventually obtain {γ1} →?

R {∧(γ1, γ2)} ←?
R {γ2}.

�

17

Let us now return to the proof of the main theorem. By Lemma 3, it follows
that {θ(ui)} →?

R;←?
R {θ(vi)}, so by 2. in Prop. 1, equal?({θ(ui)}, {θ(vi)})→?

R
true for each 1 ≤ i ≤ n. Therefore, since α = c[θ(l)] it follows that {α} →?

R
{c[θ(r)]}. Further, since c[θ(r)]→?

R β, by the induction hypothesis there is some
ground Σ-term γ such that {c[θ(r)]} →?

R {γ} and γ̂ = β. The rest follows from
the fact that c[θ(r)] = c[θ(r)].

For the other implication, we can prove a more general result stating that if
δ and γ are ground Σ-terms such that {δ} →?

R {γ}, then δ̂ →?
R γ̂; the desired

result follows then by taking δ to be α. We show this more general result by
well-founded induction on the length of the derivation {δ} →?

R {γ}. First note
that the property trivially holds when δ = γ. Also, if there is some intermediate
ground Σ-term τ such that {δ} →+

R {τ} →
+

R {γ}, then by induction it follows

that δ̂ →?
R τ̂ →?

R γ̂. Let us next assume that there is no other Σ-term like τ
above, and let us consider the first step in the derivation of δ: let

l̃Xi/true → if (equal?({u1}, {v1}) ∧ · · · ∧ equal?({um}, {vm}), {r}, l̃Xi/false),

be the rule in R (corresponding to a rule l → r if u1 = v1, · · · , um = vm in R)
which is first applied on δ, and let c be the context where this rule is applied,
that is, δ = c[θ(l̃Xi/true)] for some appropriate substitution θ. Let τ be the term

c[θ(if (equal?({u1}, {v1}) ∧ · · · ∧ equal?({um}, {vm}), {r}, l̃Xi/false))].

Since there is no rule in R containing the if (, ,) operation in its left-hand-side
term and since γ contains no such operators either, we deduce that there are
two possibilities in order for {τ} →?

R {γ} to take place:
(a) The subterm of τ rooted in if (, ,) is not needed in the rewriting sequence
and therefore discarded via a rule which contains fewer variables in the its right-
hand-side than in its left-hand-side. If this is the case, then it is also the case
that c →?

R γ using the same number of rewrite steps. Regarding c as a ground
term (replacing its “hole” by some constant), by the induction hypothesis we
get that ĉ →?

R γ̂. However, this leads to ĉ[l] →?
R γ̂ by using the exact rewrite

steps (but with a different substitution); the rest follows because ĉ[l] = γ̂.
(b) The subterm of τ rooted in if (, ,) is needed in the rewriting sequence.
That means that that subterm reduces to either {r} or l̃Xi/false , and, by potentially

reordering the applications of rewrite rules, that either {c[{r}]} or {c[l̃Xi/false]} re-
duces to {γ} in R, respectively. In the latter case, the result follows immediately
because δ̂ = ĉ[l]. In the former case, which can happen only if

{θ(if (equal?({u1}, {v1}) ∧ · · · ∧ equal?({um}, {vm}), {r}, l̃Xi/false))}

reduces to {θ(r)}, since τ̂ →?
R ĉ[r] it suffices to show that δ̂ →?

R τ̂ . Note that each
of equal?({ui}, {vi}) for 1 ≤ i ≤ m reduces to true in R, so by 1. in Proposition
1 we get that {ui} →?

R;←?
R {vi} for each 1 ≤ i ≤ m. Moreover, since the

18

number of rewrite steps are preserved in the proof of 1. in Proposition 1, we can
use again the induction hypothesis and infer that ûi →?

R;←?
R v̂i, that is, that

ui →?
R;←?

R vi for each 1 ≤ i ≤ m. That means that the original conditional rule
l→ r if u1 = v1, · · · , um = vm in R applies, so l = ĉ[θ̂(l)]→R ĉ[θ̂(r)].
2. In the proof of 1. it has been shown that if a rewrite step in R can be
applied on a Σ-term α, then a corresponding non-empty sequence of rewrite
steps can be applied in R on {α}. That means that if R terminates on {α} then
R terminates on α. For the other implication, suppose that there is some infinite
rewriting sequence in R starting with {α}, while R terminates on α. We recall
the reader that, in this paper, a conditional rewrite system terminates on a term
if and only if there is no infinite rewriting sequence starting with that term and
the condition of any rule that can be potentially applied along such a rewriting
sequence terminates (and, of course, so on recursively). Since there is no rule
in R containing operators if (, ,) at non-top positions in their left-hand-side
terms, there are only two possibilities in order for an infinite rewriting sequence
of α to exist in R:
(a) The number of (chain-)nested operators if (, ,) grows unbounded in the
rewriting sequence of α, that is, for any natural number p there is some Σ

′
-term

γ such that {α} →?
R {γ} and γ contains at least p nested if (, ,) operators.

Since these operators are introduced by the unconditional rules in R in order to
evaluate the condition of the corresponding conditional rule in R, we can deduce
that it is the case that during the rewriting of α in R, a conditional rule (e.g., the
one corresponding to the topmost if (, ,) operator) is attempted to be applied
but its condition does not terminate to evaluate. Therefore, in this case R does
not terminate on α.
(b) There is some bound for the number of nested if (, ,) operators that can
occur in the rewriting sequence of {α} in R. Then we claim that there is some
Σ-term γ0 of a term occurring in the infinite rewriting sequence of {α}, which
has the property that there is an infinite number of Σ-terms γ1, γ2, ..., such that
{γ0} →?

R {γ1} →?
R {γ2} · · ·. Indeed, we can search for such a γ0 as follows. First,

we attempt to pick α as γ0. This is possible only if there is an infinite number
of Σ-terms in the rewriting sequence of {α}. If this is not the case, then we can
attempt to search γ0 inductively among the terms u1, v1, ..., um, vm that occur
in the subterm of the form

if (equal?({u1}, {v1}) ∧ · · · ∧ equal?({um}, {vm}), t, t′)
of the term following the last Σ-term in the derivation of {α}. Since there is a
bound for the number of nested if (, ,) operators, we will eventually find such
a Σ-term γ0. There are now again two possibilities. If γ0 occurs as a subterm in a
subterm whose root is an if (, ,) operator, then it means that the corresponding
conditional rule in R does not evaluate its condition in a finite number of steps,
so R does not terminate. If γ0 does not occur under an if (, ,) operator, then
one can generate an infinite rewriting sequence of α inR: indeed, as shown in the
proof of 1., each rewrite sequence {γi} →?

R {γi+1} corresponds to a non-empty
rewrite sequence γ̂i →R γ̂i+1 in R.

19

3. The only thing to show is that R terminates when it terminates on all terms
{α} with α a Σ-term. We can show by induction on the number of if (, ,) and
∧ operators that it contains, that if there is any Σ

′
-term γ generating an infinite

rewriting sequence in R, then there is some Σ-term δ which also generates an
infinite rewriting sequence in R. If γ has no such operators then we can simply
take δ to be γ. If γ contains such an operator, then we can either apply the
induction hypothesis and take one of the subterms of the subterm rooted in that
operator in case it admits an infinite rewriting sequence, or otherwise first reduce
the subterm rooted in that operator to its normal form and then distinguish two
cases: (a) if the operator “dissolves” due to a rule of the form

true ∧ true → true,
true ∧ false → false,
false ∧ true → false,
false ∧ false → false,
if (true, x, y) → x,
if (false, x, y) → y.

then apply the induction hypothesis on the new term obtained from γ after
dissolving that operator and thus obtain a desired δ, and (b) if the operator does
not dissolve during the rewriting of γ then, since there is no rule in R whose
left-hand-side terms contain the special operators except the six ones above, then
we can safely replace the subterm rooted in the special operator by any other
term containing no special operator, and still have an infinite rewriting of the
new term obtained this way from γ. This new term has one less special operator,
so the induction hypothesis can apply. Therefore, if R does not terminate then
there is some Σ-term δ on which R does not terminate either. Notice now that
is R does not terminate on such a δ, then it will not terminate on the term δ̂
either, which proves the result.
4. It follows immediately from the proof of 1..
5. It follows by 1. and 2..

5 Putting Them All Together

We can now present the main result of this paper, namely a technique providing a
rewriting engine that accepts conditional rewrite rules, obtained by appropriately
wrapping a simpler rewriting engine that only accepts unconditional rules.

Input: a conditional Σ-rewrite system R and a Σ-term α over variables
X to be reduced with R.
Step 1: Add the variables in X as fresh constants into Σ, so that α
becomes a ground Σ-term;
Step 2: Generate Σ like in Subsection 4.2, by adding to each operator
σ ∈ Σ as many auxiliary arguments as conditional rules of lhs rooted in
σ are in R;

20

Step 3: Generate the infrastructure unconditional Σ
′
-rewrite system

I(Σ) by adding to Σ the operators equal? and if (, ,) as well as their
corresponding rules described in Section 3;
Step 4: Generate the unconditional Σ

′
-rewrite system R by adding to

I(Σ) the operation { } and its rules, as well as the unconditional Σ
′
-

rewrite rules associated to the rules in R as shown in Subsection 4.4;
Step 5: Reduce the term {α} to a normal form in R, say {γ}, using any
engine for unconditional rewriting;
Step 6: Return the Σ-term γ̂.

We claim that the steps above, by applying a series of simple and totally auto-
matic syntactic transformations to the input conditional rewrite system and term
to rewrite, yield a rewriting engine that accepts conditional rewrite systems.

Step 1 shows a usual way to reduce terms with variables: interpret the vari-
ables as constants. However, in our framework it is quite important to add
these variables explicitly as constants early in the reduction process. This is
because the equality operator will need to consider these constants as distinct
operations, so that it can add appropriate rules, including ones of the form
“equal?(a, σ(x1, . . . , xn))→ false” for any such constant a and operation σ ∈ Σn.

Step 2 modifies the signature Σ into Σ, by analyzing the rules in R and
adding an appropriate number of arguments to operations in Σ. Since the con-
stants added to Σ at Step 1 are fresh, no rule in R has them as lhs terms, so
these constants will not be changed in Σ. Note, however, that other constants
in Σ may get translated into operations with several arguments.

Step 3 adds the auxiliary equality and conditional operators that are needed
to translate the conditional rules into unconditional ones. Note, again, that the
constants added at Step 1 will increase the number of rules for equal?.

Step 4 generates the unconditional rewrite system R, by adding exactly one
unconditional rule per conditional or unconditional rule in R. Once R is avail-
able, any engine for unconditional rewriting can be used to reduce α under R, as
done in Step 5. Note that the normal form γ of α in R, if it exists, is a Σ-term.
Therefore, since the hat function is defined as ·̂ : TΣ(X) → TΣ(X), the term γ̂
returned at Step 6 is indeed a Σ-term, as the result of reducing α under R is
expected to be.

Theorem 2. The algorithm above, taking a conditional Σ-rewrite system R
and a Σ-term α as input, terminates iff R terminates on α. If the algorithm
terminates and outputs a Σ-term β, then β is a normal form of α in R.

Proof. The algorithm terminates if and only if its Step 5 terminates, because all
the other steps are nothing but simple syntactic translations over a finite signa-
ture and number of rewrite rules. Step 5 terminates if and only if R terminates
on {α}. By 2 in Theorem 1, this is equivalent to saying that R terminates on
α. Now suppose that the algorithm terminates and that it outputs a Σ-term β.
By Steps 5 and 6 and the discussion preceding this theorem, this happens if and
only if there is some Σ-term γ such that {α} →?

R {γ} and γ̂ = β, which, by 1 in

21

Theorem 1, is equivalent to α →?
R β. Since γ is a normal form in R, it follows

by 4 in Theorem 1 that β is a normal form in R.

6 Preliminary Experiments

As mentioned previously in the paper, our original purpose for translating con-
ditional rewrite systems into unconditional ones was to ease the process of im-
plementing rewriting engines, at the same time aiming at highly efficient imple-
mentations of rewriting based on a fast and simple rewriting virtual machine.
To test the computational equivalence between conditional rewriting systems
and their corresponding unconditional variants, we have applied the translation
presented in Section 5 manually for the conditional rewrite system in Example
1, and performed some experiments on a 2.4GHz PC machine using two major
rewriting engines: Maude [4] and Elan [3]. The results of these experiments are
listed in Figure 1, in seconds; the “-” should be read “core dump”.

Maude Elan

n Conditional Unconditional Conditional Unconditional

11 0.007 0.003 0.604 0.061
13 0.027 0.009 2.309 0.244
15 0.142 0.037 8.922 0.959
17 0.459 0.154 34.2 3.8
21 7.9 2.6 548.1 62.9
23 29.2 10.4 - -
25 117.2 49.3 - -
31 7431 2489 - -

Fig. 1. Times in seconds to reduce odd(n) using Maude and ELAN, using both the
conditional rewrite system in Example 1 and its unconditional variant in Example 2.

It was an unexpected surprise to see that the unconditional variant was much
faster than its corresponding conditional rewrite system: almost 3 times faster for
Maude and 10 times for ELAN. Since the implementation details of these rewrite
engines are not well documented, we do not know the exact reasons for which
conditional rewriting is so slow in these systems in comparison to unconditional
rewriting. However, the preliminary results in Figure 1 tell us that maintaining
the control context required to backtrack through conditional rewrite rules is
a non-trivial matter, and that the translation technique proposed in this paper
can be perhaps implemented in these systems to bring immediate benefits to
conditional rewriting.

22

7 Conclusion and Future Work

An automatic technique to transform a conditional term rewriting system into an
unconditional one was presented, which preserves all the major properties. The
technique consists of adding some key auxiliary arguments to certain operations,
which are used to maintain the control context as data context.

Only first steps towards a generic transformation procedure for general con-
ditional rewrite systems have been made here. We have not considered rewriting
modulo axioms yet, such as associativity, commutativity and identity, but these
will be considered soon. Also, the current technique can be improved: not all the
auxiliary arguments added to operations seem to be necessary. Can we statically
reduce their number?

Future work will also investigate how well analysis techniques for uncon-
ditional rewriting systems translate into corresponding analysis techniques for
conditional ones via our transformation. One complication here is that some of
the operations that we introduce require to be evaluated eagerly in some argu-
ments. This is also a drawback of our technique if one wants to use it for theorem
proving purposes. Can one find a transformation which imposes no evaluation
strategies?

References

1. S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing without conditions. In
5th ACM SIGPLAN international conference on Principles and practice of declar-
itive programming (PPDP’03), pages 20–31. ACM Press, 2003.

2. J. Bergstra and J. Klop. Conditional rewrite rules: Confluence and termination.
Journal of Computer and System Sciences, 32(3):323–362, 1986.

3. P. Borovansky, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P. Moreau,
C. Ringeissen, and M. Vittek. ELAN: User Manual, 2000. Loria, Nancy, France.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

5. N. Dershowitz and M. Okada. A rationale for conditional equational programming.
Theoretical Computer Science, 75:111–138, 1990.

6. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification. World Sci-
entific, 1998. AMAST Series in Computing, volume 6.

7. D. P. Friedman, C. T. Haynes, and M. Wand. Essentials of programming languages.
MIT Press, 1992.

8. E. Giovannetti and C. Moiso. Notes on the elimination of conditions. In 1st Inter-
national Workshop on Conditional Term Rewriting Systems (CTRS’87), volume
308 of LNCS, pages 91–97. Springer, 1987.

9. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: algebraic specification in action,
pages 3–167. Kluwer, 2000.

10. M. Hanus. The integration of functions into logic programming: From theory to
practice. The Journal of Logic Programming, 19 & 20:583–628, 1994.

23

11. C. Hintermeier. How to transform canonical decreasing ctrss into equivalent canon-
ical trss. In 4th International Workshop on Conditional and Typed Rewriting Sys-
tems (CTRS’94), volume 968 of LNCS, pages 186–205, 1994.

12. J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifications
to formal analysis tools. In 2nd International Joint Conference on Automated
Reasoning (IJCAR’04), LNCS, to appear, 2004.

13. A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Journal
of Applicable Algebra in Eng., Communication and Computing, 5:313–353, 1994.

14. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
15. J. C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation,

6(3–4):233–247, 1993.
16. P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28:381–401,

Sept. 1999.
17. E. Visser. Stratego: A language for program transformation based on rewriting

strategies. System description of Stratego 0.5. In Rewriting Techniques and Appli-
cations (RTA’01), volume 2051 of LNCS, pages 357–361. Springer, May 2001.

24

