N

HAL

open science

Inside and outside within combinatorial pyramids
Luc Brun, Walter G. Kropatsch

» To cite this version:

Luc Brun, Walter G. Kropatsch. Inside and outside within combinatorial pyramids. Workshop on
graph-based representations in pattern recognition, 2005, Poitiers, France. pp.122-131, 10.1007/978-

3-540-31988-7_11 . hal-00261095

HAL Id: hal-00261095
https://hal.science/hal-00261095

Submitted on 9 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00261095
https://hal.archives-ouvertes.fr

Inside and Outside within Combinatorial
Pyramids

Luc Brun' and Walter Kropatsch}*

t GreYC -CNRS UMR 6072
ENSICAEN
6 Boulevard du Maréchal Juin
14045 Caen(France)
1 Institute for Computer-aided Automation
Pattern Recognition and Image Processing Group
Vienna Univ. of Technology- Austria

t luc.brun@greyc.ismra.fr,{krw@prip.tuwien.ac.at

Abstract. Irregular pyramids are made of a stack of successively re-
duced graphs embedded in the plane. Such pyramids are often used
within the segmentation and the connected component analysis frame-
works to detect meaningful objects together with their spatial and topo-
logical relationships. The graphs reduced in the pyramid may be region
adjacency graphs, dual graphs or combinatorial maps. Using any of these
graphs each vertex of a reduced graph encodes a region of the image. Us-
ing simple graphs one edge between two vertices encodes the existence of
a common boundary between two regions. Using dual graphs and combi-
natorial maps, each connected boundary segment between two regions is
associated to one edge. Moreover, special edges called loops may be used
to differentiate a special type of adjacency where one region surrounds
the other. We show in this article that the loop information does not al-
low to distinguish inside and outside of the loop by local computations.
We provide a method based on the combinatorial pyramid framework
which uses the orientation explicitly encoded by combinatorial maps to
determine inside and outside with local calculus.

1 Introduction

An irregular pyramid [7] is defined as a stack of successively reduced graphs.
The hierarchical representation provided by such pyramids allows to reduce the
computational cost of many graph algorithms using reduced versions of the initial
graph. This representation also provides a nice framework for graph algorithms
based on a divide and conquer strategy. Finally, the irregular pyramids provide
a global representation which may be used to add further constraints on many
graph algorithms.

* WK was supported by the Austrian Science Foundation under grants P14662-INF
and FSP-59103-N04

Irregular pyramids have been widely used to encode partitions within the
segmentation and the connected component analysis frameworks [7, 8]. The dual
graph Pyramids introduced by Kropatsch [6] are defined as a stack of dual graphs
successively reduced. Within such pyramids the mapping of a non surviving
vertex to a surviving one is performed by the contraction of their common edge.
The contraction of a graph reduces the number of vertices while maintaining the
connections to other vertices. As a consequence self loops or multiple edges may
occur, some of them being redundant in that they do not surround any part of
the graph. Such edges surround thus “empty inside” and are called empty self
loops. These redundant edges may be locally characterized in the dual of the
graph and suppressed by a removal step.

One particular type of adjacency between two regions is called the includes
relationship. The includes relationship relates two regions, one is placed 'outside’,
the other is ’inside’ and is surrounded by the outside region in the embedding
(see e.g. the arrows in Fig. 3). A self-loop incident to the vertex encoding the
outside surrounds the inside (Fig. 2(a)). The edge corresponding to the self-loop
in the dual graph is a bridge connecting inside and outside region. Without
orientation the exchange of inside and outside does not change the topology
of the graph, the two graphs are indistinguishable. Such loops which are not
present at the base level are created by the successive contraction and removal
operations applied to build the pyramid.

A Combinatorial Pyramid is defined as a stack of successively reduced com-
binatorial maps. The reduction scheme used within the combinatorial pyramid
framework is similar to the one used within dual graph pyramid. However, the
formalisms of the combinatorial and dual graph pyramids are quite different.
One of the main specific property of combinatorial maps is the explicit encoding
of the orientation of the plane. The method presented in this paper uses the
explicit encoding of the orientation by combinatorial maps to differentiate usual
adjacency relationships from the includes ones.

The rest of this paper is structured as follows: We first present in section 2
the main properties of the combinatorial maps. Then we present in section 3
the combinatorial pyramid framework together with the main concepts used to
compute inside relationships. Finally, we present the problem of the determi-
nation of the includes relationships in section 4 together with one method to
determines the set of regions inside a given one. We conclude this last section
with an experiment illustrating the usefulness of includes relationship.

2 Orientation in Combinatorial maps

A combinatorial map G = (D, 0, a) encodes a partition on an orientable surface
without boundary. Combinatorial maps are used within the image processing and
analysis framework to encode image’s partitions. Using 2D images, combinatorial
maps may be understood as a particular encoding of a planar graph where
each edge is split into two half-edges called darts. Since each edge connects
two vertices, each dart belongs to only one vertex. A 2D combinatorial map is

(a) G (b) G contracted (c) G reduced

Fig. 1. A dual of a combinatorial map (a) encoding a 3 x 3 grid with the contracted
combinatorial map (b) obtained by the contraction of K1 = a*(1,2,10,11,12,6). The
reduced combinatorial map (c) is obtained by the removal of the empty self loops
defined by K> = a*(4) and the double edges defined by K3 = o*(13, 14,15, 19,18, 22)U
{24, —16,17, —20, 21, —23, 3, —5}.

formally defined by the triplet G = (D, 0,) where D represents the set of darts
and o is a permutation on D whose cycles correspond to the sequence of darts
encountered when turning counter-clockwise around each vertex. Finally « is an
involution on D which maps each of the two darts of one edge to the other one.
Given a combinatorial map G = (D, 0,a), its dual is defined by G = (D, ¢, a)
with ¢ = goa. The cycles of permutation ¢ encode the faces of the combinatorial
map and may be interpreted as the sequence of darts encountered when turning
clockwise around a face. In what follows, the cycles of a, ¢ and ¢ containing a
dart d will be respectively denoted by a*(d), 6*(d) and ¢*(d). An introduction
to combinatorial maps and combinatorial pyramids may be found in [4, 2].

Fig. 1(a) describes a dual combinatorial map G = ({m}, {m — m}) encoding
a 3 x 3 4-connected planar sampling grid. Using this encoding the ¢, ¢ and a
cycles of each dart may be respectively understood as elements of dimensions
0, 1 and 2 and formally associated to a 2D cellular complex [4]. More precisely,
each a cycle may be associated to a crack between two pixels. Each of the two
darts of an «a cycle corresponds to an orientation along the crack. For example,
the cycle a*(1) = (1,—1) is associated to the crack encoding the right border
of the top left pixel of the 3 x 3 grid (Fig. 1(a)). The darts 1 and —1 define
respectively a bottom to top and top to bottom orientation along the crack.

These results may be extended to any reduced combinatorial map encoding
an image partition. In this case, each dart of the map should be interpreted
as a sequence of oriented cracks encoding an oriented and connected boundary
segment between two regions. Such a sequence is simply called a segment. The
relationships between segments and cracks are as follows: Each oriented crack
belongs to at most one segment. Moreover, if one oriented crack belongs to
a segment associated to a dart d, the same crack with an opposite orientation
belongs to the segment associated to a(d). For example, the dart 16 in Fig. 1 (¢) is
associated to the sequence of oriented cracks encoded by the darts 16.15.14.13.24
(Fig. 1(b)) while the dart —24 is associated to —24. — 13. — 14. — 15. — 16.

3 Connected boundary segments and orientation within
the Combinatorial Pyramid framework

As in the dual graph pyramid scheme [6] (Section 1) a combinatorial pyramid
is defined by an initial combinatorial map successively reduced by a sequence
of contraction or removal operations. Contraction operations are encoded by
contraction kernels. These kernels defined as a forest of the current combina-
torial map may create redundant edges such as empty-self loops and double
edges(Fig. 1(b)). Empty self loops (edge a*(4) in Fig. 1(b)) may be interpreted
as region’s inner boundaries and are removed by an empty self loops removal
kernel after the contraction step. The remaining redundant edges called double
edges, belong to degree 2 vertices in G (e.g. ¢*(13), p*(14), ¢*(15)) in Fig. 1(b))
and are removed using a double edge removal kernel which contains all darts
incident to a degree 2 dual vertex. Note that, any combinatorial map deduced
from the application of a contraction kernel followed by the two removal kernels
cannot contain empty self loops. No dart d of such a combinatorial map may
thus satisfy the relationship : o(d) = a(d). Further details about the construction
scheme of a pyramid may be found in [2, 3].

As mentioned in Section 2, each dart of a reduced combinatorial map may be
associated to a sequence of oriented cracks called a segment. Since each oriented
crack is encoded by one dart in the base level combinatorial map Go(Section 2),
a segment may be equivalently defined as a sequence of darts belonging to Gj.
Let us consider a combinatorial map G; = (D;,0;, ;) defined at level ¢ such
that G; does not contain any empty self loop. Given a dart d in D; the sequence
dy ...d, encoding the segment associated to d is defined by [2] :

di = d ,djs1 = ¢ (00(d;)) and ao(dy) = (). (1)

where Gy = (Dy, o, aq) is the dual of the initial combinatorial map and m
is the minimal integer such that ¢g(ao(d;)) survives at level ¢ or belongs to
a double edge kernel. This last condition is tested in constant time using the
implicit encoding of combinatorial pyramids [2].

Note that, if Gy encodes the 4-connected planar sampling grid, each g cycle
is composed of at most 4 darts (Fig. 1(b)). Therefore, the computation of d;;1
from d; requires at most 4 iterations and the determination of the whole sequence
of cracks composing a boundary between two regions is performed in a time
proportional to the length of this boundary.

Each oriented crack associated to an initial dart d; may be encoded by the
position of its starting point and one move. Using a 4-connected sampling grid
these moves belong to {right,up,left,down}. Given a dart d of G, let us de-
note respectively by Fm(d) and Lm(d) the moves of the first and last oriented
cracks of the segment associated to d. If d; . .. d, denotes the sequence of initial
darts associated to d, we have di = d and d, = ap(a;(d)) (equation 1). The
two darts di and d, may thus be retrieved in constant time from d. Moreover,
Fm(d) and Lm(d) are equal to the move of the oriented cracks respectively as-
sociated to d; and d,. This correspondence between the oriented cracks and the

initial darts may be defined using any implicit numbering of the initial darts
(see e.g. Fig. 1(a)). The values of Fm(d) and Lm(d) may thus be retrieved with-
out additional memory requirement and in constant time using an appropriate
numbering of the initial darts. For example, the first and last moves of the dart
16 in Fig. 1(c) are associated to the moves of the darts 16 and ag(—24) = 24 in
Gy (Fig. 1(a)) and are respectively equal to up and down.

Given a dart d in G;, and the sequence of darts d; . ..d, in G encoding its
segment, the properties of the segments (Section 2) together with the properties
of the combinatorial pyramids [2] induce the two following properties:

Vi€ {l,...,p—1} move(d;)™" # move(d;t1) (2)
Lm(d) # Fm(os(d))™" 3)

where move(d;) denotes the move of the oriented crack associated to d; and
move(d;)~" is the opposite of the move of d; (e.g. right™" = left).

Equation 2 states that two successive moves within a segment cannot be
opposite. This property is induced by the fact that one segment cannot contain
twice a same crack with two orientations. Equation 3 states that the first move
of the o; successor of a dart d cannot be the opposite of the last move of d.
Otherwise, the dart d would be an empty self loop of G; which is refused by
hypothesis.

Given a dart d; in G, let us consider a sub-sequence dj dq of o (dy1) such
that dy # a;(d1). Let us also consider the sequence S of oriented cracks defined
as the concatenation of the segments associated to d;d,;. The orientation of
the sequence d;. d, is then defined as the overall number of clockwise turns
between the successive cracks along S. In order to measure such an orientation
we define the angle between two successive oriented cracks as :

+1 if the two oriented cracks define a clockwise 90° turns,

— -1 if the two oriented crack define a counter-clockwise 90° turns,

— 0 if the two oriented crack correspond to a same move,

— undefined if the two oriented cracks correspond to opposite moves.

Such angles may be easily encoded using a basic 4 x 4 array indexed by the
Freeman’s codes of the moves: right,up, left and down are numbered from 0 to
3. The angle between two moves m1 and m?2 is denoted by (m1,m2)" We have
for example, (right,right)” = 0, (right,up)” = —1,(right,down)” = +1 and
(right,left)”= undefined.

Given the angle between two successive oriented cracks we define the orien-
tation of a dart as the sum of the angles between the oriented cracks along its
associated segment. Given a dart d in G; the orientation of d is thus defined by:

or(@) = 3 (move(ds), movel(dz 1)) (4)

where d; ...d, is the the sequence of initial darts encoding the segment
associated to d. Note that (move(d;), move(d;y1)” cannot be undefined for any
j€{1,...,n— 1} (equation 2).

The orientation of a dart may be computed on demand using equation 4
or may be attached to each dart and updated during the construction of the
pyramid. Indeed, let us consider two successive double darts d; and ds at one
level of the pyramid. If d; survives at the above level its orientation may be
updated by [1]:

or(dy) = or(dy) + or(d2) + (Lm(d:1), Fm(dy))™ (5)

Note that this last formula may be extended to the removal of a sequence of
successive double edge.

The dart’s orientation may thus be computed by fixing the orientation of all
initial darts to 0 and updating the dart’s orientation using equation 5 during
the removal of each double edge kernel.

Let us consider a sequence dj . ..d, in G; such that d;; = 0;(d;) for all j in
{1,...,p— 1} and d; # a;(dy). Its orientation is defined by:

or(dy ...dy) = qz_:or(dj) + (Lm(d;), Fm(dj;1))" | + or(dy) (6)

The quantity (Lm(dy), F'm(d1))” has to be added to or(d; ... d,) if the sequence
defines a closed boundary. Note that (Lm(d;), Fm(d;y1))” cannot be undefined
for any j € {1,...,q — 1} (equation 3). Moreover, one can show that if the
sequence defines a closed boundary and if Lm(d,) = Fm(d;)™", then we should
have a;(dy) = d1, which is refused by hypothesis.

Using the same notations and hypothesis than equation 6, one important
result shown by Braquelaire and Domenger [1] states that the orientation of a
sequence d; ...,d, defining a closed boundary is equal to 4 if it is traversed
clockwise and —4 otherwise. Moreover, this sequence corresponds to:

— a finite face of G; _and thus a region if its orientation is equal to —4,
— a set of faces of G; connected by bridges and included in one face if the
orientation is equal to 4. Such a set of faces is called an infinite face [1].

By construction each combinatorial map G; of a combinatorial pyramid is
connected and all faces of GG; but one define a finite face. The infinite face of
a combinatorial map encodes the background of the image (denoted by E in
Fig. 2). The above property is used in Section 4 to compute inside and outside
adjacency relationships with local calculus.

4 Computing inside relationships

As in the dual graph pyramid framework, the inclusion relationships are encoded
within the combinatorial pyramid framework by self-loops: One vertex v adjacent
to a vertex w and surrounded by one loop of w encodes a region included in the
region associated to w.

This property is illustrated in Fig. 2 where the image is partitioned into 4
regions. The region encoded by the vertex A includes the two regions B and C
and is adjacent to the region D. The vertex E encodes the background of the
image. These inclusion relationships are encoded in the combinatorial map G by
the loop (1, —1) which surrounds vertex B and the two nested loops (1, —1) and
(3,—3) which surround vertex C. Note that each loop corresponds to a bridge
in G (Fig. 2(b)).

Let us denote the combinatorial map represented in Fig. 2 by G = (D, 0,).
The o cycle of vertex A is equal to o*(1) = (1,2,3,4,-3,5,—1,6,7,8). If we
suppose that the loop (1, —1) does not surround the vertices B and C' incident
to the edges a*(2, 3,4, —3,5) but the vertices D and E incident to a*(6,7,8) we
obtain the same o orbit o*(1). This last remark shows that inside relationships
cannot be decided locally without additional information. Note that this problem
is not specific to the combinatorial pyramid framework. Indeed the same example
may be built within the dual graph pyramid framework leading to the same
drawback.

Let us consider a combinatorial map G; = (D, o0;,«;) defined at the level
i of a combinatorial pyramid and one loop a}(d) of G; such that o}(d) =
(d,da,...,dr—1,0:i(d),dgy1,--.,dp). Let us additionally consider the two se-
quences of darts C; = (da...,dk—1) and Cy = (dg41,...,dp) such that ¢} (d) =
(d,C1,ai(d), C3). The loop o (d) surrounds either the vertices incident to af (Cy)
or o (C2). In order to differentiate these two configurations we say that d is
the starting dart of the loop in the former case and the ending dart in the
later one. Note that since o (d) defines a bridge in G; both C; and Cs define
closed boundaries. Moreover, since G; does not contain redundant edges, we
have dy # a;(dr—1) and dg+1 # ai(dp). Using equation 6, we obtain after some
calculus:

or(o; (d)) = or(C1) + or(C2) — 4 = or(C1) = —or(Ca) (7

where or(o} (d)) denotes the orientation of the whole sequence of darts (d, ds, . .., dp).
Since this sequence defines a counter clockwise traversal of the face its orientation
is equal to —4 (Section 3).

Fig. 2. One partition composed of 4 regions with two included ones

1 1list starting dart(combi map G;, dart di) {

2 list L=0

3 stack P

4 for each dart di in o] (d) = (di,...,dp){

5 if(dy is a loop) {

6 if (P is empty or a;(dr) is not on the top of the stack P)
7 push di and ory in P

8 else {// «i(dr) on top of the stack P

9 let C: be the sequence of darts between a;(di) and dg
10 computes or(C1) using equation 8

11 if(or(C’l) ==4) L:LU{al(dk)} else L:LU{dk}

12 }

13 }

14 return L

15 }

Algorithm 1: Determination of the starting darts of the loops

Equation 7 may be interpreted as follows: The loop o} (d) corresponds to a
bridge in G; the removal of which splits the combinatorial map into two con-
nected components. The component encoding the including face is traversed
counter-clockwise and have thus an orientation equals to —4. On the other hand
the remaining component corresponds to the included regions and has an op-
posed orientation equals to 4. Therefore, given the orientations of C; and C5, d
is the starting dart of the loop if the orientation of C; is equal to 4. Otherwise
a;(d) is the starting dart of the loop and d the ending one.

This last result is the basis of Algorithm 1 which traverses the o; cycle of a
given vertex o} (d1) = (d1,-..,d,) and computes at each step the orientation of
the sequence d; ..., dy denoted by ory(equation 6).

Let us consider a dart dj, in 0*(d;) such that a}(dy) corresponds to a loop
and «;(di) = d; has been previously encountered (j < k). Then since the loops
are nested d; should be on the top of the stack. Using equation 6, if we denote
by C: the sequence of darts between d; and dj, its orientation may be retrieved
from ory, and or; by the following formula:

or(C1) = org — orj — (Lm(d;), Fm(dj+1))"+ (Lm(dg-1), Fm(dj11))” (8)

The darts dj,dj+1 and dp—1 may be retrieved from the current dart dy by: d; =
ai(dg) ; djy1 = 0i(d;) and dg_1 = o; '(dg). Given equation 8, the algorithm
determines from the sign of or(C1) the starting dart of the loop between d; and
dy, (line 11). This starting dart is added to a list returned by the algorithm. Note
that equation 8 is evaluated in constant time since ory, is the current orientation
and or; is retrieved from the stack.

Given the list of starting darts determined by Algorithm 1, the set of ver-
tices included in o} (dy) is retrieved by traversing, the sequence o} (di) from

]

_

Fig. 3. Extraction of symbols within roadsigns using inside/outside information.

each starting dart to the corresponding ending one. By construction all darts
encountered between the starting and ending darts of the loop encode adjacency
relationships to included vertices. Note that in case of nested loops some loops
may be traversed several times. Given a starting dart d, this last drawback may
be avoided by replacing any encountered starting dart by its a; successor during
the traversal from d to a;(d).

Our algorithm, is thus local to each vertex and the method may be applied in
parallel to all the vertices of the combinatorial map G;. Given a vertex o} (d1), the
determination of its starting darts requires to traverse once o} (d;). Moreover, the
determination of the inside relationships from the list of starting darts requires to
traverse each dart of o*(d;) at most once. The worse complexity of our algorithm
is thus equal to O(2|c7 (d1)])-

Fig. 3 illustrates one application of the inside/outside information to image
analysis. The roadsign represented in Fig. 3(a) are composed of only two col-
ors with one symbol inside a uniform background, the background itself being
surrounded by one border with a same color than the symbol. In our example,
the two roadsigns have a uniform blue background which includes one symbol
representing a white arrow. The blue background is surrounded by a white bor-
der. In this application we wish to extract the sign of the roadsign using only
topological and color information (and thus independently of the shapes of the
symbol and the roadsign). Using only adjacency and color information, the sym-
bol cannot be distinguished from the border of the roadsign since the border
and the symbol have a same color and are both adjacent to the background of
the roadsign (Fig. 3(d)). However, using inside/outside information, the sym-
bol and the border may be distinguished since the background of the roadsign
is adjacent to the border but includes the symbol. Our algorithm first builds
a combinatorial pyramid using a hierarchical watershed algorithm [5]. Fig. 3(b)
represents the top level of the hierarchies obtained from the two roadsigns. Using
the top level combinatorial map of each pyramid our algorithm selects the k most
blueish regions of the partition (k is fixed to five in our experiment). This last

step defines a set of canditate regions for the background of the roadsign. This
background is then determined as the region whose included regions have the
closest mean color from the color’s symbol (equal to white in this experiment).
Note that this step removes from the k selected candidates any regions which
do not include another region. We thus explicit the a priori knowledge that the
background of the roadsign should includes at least one region. The symbol is
then determined as the set of regions included in the selected region (Fig. 3(c)).
The symbol of the roadsign may thus be over segmented or composed of several
disconnected regions. Finally, let us note that the includes information needs to
be computed only on the k selected candidates for the roadsign’s background.
Within this experiment a global algorithm computing the includes information
for all vertices would require useless calculus.

5 Conclusion

The method presented in this paper allows to get the set of regions inside in a
given one. This method uses the orientation of the plane explicitly encoded by
combinatorial maps and is particularly suited for algorithms using occasionally
the inside information. Its worse complexity is equal to twice the number of edges
incident to the vertex for which the inclusion relationships are computed. In our
future work we plan to design a more global algorithm getting the inclusion
information for all vertices.

References

1. J. P Braquelaire and J.P Domenger. Geometrical, topological, and hierarchical
structuring of overlapping 2-d discrete objects. Computers & Graphics, 21(5):587—
597, September 1997.

2. Luc Brun. Traitement d’images couleur et pyramides combinatoires. Habilitation a
diriger des recherches, Université de Reims, 2002.

3. Luc Brun and Walter Kropatsch. Combinatorial pyramids. In Suvisoft, editor,
IEEE International conference on Image Processing (ICIP), volume II, pages 33—
37, Barcelona, September 2003. IEEE.

4. Luc Brun and Walter Kropatsch. Receptive fields within the combinatorial pyramid
framework. Graphical Models, 65:23-42, 2003.

5. Luc Brun, Myriam Mokhtari, and Fernand Meyer. Hierarchical watersheds within
the combinatorial pyramid framework. In Proc. of DGCI 2005. IAPR-TC18, LNCS,
2005. to be published.

6. Walter G. Kropatsch. Building Irregular Pyramids by Dual Graph Contraction.
IEE-Proc. Vision, Image and Signal Processing, Vol. 142(No. 6):pp. 366—374, De-
cember 1995.

7. P. Meer. Stochastic image pyramids. Computer Vision Graphics Image Processing,
45:269-294, 1989.

8. Annick Montanvert, Peter Meer, and Azriel Rosenfeld. Hierarchical image analysis
using irregular tessellations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(4):307-316, APRIL 1991.

