Skip to main content

Tarpeian Bloat Control and Generalization Accuracy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3447))

Abstract

In this paper we focus on machine-learning issues solved with Genetic Programming (GP). Excessive code growth or bloat often happens in GP, greatly slowing down the evolution process. In Pol03, Poli proposed the Tarpeian Control method to reduce bloat, but possible side-effects of this method on the generalization accuracy of GP hypotheses remained to be tested. In particular, since Tarpeian Control puts a brake on code growth, it could behave as a kind of Occam’s razor, promoting shorter hypotheses more able to extend their knowledge to cases apart from any learning steps.

To answer this question, we experiment Tarpeian Control with symbolic regression. The results are contrasted, showing that it can either increase or reduce the generalization power of GP hypotheses, depending on the problem at hand. Experiments also confirm the decrease in size of programs. We conclude that Tarpeian Control might be useful if carefully tuned to the problem at hand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. Genetic Programming and Evolvable Machines 3(1), 81–91 (2002)

    Article  MATH  Google Scholar 

  2. Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P.L., Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A. (eds.): GECCO 2004. LNCS, vol. 3103. Springer, Heidelberg (2004)

    Google Scholar 

  3. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: [RSK + 03] pp. 71–83, Essex (2003)

    Google Scholar 

  4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  5. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, 2002, pp. 829–836. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  6. Luke, S.: Issues in Scaling Genetic Programming: Breeding Strategies, Tree Generation, and Code Bloat. PhD thesis, Department of Computer Science, University of Maryland, A. V. Williams Building, University of Maryland, College Park, MD 20742 USA (2000)

    Google Scholar 

  7. Luke, S.: Ecj 10: An evolutionnary computation research system in java (2003)

    Google Scholar 

  8. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  9. Panait, L., Luke, S.: Alternative bloat control methods. In : [DPB +  04] pp. 630–641 (2004)

    Google Scholar 

  10. Poli, R.: General schema theory for genetic programming with subtree-swapping crossover. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 143–159. Springer, Heidelberg (2001), http://link.springer-ny.com/link/service/series/0558/papers/2038/20380143.pdf

    Chapter  Google Scholar 

  11. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: [RSK + 03] pp. 200–210 (2003)

    Google Scholar 

  12. Ryan, C., Soule, T., Keikzer, M., Tsang, E., Poli, R., Costa, E.: 6th European Conference, EuroGP. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Streeter, M., Becker, L.A.: Automated discovery of numerical approximation formulae via genetic programming. In: [SGW + 01], pp. 147–154 (2001)

    Google Scholar 

  14. Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.): Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, Jul 7-11, 2001. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  15. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: [SGW + 01] pp. 155–162 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahler, S., Robilliard, D., Fonlupt, C. (2005). Tarpeian Bloat Control and Generalization Accuracy. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds) Genetic Programming. EuroGP 2005. Lecture Notes in Computer Science, vol 3447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31989-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31989-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25436-2

  • Online ISBN: 978-3-540-31989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics