Skip to main content

A Novel Application of Evolutionary Computing in Process Systems Engineering

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3448))

Abstract

In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algorithm with a three-objective fitness function based on cost, reliability and observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip mutation and guided generation of the initial population, both giving a special treatment to non-feasible individuals, and an adaptive genotypic convergence criterion to stop the algorithm. The algorithmic behavior was evaluated through the analysis of the mathematical model that represents an ammonia synthesis plant. Its efficacy was assessed by comparing the performance of the OA algorithm with and without MOGAI initialization. The genetic algorithm proved to be advantageous because it led to a significant reduction in the number of iterations required by the OA algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vazquez, G.E., Ferraro, S.J., Carballido, J.A., Ponzoni, I., Sánchez, M.C., Brignole, N.B.: The Software Architecture of a Decision Support System for Process Plant Instrumentation. WSEAS Transactions on Computers 4, 2, 1074–1079 (2003)

    Google Scholar 

  2. Ponzoni, I., Sánchez, M.C., Brignole, N.B.: A New Structural Algorithm for Observability Classification. Ind. Eng. Chem. Res. 38, 8, 3027–3035 (1999)

    Article  Google Scholar 

  3. Ferraro, S.J., Ponzoni, I., Sánchez, M.C., Brignole, N.B.: A Symbolic Derivation Approach for Redundancy Analysis. Ind. Eng. Chem. Res. 41, 23, 5692–5701 (2002)

    Article  Google Scholar 

  4. Osyczka, A.: Multicriterion Optimization in Engineering with FORTRAN Programs. Ellis Horwood Limited (1984)

    Google Scholar 

  5. Toscano Pulido, G.: Optimización Multiobjetivo Usando Un Micro Algoritmo Genético. Tesis de Maestría en Inteligencia Artificial, Universidad Veracruzana LANIA (2001)

    Google Scholar 

  6. Fonseca, C.M.: Multiobjective Genetic Algorithms with Application to Control Engineering Problems. PhD Thesis, Department of Automatic Control and Systems Engineering University of Sheeld (1995)

    Google Scholar 

  7. Coello Coello, C.A.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems, An International Journal 1, 3, 269–308 (1999)

    Google Scholar 

  8. Rosenberg, R.S.: Simulation of Genetic Populations with Biochemical Properties. PhD thesis, University of Michigan, Ann Harbor, Michigan (1967)

    Google Scholar 

  9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3, 2, 124–141 (1999)

    Article  Google Scholar 

  10. Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary Computation: Comments on the History and Current State. IEEE Transactions on Evolutionary Computation 1, 1, 3–17 (1997)

    Article  Google Scholar 

  11. Safe, M., Carballido, J., Ponzoni, I., Brignole, N.B.: On Stopping Criteria for Genetic Algorithms. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 405–413. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Radcliffe, N.J.: Equivalence Class Analysis of Genetic Algorithms. Complex Systems 5 (1991)

    Google Scholar 

  13. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  14. Bike, S.: Design of an Ammonia Synthesis Plant, CACHE Case Study. In: Department of Chemical Engineering, Carnegie Mellon University (1985)

    Google Scholar 

  15. Vazquez, G.E., Ponzoni, I., Sánchez, M.C., Brignole, N.B.: ModGen: A Model Generator for Instrumentation Analysis. Advances in Engineering Software 32, 37–48 (2001)

    Article  Google Scholar 

  16. Ponzoni, I., Brignole, N.B., Bandoni, J.A.: Estudio de Instrumentación para una Planta de Producción de Amoníaco empleando un Nuevo Algoritmo de Clasificación. In: AADECA 1998, vol. 1, pp. 59–64 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carballido, J.A., Ponzoni, I., Brignole, N.B. (2005). A Novel Application of Evolutionary Computing in Process Systems Engineering. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31996-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25337-2

  • Online ISBN: 978-3-540-31996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics