
Evolution of Vertex and Pixel Shaders

Marc Ebner, Markus Reinhardt and Jürgen Albert

Universität Würzburg, Lehrstuhl für Informatik II
Am Hubland, 97074 Würzburg, Germany
ebner@informatik.uni-wuerzburg.de

http://www2.informatik.uni-wuerzburg.de/staff/ebner/welcome.html

Abstract. In real-time rendering, objects are represented using poly-
gons or triangles. Triangles are easy to render and graphics hardware is
highly optimized for rendering of triangles. Initially, the shading com-
putations were carried out by dedicated hardwired algorithms for each
vertex and then interpolated by the rasterizer. Todays graphics hard-
ware contains vertex and pixel shaders which can be reprogrammed by
the user. Vertex and pixel shaders allow almost arbitrary computations
per vertex respectively per pixel. We have developed a system to evolve
such programs. The system runs on a variety of graphics hardware due
to the use of NVIDIA’s high level Cg shader language. Fitness of the
shaders is determined by user interaction. Both fixed length and vari-
able length genomes are supported. The system is highly customizable.
Each individual consists of a series of meta commands. The resulting Cg
program is translated into the low level commands which are required
for the particular graphics hardware.

1 Motivation

In computer graphics three dimensional objects are usually represented using
polygons. Polygons in turn can be broken down to triangles. A triangle is to
computer graphics what the atom is to chemistry. Even curved objects such
as spheres or cylinders are approximated with triangles. The surface neverthe-
less appears round due to special shading techniques. The advantage of using
triangles is that the graphics pipeline can be highly optimized. A triangle con-
sists of three vertices. Each vertex is assigned a number of attributes such as
color, reflectance properties or a normal vector. Initially, graphics libraries used
fixed algorithms to compute the color of a vertex using the assigned reflectance
properties of the material it is supposed to represent [1, 6, 24]. After the color
of the vertex is calculated, the polygon or triangle is filled by interpolating the
colors computed for the vertices. This method is called Gouraud shading. In
todays graphic hardware these shading algorithms are no longer fixed, they can
be reprogrammed by the user. This is done using pixel and vertex shaders [3,
10]. A vertex shader is a small program which computes or modifies attributes
such as position, normal vector, or reflectance properties. These attributes are
interpolated to obtain the data for each pixel. A pixel shader is used to compute
the color of each pixel from these attributes. Both, vertex and pixel shaders are

programs which can be evolved. Use of genetic programming [2, 7, 8] to evolve
shaders was originally suggested by Kenton Musgrave [12].

We have developed a system which allows us to evolve pixel and vertex
shaders by user interaction [17]. The system starts off with a number of randomly
created pixel shaders and a fixed vertex shader or vice versa. The pixel and
vertex shaders are applied to an object which is shown to the user. The user can
then judge how good the pixel respectively vertex shader is and set its fitness
value. Genetic operators are applied and new shaders are created. Again the
shaders are presented to the user which has to rate the quality of the shaders.
This process can continue for as long as the user wants. In the following we will
first summarize some background material on vertex and pixel shaders. Then we
describe our system and the experiments we have made.

2 Vertex and Pixel Shaders

Vertex and pixel shaders can be reprogrammed using a custom assembly lan-
guage. A vertex shader receives its input, the attributes of a vertex, through
a fixed number of registers. This input is read-only. A vertex shader processes
four dimensional data. Each register contains four floating point numbers which
map naturally to the three color bands red, green, and blue. The fourth compo-
nent describes how transparent the object is. A set of output registers is used
to store the modified attributes. Another set of registers can be used during the
computation. A small amount of memory can also be accessed read-only.

A vertex shader program consists of a sequence of commands. Originally, a
vertex shader could contain a maximum of 128 commands. The set of commands
included standard arithmetic operators such as addition, subtraction, multipli-
cation and computation of the scalar product between two vectors. Apart from
the standard operators, some commands also addressed the special needs in com-
puter graphics such as the computation of coefficients for ambient, diffuse and
specular lighting or the computation of coefficients for light attenuation. Orig-
inally, there were no explicit flow control statements such as if, for, while or
goto. However, it was possible to implement if-then-else operations within the
simple instruction set given. Subsequently vertex shader instructions now also
contain flow-control instructions to jump forward, loop a fixed number of times,
and call subroutines [1].

A pixel shader is used to compute the color of every pixel of a fragment. It
receives the interpolated components such as diffuse and specular light which
was computed by the vertex shader as input. The vertex shader also has access
to multiple textures and can combine the diffuse and specular components with
this texture data. The registers of a pixel shader contain four values where the
red, green, blue and alpha components of a color are stored. There are also
a number of registers where temporary data may be stored and some address
registers through which texture data can be accessed. Like the vertex shader,
a pixel shader is a small program. The difference is that the commands of the
pixel shader are tailored for texture access. It consists of two set of commands,

arithmetic operations and operations for texture addressing. No explicit flow
control statements are included. Using a pixel shader it is also possible to change
the depth of a pixel or even end further processing of a patch.

3 Evolution of Vertex and Pixel Shaders

Both vertex and pixel shaders are basically short sequences of commands which
can be evolved. Evolution of shaders was originally proposed by Kenton Mus-
grave [12]. Loviscach and Meyer-Spradow [9, 11] evolved vertex and pixel shaders
using a one-to-one fixed length representation between the genotype and the
assembly language of the hardware. In contrast to the system by Loviscach
and Meyer-Spradow, we evolve shaders using NVIDIA’s high level Cg shader
language. This allows us to define arbitrary computer architectures for which
shaders may be evolved.

We have used linear genetic programming [13, 14] to evolve vertex and pixel
shaders. Each individual consists of a sequence of numbers from the range
[0, 255]. We work with both fixed and variable length individuals. The infor-
mation stored in an individual is mapped into a program as shown in Figure
1. A reading head moves along the individual and parses byte after byte. The
first number is treated as an opcode of a command. Depending on the type of
command we either need none, one, two or more arguments. If no arguments
are needed then we proceed with the next byte and map this value into another
command. Otherwise we fetch the required number of arguments from the in-
dividual and map these bytes to the corresponding variables. We then proceed
with the next byte. In order to perform the mapping from bytes to commands
respectively variables, we have defined two tables. One table lists the set of com-
mands, the other lists the set of variables. A modulo operation is used in both
cases to map any value from the range [0, 255] to a valid command respectively
to a valid variable.

We do not use a particular graphics hardware as our target. Instead, we have
chosen to use NVIDIA’s Cg Toolkit [15] to perform the final mapping to the
graphics hardware. This allows us to produce vertex and pixel shaders for all
current and hopefully all future hardware. When mapping individuals to vertex
or pixel shaders we create an output in the Cg language. The Cg language is a
high level language similar to C. A vertex or pixel shader is constructed by first
defining a wrapper. This wrapper is the same for all individuals. The wrapper
consists of a header and a footer. A shader is created by taking the header,
appending the commands as specified by the genotype, and finally appending
the footer.

Our system is extremely versatile in that we can define arbitrary computer
architectures using the table of commands and the table of variables. These
tables are not stored internally but can be modified by the user. By modifying
the tables we can vary the basic architecture of the programs to be evolved.
We can define architectures with either a one-address instruction, a two-address
instruction or even stack based architectures. It is also possible to create new

2S (ARG ,ARG ,ARG)1 2 3

49 4E 44E3C056 75 6C32 41BC 5A 9F

Reading Head

L

List of Arguments

Modulo n

75

List of Commands

Name

Addition

Subtraction

Assignment

1

2

n

Name

1

2

m

Position

Normal Vector

Variable

Statements

n

1 2 31S (ARG ,ARG ,ARG)

1 2

normal

Cg Name

var1

#

#
position

S (ARG ,ARG)

2A

1

var2=var1;

var1=position+normal;

Writing Head

Cg Program

Parser

Individual

Fig. 1. An individual is mapped to a Cg program by moving a reading head along the
bytes stored in the genotype. After reading the first byte we look up the corresponding
set of statements and the number of required arguments in the list of arguments.
The byte is fed through a modulo operation to access the table. Then the arguments
are looked up in the second table. For each argument we parse another byte from
the individual. After all arguments are available we append the statements to the Cg
program. This process continues until all bytes of the individual have been parsed or
we run out of bytes.

meta commands which are not part of the original language. Each entry of
the command table can contain an arbitrary sequence of statements of the Cg
language. The required arguments are accessed through escape sequences. When
parsing the individual these escape sequences are mapped to the corresponding
variables.

Currently, we use perceptual selection [20, 21] to evaluate the individuals. We
work with small population sizes. All individuals are presented to the user for
evaluation. The vertex respectively pixel shaders are applied to a three dimen-
sional object for viewing. If the user likes what he sees, he sets the fitness of these

Parent Population Offspring

Fig. 2. A population of 12 individuals is shown on the left. The user manually sets the
fitness of any individuals he likes. On the right we see the offspring population created
from the three parent individuals.

individuals to a high value. Figure 2 shows one step of the evolutionary algo-
rithm. On the left, we see a 4×3 matrix of individuals. The color bar below each
individual is used to specify the fitness of an individual. Similar methods of inter-
active evaluation were used by Dawkins [4] when evolving his classic Biomorphs.
Perceptual selection is also frequently used in evolutionary art systems [5, 18, 19,
22, 25]. Rowbottom gives a review of many of these systems [19].

When the user has finished evaluating the individuals (not all individu-
als have to be evaluated), the next generation of individuals is created. Both
crossover and mutation operators are used. First we decide if a crossover is
applied at all using a single crossover probability. Then we chose the actual
crossover operator (one point or two point crossover) with uniform probability.
After the two offspring are created, the individuals are mutated. The mutation
probability is specified per byte. The type of mutation actually used is selected
with uniform probability. Two types of mutation operations were defined for
fixed length individuals: flip mutation and swap mutation. Flip mutation re-
places one byte with a new value. Swap mutation swaps one byte with another
byte of the same string. For variable length individuals, two additional mutation
operators were used: insert and delete. The insert mutation operator inserts a
new byte. The delete mutation operator deletes a byte from the individual.

When implementing evolutionary algorithms we usually want that parent
and offspring are closely related. However our opcodes or meta commands re-
quire a variable number of arguments. If a single mutation were to change an
opcode which requires a single argument to an opcode with a different number
of arguments then this would have a large effect on the resulting Cg code. The
entire code following the locus where the mutation occurs would be changed.
Arguments would be interpreted as opcodes and vice versa. What we probably
want is that a single mutation is able to either change the opcode or the argu-
ment into some other opcode or argument. Therefore we implemented a second
parsing mode. Let k be the maximum number of arguments over all commands.

In this case, we fetch k + 1 bytes (one byte for the opcode and k bytes for the
arguments) from the individual. The two parsing modes are shown in Figure
3. Since we do not know which method of parsing the individuals leads to bet-
ter results, we have implemented both methods. Again, the choice on how the
individuals are evaluated, is left to the user.

49 4E 4456 41BC 9F2AIndividual
1 L

Argument 1 (Destination)

Argument 2 (Source)

5A6C

2A 49 56

C0 32 E3 75

Cmd1 Cmd2 Cmd3 Cmd5Cmd4 Ignored

Command

Op−Code (only arguments 1&2 are used)

arguments
only two

are fetched

49 4E 4456 41BC 9F2A

Command1 Command2 Command3 Ignored

Individual
1 L

Argument 1 (Destination)

Argument 2 (Source)

Argument 3 (Source)

Command

5A6CE3 75C0 32

2A 49 56 C0

Op−Code (only Arguments 1&2 are used)
(B)

(A)

Fig. 3. Each individual consists of a sequence of commands. The commands themselves
can either be considered to have variable length (A) or a fixed length (B). Using a
fixed length for commands has the advantage that opcodes and arguments are always
registered. Therefore, it is possible to change a single argument of an individual using
a point mutation. A crossover exchanges opcodes with opcodes and arguments with
arguments. This is not the case for (A). If variable length commands are used a single
point mutation may have a large effect on the resulting Cg code.

4 Experiments

Figure 4 shows a collection of evolved vertex shaders. Each row shows the results
for a single shader applied to four different shapes: a plane, a sphere, a torus and

Table 1. List of commands.

Operator Operands Result

Nop 0 No operation
Swap 0 Exchange registers 1 and 2
Noise 0 Noise function applied to register 1
Sin 0 Sine function applied to register 1
Normalize 0 Normalize register 1
Add 1 Add operand to register 1
Subtract 1 Add operand to register 1
Multiply 1 Multiply operand with register 1
Divide 1 Divide register 1 by operand, if operand is non-zero

Table 2. List of arguments.

Argument

Register 1
Register 2
Red vector
Green vector
Blue vector
Position of vertex
Normal vector
Eye vector
Light vector
Half vector between light and eye vector
Diffuse lighting (dot product between normal and light vectors)
Specular lighting (dot product between normal vector and half vector)
Diffuse and specular lighting
Eye to vertex vector
Animator (changing float value)

the Stanford bunny. The shaders were evolved during two runs lasting 130 and
185 generations. Both runs used a two register machine model. The contents of
the two registers can be exchanged using a swap operation. Instructions include
addition, subtraction, multiplication, protected division, and a sine function. A
normalize function and the popular noise function [16] was also included. The set
of meta commands is shown in Table 1. The list of arguments is shown in Table 2.
Arguments include the two registers, three color vectors red, green and blue, the
current position of the vertex, normal vector, eye vector, light vector as well as
some pre-calculated values such as the half vector, diffuse and specular lighting.
An animator (a float value which changes periodically) is also included. The
animator can be used to create animated shaders. Output of register 1 is used as
the color of the vertex. We have used a population size of 12. All shaders shown
in Figure 4 were evolved using fixed length individuals of length 20. Mutation
probability was set to 1

20
which resulted in one mutation per offspring. Crossover

probability was set to 0.9. Roulette wheel selection was used to select offspring
for breeding.

Although we were able to evolve some nice shaders we also noticed some
limitations with the current approach. It is hard to evolve towards a particular
target. For instance, it would be nice to be able to select two individuals and
then obtain offspring which contain traits from both parents. If two individuals
are selected, offspring may have interesting traits but may not have the intended
look to them. I.e., if one selects a textured individual and another individual with
a different color then the next generation will contain all types of individuals
but not necessarily an individual with both the texture of one parent and the
color of the second parent. This may be caused by a number of factors. First
of all we are working with very small population sizes because fitness has to be
determined by the user. Another cause may be the use of linear individuals. It
may be that a tree based genetic representation is more amenable to evolution
in this case. Rowbottom [19] noted that most evolutionary art systems have
a certain signature to them. This also seems to be the case here. The evolved
individuals seem to be largely a function of the type of commands and arguments
used.

5 Conclusion

Vertex and pixel shaders are an exciting concept of computer graphics. We have
developed a system to evolve vertex and pixel shaders via user interaction. In-
dividuals are interpreted as linear sequences of commands which are translated
into a high level computer graphics language. Individuals are applied to four
different objects and presented to the user who then decides which individuals
get to produce offspring.

Our system is highly customizable. With this system it is possible to define
virtual intermediate architectures. At present, it is not known which architecture
is best suited to evolve vertex and pixel shaders. Our initial experiments focused
on the evolution of linear programs. It would be interesting to see how tree based
genetic programming compares to linear genetic programming for the evolution
of vertex and pixel shaders.

Another possible extension would be the automatic evolution of shaders for
animated effects. One could take a short sequence of a movie taken with a
digital camera and then evolve shaders which mimic the effect seen in the video.
Other than evolving vertex and pixel shaders for computer graphics the concept
may also be of interest to other researches who want to speed up their genetic
programming experiments. It may be possible to use vertex or pixel shaders in
other areas such as evolution of classifiers.

6 Acknowledgments

Our system uses the GAlib genetic package version 2.4, written by Matthew
Wall at the Massachusetts Institute of Technology [23].

Fig. 4. A collection of evolved vertex shaders. Each row shows the results for a single
vertex shader. A vertex shader is applied to four different objects: a plane, a sphere, a
torus and the Stanford bunny.

References

1. T. Akenine-Möller and E. Haines. Real-Time Rendering. A K Peters, Natick, MA,
2nd ed., 2002.

2. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming

- An Introduction: On The Automatic Evolution of Computer Programs and Its

Applications. Morgan Kaufmann Publishers, San Francisco, CA, 1998.
3. NVIDIA Corporation. Nvidia nfinitefx engine: Programmable vertex shaders.
4. R. Dawkins. The Blind Watchmaker. W. W. Norton & Company, New York, 1996.
5. A. E. Eiben, R. Nabuurs, and I. Booij. The Escher evolver: Evolution to the

people. In P. J. Bentley and D. W. Corne, eds., Creative Evolutionary Systems,
pp. 425–439. Morgan Kaufmann Publishers, 2001.

6. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Prin-

ciples and Practice. 2nd Ed. in C. Addison-Wesley Publishing Company, Reading,
MA, 1996.

7. J. R. Koza. Genetic Programming. On the Programming of Computers by Means

of Natural Selection. The MIT Press, Cambridge, MA, 1992.
8. J. R. Koza. Genetic Programming II. Automatic Discovery of Reusable Programs.

The MIT Press, Cambridge, MA, 1994.
9. J. Loviscach and J. Meyer-Spradow. Genetic programming of vertex shaders. In

Proc. of EuroMedia 2003, pp. 29–31, 2003.
10. C. Maughan and M. Wloka. Vertex shader introduction. Technical report, NVIDIA

Corporation, 2001.
11. J. Meyer-Spradow and J. Loviscach. Evolutionary design of BRDFs. In M. Chover,

H. Hagen, and D. Tost, eds., Eurographics 2003 Short Paper Proceedings, pp. 301–
306, 2003.

12. F. Kenton Musgrave. Genetic textures. In D. S. Ebert, F. Kenton Musgrave, D.
Peachey, K. Perlin, and S. Worley, editors, Texturing and Modeling: A Procedural

Approach. 2nd Ed., pp. 373–385, Cambridge, 1998. AP Professional.
13. P. Nordin. A compiling genetic programming system that directly manipulates the

machine code. In K. E. Kinnear, Jr., ed., Advances in Genetic Programming, pp.
311–331, Cambridge, MA, 1994. The MIT Press.

14. P. Nordin and W. Banzhaf. An on-line method to evolve behavior and to control
a miniature robot in real time with genetic programming. Adaptive Behaviour,
5(2):107–140, 1997.

15. NVIDIA. Cg toolkit. user’s manual. a developer’s guide to programmable graphics.
Technical report, NVIDIA Corporation, Santa Clara, CA, 2002.

16. K. Perlin and E. M. Hoffert. Hypertexture. SIGGRAPH ’89 Conference Proceed-

ings, Computer Graphics, Boston, MA, 23(3):253–262, 1989.
17. M. Reinhardt. Evolution von Pixel- und Vertex-Shader Programmen. Projektprak-

tikum, Universität Würzburg, Institut für Informatik, Lehrstuhl für Informatik II,
July 2004.

18. S. Rooke. Eons of genetically evolved algorithmic images. In P. J. Bentley and
D. W. Corne, eds., Creative Evolutionary Systems, pp. 339–365. Morgan Kaufmann
Publishers, 2001.

19. A. Rowbottom. Evolutionary art and form. In P. J. Bentley, ed., Evolutionary

Design by Computers, pp. 261–277, San Francisco, 1999. Morgan Kaufmann.
20. K. Sims. Artificial evolution for computer graphics. Computer Graphics, 25(4):319–

328, 1991.
21. K. Sims. Interactive evolution of dynamical systems. In F. J. Varela and P.

Bourgine, eds., Toward a practice of autonomous systems: Proc. of the 1st Europ.

Conf. on Artificial Life, pp. 171–178, Cambridge, MA, 1992. The MIT Press.
22. S. Todd and W. Latham. The mutation and growth of art by computers. In P. J.

Bentley, ed., Evolutionary Design by Computers, pp. 221–250, San Francisco, 1999.
Morgan Kaufmann.

23. M. Wall. GAlib: A C++ Library of Genetic Algorithm Components, Version 2.4.
Mechanical Engineering Department, Massachusetts Institute of Technology, 1996.

24. A. Watt. 3D Computer Graphics. Addison-Wesley, Harlow, England, 2000.
25. M. Witbrock and S. Neil-Reilly. Evolving genetic art. In P. J. Bentley, ed., Evo-

lutionary Design by Computers, pp. 251–259, San Francisco, 1999. Morgan Kauf-
mann.

