Skip to main content

Towards Unitary Representations for Graph Matching

  • Conference paper
  • 787 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3434))

Abstract

In this paper we explore how a spectral technique suggested by quantum walks can be used to distinguish non-isomorphic cospectral graphs. Reviewing ideas from the field of quantum computing we recall the definition of the unitary matrices inducing quantum walks. We show how the spectra of these matrices are related to the spectra of the transition matrices of classical walks. Despite this relationship the behaviour of quantum walks is vastly different from classical walks. We show how this leads us to define a new matrix whose spectrum can be used to distinguish between graphs that are otherwise indistinguishable by standard spectral methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lovász, L.: Random Walks on Graphs: A Survey. In: Combinatorics, Paul Erdös is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society, Budapest (1996)

    Google Scholar 

  2. Sinclair, A.: Algorithms for random generation and counting: a Markov chain approach. Birkhauser, Boston (1993)

    MATH  Google Scholar 

  3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  4. Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. International Journal of Pattern Recognition and Artificial Intelligence 18, 315–327 (2004)

    Article  Google Scholar 

  5. Robles-Kelly, A., Hancock, E.R.: Edit distance from graph spectra. In: Proc. of the IEEE International Conference on Computer Vision, pp. 234–241 (2003)

    Google Scholar 

  6. Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: IEEE 17th International Conference on Pattern Recognition (2004)

    Google Scholar 

  7. Cameron, P.J.: Strongly regular graphs. In: Topics in Algebraic Graph Theory, pp. 203–221. Cambridge University Press, Cambridge (2004)

    Chapter  Google Scholar 

  8. Schwenk, A.J.: Almost all trees are cospectral. In: Harary, F. (ed.) New Directions in the Theory of Graphs, pp. 275–307. Academic Press, London (1973)

    Google Scholar 

  9. Merris, R.: Almost all trees are coimmanantal. Linear Algebra and its Applications 150, 61–66 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kempe, J.: Quantum random walks – an introductory overview. Contemporary Physics 44, 307–327 (2003)

    Article  Google Scholar 

  11. Ambainis, A.: Quantum walks and their algorithmic applications. International Journal of Quantum Information 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  12. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67 (2003)

    Google Scholar 

  13. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Information Processing 1, 35 (2002)

    Article  MathSciNet  Google Scholar 

  14. Kempe, J.: Quantum random walks hit exponentially faster. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 354–369. Springer, Heidelberg (2003)

    Google Scholar 

  15. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proc. of 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2004 (2004)

    Google Scholar 

  16. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proc. 33th STOC, pp. 50–59. ACM Press, New York (2001)

    Google Scholar 

  17. Rudolph, T.: Constructing physically intuitive graph invariants (2002)

    Google Scholar 

  18. Severini, S.: On the digraph of a unitary matrix. SIAM Journal on Matrix Analysis and Applications 25, 295–300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Spence, E.: Strongly Regular Graphs (2004), http://www.maths.gla.ac.uk/es/srgraphs.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emms, D., Severini, S., Wilson, R.C., Hancock, E.R. (2005). Towards Unitary Representations for Graph Matching. In: Brun, L., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2005. Lecture Notes in Computer Science, vol 3434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31988-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31988-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25270-2

  • Online ISBN: 978-3-540-31988-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics