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Abstract. We propose a practical technique for the identification of
lossy network links from end-to-end measurements. Our scheme is based
on a function that computes the likelihood of each link to be lossy. This
function depends on the number of times a link appears in lossy paths
and on the relative loss rates of these paths. Preliminary simulation re-
sults show that our algorithm achieves accuracy higher than previously
proposed heuristic methods and comparable to statistical methods at
significantly lower running time.

1 Introduction

Loss inference techniques [1–3] attempt to infer link loss rates from end-to-
end measurements. Active techniques [1] infer link loss by actively probing the
network, while passive techniques [2, 3] estimate packet loss by observing the
evolution of application traffic. Depending on the method used to infer packet
loss, passive techniques can be further divided to analytical [2] and heuristic [3].
Analytical techniques detect more lossy links while techniques are more efficient.

The insight behind our approach is that users are interested in finding lossy
links affecting the performance of their applications, rather than finding the
exact loss rate of these links. Based on this insight, we present COBALT, a
heuristics-based inference algorithm that detects with high probability the lossy
links affecting applications’ performance. COBALT assigns a confidence level to
each link—the higher the confidence, the higher the probability that the link is
lossy. The confidence level of a link depends on the number of lossy paths the
link belongs to and how lossy are those paths compared to all the paths in the
network.

2 Algorithm

We start by presenting the network model we use. In our model clients are
connected to servers through a network whose topology is known a-priori. Clients
exchange data with the servers using any TCP-based protocol. Using traces
collected from the servers, we calculate the loss rate of the path between the
server and the each client as the ratio of the retransmitted packets to the total
number of packets sent by the server.



COBALT starts by separating good from bad paths. Paths with loss rate
higher than a threshold T are labeled as bad while the remaining paths are la-
beled as good. The threshold T corresponds to a loss rate above which application
performance is disrupted. Subsequently, links are categorized depending on the
number of good paths they belong to. This approach is based on the intuition
that lossy links dominate the end-to-end path loss rate. If a path contains a lossy
link then the path’s loss rate will be at least equal to the link’s loss rate. Thus,
a lossy link cannot be part of a good path. To make COBALT less susceptible
to path loss rate estimation errors, we classify a link as good (non-lossy) only if
it belongs to at least s good paths. The parameter s, defined as the sensitivity
of the algorithm, depends on number of paths in the network. Higher values of
s give higher confidence that the identified links are truly lossy. At the same
time, the number of false positives can increase because some good links will be
classified as lossy if they don’t participate in s paths.

After excluding the links found in good paths, COBALT computes the con-
fidence levels of the remaining links. The confidence level cfd(l) for a link l in a
network N is computed as:

cfd(l) = Kt(l)
· avl(l) · avp−1(N) (1)

In Eq.1, avl(l) is the average loss rate of all paths that l belongs to, while
avp(N) is the average loss rate among all bad paths in the network. t(l) denotes
the number of times l is found in lossy paths and finally K ≥ 1 is a constant.
Intuitively, a link is bad if it participates in paths whose loss rate is much higher
than the average loss rate of all network paths. This effect is covered by the
fraction in Equation 1. Second, we can have higher confidence that a link is bad
if it belongs to many bad paths. This second effect is covered by the K t(l) term
in Equation 1. The greater the value of K the higher the importance of t(l). We
use an exponential function of t(l) so small differences in the number of lossy
paths a link belongs to will create large difference in confidence level simplifying
the final selection of the most problematic links. More details on how K should
be selected will be discussed in future work.

As its last step, COBALT ranks the links by their confidence levels. The links
with the highest confidence levels are the most likely to be problematic.

2.1 Real-time Extension

Existing loss inference techniques cannot detect transient lossy links existing in
the Internet today [4]. To address this limitation, we extend the basic algorithm
presented above to work incrementally over shorter timescales. This online al-
gorithm works similarly to its offline variant but uses an exponential moving
average formula to compute the confidence level of a link l:

cfdti+1
(l) = (1 − w) · cfdti−1

(l) + w · cfdti
(l) (2)

where cfdti−1
(l) the previous confidence level and cfdti

(l) the confidence
level computed by the most recent data. w is the aging constant controlling



the convergence time of the algorithm. An interesting point in our method is
that the value of w might not be the same across all links or even for estimates
made for the same link. Its exact value is a function of two parameters: (a) The
interval ∆t = ti − ti−1. If ∆t is large, the significance of cfdti−1

(l) decreases, as
it reflects an obsolete network view. Hence, in this case w should be close to one.
(b) The number of packets ∆P received in ∆t. Since our method is based on
statistics, the larger the sample the more confident we are about the outcome of
our analysis. Therefore, as ∆P increases, w should approach one.

3 Simulation Results

We used ns-2 to simulate our network of clients and servers and The simulated
network was created using BRITE’s two-level hierarchical topologies [5]. The
network consists of 800 nodes and about 1400 links. We randomly chose 100
clients out of a pool of 250 to download a large file from the server using HTTP.
We also picked a fraction f of the links to be lossy. Good links, have loss rates
between 0 − 0.5%, while bad links have loss rate between 1.0− 3.0%.

We compare COBALT to three other methods: Random Sampling [2], Bayesian
with Gibbs Sampling [2] and the SCFS algorithm [3]. Given the difference of
COBALT to previous techniques we need to redefine coverage and false positives
in terms of the algorithm’s parameters. In our evaluation, a correctly identified
lossy link is one whose confidence level exceeds a threshold Tlossy. Consequently,
non-lossy links whose confidence level exceed this threshold count as false posi-
tives. We set Tlossy = K in our experiments. We ran each algorithm three times,
each time with a different topology. The reported confidence level is the average
of the confidence levels obtained over the three executions. We choose K to be
3/2, the sensitivity s = 3, while T = 0.01. For random sampling, the mean link
loss rate is chosen over 500 iterations. If the mean exceeds the loss rate threshold
of bad links, the link is said to be lossy. For the Bayesian method, the ”burn in”
period in Gibbs sampling is 1000 iterations, and links are marked lossy if 99%
of the samples found are above the loss rate threshold.

Table 1. Comparison of the Random(R),Bayesian(B),SCFS(S),COBALT(C) lossy link
inference methods

Fraction of Lossy Link 5% 10% 20%

Number of Bad Links 64 105 224

R B S C R B S C R B S C

Correctly Identified 13 37 39 43 30 75 51 81 46 140 57 144

False Positives 20 12 4 14 62 23 9 24 100 45 15 54

A comparison of COBALT with the three other methods is shown in Table
1. The results on this table are based on measurements from a single server. It is
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Fig. 1. Performance and running time of COBALT

evident that COBALT provides the best coverage at the expense of a relatively
high false positive rate compared to SCFS. SCFS has the lowest false positive rate
but its coverage drops dramatically when lossy links are not rare. The Bayesian
method finds about 70% of the truly lossy links with false positive rate close to
20%. Finally, random sampling fails to identify more than 30% of the lossy links,
while at the same time the number of false positives is very high. Our findings
about the Bayesian and random sampling methods are slightly different from
the results presented by Padmanabhan et al in [2] mainly due to our different
loss and topology model.

Figure 1(a) shows that the number of false positives for COBALT, as well as
the Bayesian method decreases as the number of measurement points increases.
In this scenario, traces from all the servers are combined and both algorithms
run over the aggregate collected data. Figure 1(b) shows the running time of
Bayesian, SCFS and our approach as the fraction of lossy links increases. The
execution time of the heuristics-based methods, SCFS and COBALT, is almost
ten times faster than the Bayesian method with Gibbs sampling.
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