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Abstract. We focus on the Golomb ruler problem, a hard constrained
combinatorial optimization problem. Two alternative encodings are con-
sidered, one based on the direct representation of solutions, and one
based on the use of an auxiliary decoder. The properties of the corre-
sponding fitness landscapes are analyzed. It turns out that the landscape
for the direct encoding is highly irregular, causing drift to low-fitness re-
gions. On the contrary, the landscape for the indirect representation is
regular, and exhibits comparable fitness-distance correlation to that of
the former landscape. These findings are validated in the context of vari-
able neighborhood search.

1 Introduction

Golomb rulers are a class of undirected graphs that, unlike usual rulers, mea-
sure more discrete lengths than the number of marks they carry. This is due
to the fact that on any given ruler, all differences between pairs of marks are
unique. This feature makes Golomb rulers really interesting in many practical
applications, such as carrier frequency assignment [1], radio communication [2],
X-ray crystallography [3], pulse phase modulation [4], and design of orthogonal
codes [5, 6], among others [7–9]. Needless to say, it also introduces numerous con-
straints that hinder the search of short feasible rulers, let alone optimal Golomb
rulers (OGR, i.e., the shortest Golomb ruler for a number of marks).

To date, no efficient algorithm is known for finding the shortest Golomb ruler
for a certain number of marks: massive parallelism projects have been undertaken
for several months in order to find the optimum instances of up to 23 marks
[10]. Being such an extremely difficult combinatorial task, the Golomb ruler
problem represents an ideal scenario for deploying the arsenal of evolutionary
optimization.

In Sect. 2.2 we discuss some of the non-evolutionary techniques employed so
far to solve OGRs. With respect to evolutionary ones, to the best of our knowl-
edge, there have been four attempts to apply evolutionary algorithms (EAs)
to the search for OGRs (see Sect. 2.3). These works are essentially empirical,
and little has been so far done on the analysis of the properties of the under-
lying combinatorial landscapes. In this paper, we tackle this issue by analyzing



two major problem representations under which evolutionary search can be con-
ducted on this problem. To be precise, we consider the direct representation of
solutions, and an indirect, decoder-based representation that uses a GRASP-like
mechanism to perform the genotype-to-phenotype mapping. These landscapes
are examined in Sect. 3, paying special attention to landscape regularity, and
correlation measures. The variable neighborhood search metaheuristic is used to
corroborate the outcome of this analysis in Sect. 4.

2 Background

The OGR problem can be classified as a fixed-size subset selection problem, such
as e.g., the p−median problem [11]. It exhibits some very distinctive features
though. A brief overview of the problem, and how it has been tackled in the
literature is provided below.

2.1 Golomb Rulers

A n-mark Golomb ruler is an ordered set of n distinct non-negative integers,
called marks, a1 < ... < an, such that all the differences ai − aj (i > j) are
distinct. Clearly we may assume a1 = 0. By convention, an is the length of the
Golomb ruler. A Golomb ruler with n marks is an optimal Golomb ruler if, and
only if, (i) there exists no other n-mark Golomb rulers having smaller length, and
(ii) the ruler is canonically “smaller” with respect to the the equivalent rulers.
This means that the first differing entry is less than the corresponding entry in
the other ruler. Fig. 1 shows an OGR with 4-marks. Observe that all distances
between any two marks are different.
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Fig. 1. A Golomb ruler with 4 marks

Typically, Golomb rulers are represented by the values of the marks on the
ruler, i.e., in a n-mark Golomb ruler, ai = x (1 6 i 6 n) means that x is the
mark value in position i. The sequence (0, 1, 4, 6) would then represent the ruler



in Fig. 1. An alternative representation consists of representing the Golomb ruler
via the lengths of its segments, where the length of a segment of a ruler is defined
as the distance between two consecutive marks. Therefore, a Golomb ruler can
be represented with n − 1 marks specifying the lengths of the n − 1 segments
that compose it. In the previous example, the sequence (1, 3, 2) would encode
the ruler depicted in Fig. 1.

2.2 Finding OGRs

The OGR problem has been solved using very different techniques. The evo-
lutionary techniques found in the literature to obtain OGRs are described in
Sect. 2.3. We provide here a brief overview of some of the most popular non-
evolutionary techniques used for this problem.

Firstly, it is worth mentioning some classical algorithms used to generate
and verify OGRs such as the Scientific American algorithm [12], the Token
Passing algorithm (created by Professor Dollas at Duke University) and the
Shift algorithm [13], all of them compared and described in [8].

In general, both non-systematic and systematic methods have been applied
to find OGRs. Regarding the former, we can cite for example the use of geome-
try tools (e.g., projective plane construction and affine plane construction). With
these approaches, one can compute very good approximate values for OGR with
up to 158 marks [14]. As to systematic (exact) methods, we can mention the
utilization of branch-and-bound algorithms combined with a depth first search
strategy (i.e., backtracking algorithms), making use of upper-bounds set equal
to the minimum length in the experiments. In this sense there exist several pro-
posals: for example, Shearer [15] computed OGRs up to 16 marks. This approach
has been also followed in massive parallelism initiatives such as the OGR project
mentioned before. This project has been able to find the OGRs with a number
of marks between 20 and 23, although it took several months to find optimum
for each of those instances [8, 9, 16, 10].

Constraint programming techniques have also been used, although with lim-
ited success. For example, Smith and Walsh [17] obtained interesting results in
terms of nodes in the branching schema. However, computation times are far
from the results obtained by previous approaches. More recently, Galinier et al.
[18] proposed a combination of constraint programming and sophisticated lower
bounds for finding OGRs. They showed that using the same bound on different
ways affects not only to the number of branches in the search tree but also to
the computation time.

2.3 Evolutionary Approaches to the OGR

In this section will restrict here just to the evolutionary approaches to solve
OGRs considered so far in the literature. In essence, two main approaches can
be considered for tackling this problem. The first one is the direct approach, in
which the EA conducts the search in the space SG of all possible Golomb rulers.
The second one is the indirect approach, in which an auxiliary Saux space is



used by the EA. In this latter case, a decoder [19] must be utilized in order to
perform the Saux −→ SG mapping. Both approaches will be discussed below.

Direct Approaches. In 1995, Soliday, Homaifar and Lebby [20] used a genetic
algorithm on different instances of the Golomb ruler problem. They chosen the
alternative formulation already mentioned where each chromosome is composed
by a permutation of n−1 integers that represents the sequence of the n−1 lengths
of its segments. Two evaluation criteria were followed: the overall length of the
ruler, and the number of repeated measurements. This latter quantity was used in
order to penalize infeasible solutions. The mutation operator consisted of either
a permutation in the segment order, or a change in the segment lengths. As to
crossover, it was designed to guarantee that descendants are valid permutations.

Later, Feeney studied the effect of hybridizing genetic algorithms with local
improvement techniques to solve Golomb rulers [7]. The representation used
consisted of an array of integers corresponding to the marks of the ruler. The
crossover operator was similar to that used in Soliday et al.’s approach although
a sort procedure was added at the end. The mutation operator consisted in
adding a random amount in the range [−x, x] –where x is the maximum difference
between any pair of marks in any ruler of the initial population– to the segment
mark selected for mutation. As it will be shown later, we can use a similar
concept in order to define a distance measure on the fitness landscape.

Indirect Approaches. Pereira et al. presented in [21] a new EA approach
using the notion of random keys [22] to codify the information contained in each
chromosome. The basic idea consists of generating n random numbers (i.e., the
keys) sampled from the interval [0, 1] and ordered by its position in the sequence
1, . . . , n; then the keys are sorted in decreasing order. The indices of the keys
thus result in a feasible permutation of {1, · · · , n}. A similar evaluation criteria
as described in [20] was followed. They also presented an alternative algorithm
that adds a heuristic, favoring the insertion of small segments.

A related approach has been presented in [23]. This proposal incorporates
ideas from greedy randomized adaptive search procedures (GRASP) [24] in order
to perform the genotype-to-phenotype mapping. More precisely, the mapping
procedure proceeds by placing each of the n−1 marks (the first mark is assumed
to be a1 = 0) one at a time; the (i + 1)th mark can be obtained as ai+1 =
ai + li, where li > 1 is the i−th segment length. Feasible segment lengths (i.e.,
those not leading to duplicate measurements) can be sorted in increasing order.
Now, the EA needs only specifying at each step the index of a certain segment
within this list (obviously, the contents of the list are different in each of these
steps). This implies that each individual would be a sequence 〈r1, · · · , rn−1〉,
where ri would be the index of the segment used in the i−th iteration of the
construction algorithm. Notice that in this last placement step it does not make
sense to pick any other segment length than the smallest one. For this reason,
rn−1 = 1; hence, solutions need only specify the sequence 〈r1, · · · , rn−2〉. This
representation of solutions is orthogonal [25], i.e., any sequence represents a



feasible solution, and hence, standard operators for crossover and mutation can
be used to manipulate them. This GRASP-based approach is reported to perform
better than the previous indirect approach, and hence we use it in our further
analysis.

3 Fitness Landscapes for the Golomb Ruler Problem

The notion of fitness landscapes was firstly introduced in [26] to model the
dynamics of evolutionary adaptation in Nature. The fitness landscape analysis of
a problem can help to identify its structure in order to improve the performance
of search algorithms (e.g., to predict the behavior of a heuristic search algorithm,
or to exploit some of its specific properties). For this reason, this kind of analysis
has become a valuable tool for evolutionary-computation researchers.

In this section, we will analyze the fitness landscapes resulting from the two
problem representations described before, the direct encoding of rulers, and the
use of a GRASP-based decoder. We will assume below that n is the number
of marks for a specific Golomb ruler Gn, and that a = 〈a1, . . . , an〉 and b =
〈b1, . . . , bn〉 are arbitrary solutions from Gn. Analogously, r = 〈r1, · · · , rn−2〉
and r′ = 〈r′1, · · · , r′n−2〉 are arbitrary vectors from Nn−2, representing the vector
of indices for selecting segment lengths. We denote by ψ the bijective function
performing the genotype-to-phenotype mapping Nn−2 → Gn.

3.1 Distance Measures and Neighborhood Structure

We define a fitness landscape for the OGR as a triple 〈S, f, d〉n where S = Gn

is the set of all the n-mark Golomb rulers (i.e., the solution set), f is a fitness
function that attaches a fitness value to each of the points in S (i.e., f(a) is
equal to an, the length of a), and d : S × S → N is a function that measures
a distance between any two points in S. We have defined one distance function
for each of the Golomb ruler representations already commented. Specifically for
the direct formulation (i.e., that based on lists of marks) we have defined the
distance function d as follows:

d(a, b) = max{| bi − ai |, 1 ≤ i ≤ n} . (1)

In other words, d(a, b) returns the maximum difference between any two
corresponding marks in a and b. Also, for our indirect formulation (i.e., the
GRASP-based formulation) we have defined the distance function d as the L1
norm (the Manhattan distance) on the vector of indices, i.e.,

d(a, b) = d(ψ(r), ψ(r′)) =
n−2∑

i=1

| ri − r′i | . (2)

A first issue to be analyzed regards the neighborhood structure induced by
these distance measures. More precisely, consider the number of solutions reach-
able from a certain point in the search space, by a search algorithm capable of
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Fig. 2. Number of neighbors for different values of the local radius ε in a 12-mark
Golomb ruler problem. From top to bottom and left to right, ε = 1, 2, 3, and 4. Notice
the log-scale in the Y-axis.

making jumps of a given distance. In the direct formulation, this number of so-
lutions turns out to be variable for each point of S, as shown in Fig. 2. We have
implemented and used a logic-programming based constraint solver to solve the
Golomb ruler constraint satisfaction problem for an arbitrary number of marks.
Our solver, implemented in GNU Prolog [27], is based on the model proposed
in [28]. In particular, the solver generates a list of all possible distances between
any pair of marks i, j (i < j and i, j ∈ {1, . . . , n}) in the ruler and then imposes
a global constraint all-different on this list instead of imposing the set of bi-
nary inequalities between any two marks i, j. The efficiency is further improved
by adding some redundant constraints leading to an improvement of the domain
pruning. This solver calculates the number of possible neighbors that are located



within a given distance ε (called the local radius) of certain solution a (i.e., it ob-
tains the cardinality of the set {〈c1, . . . , cn〉 ∈ S | ai−ε ≤ ci ≤ ai+ε, 1 ≤ i ≤ n}).
The solver is then applied to a large sample of solutions covering a wide range
of fitness values.

The outcome of this experiment indicates that the connectivity of the fit-
ness landscape increases with worse fitness values. Furthermore, this effect is
stronger as we increase the neighborhood radius (see Fig. 2). This kind of irreg-
ularity is detrimental for search algorithm navigating this landscape [29], since
the neighborhood structure tends to guide the search towards low-fitness re-
gions. This means that a search algorithm on this landscape would have to be
continuously fighting against this drifting force. On the contrary, notice that the
fitness landscape of the indirect formulation is perfectly regular, since its topol-
ogy is isomorphic to Nn−2. In principle, this regularity makes this landscape
more navigable since no underlying drift effect exists.

3.2 Fitness-Distance Correlation

Fitness-distance correlation (FDC) [30] is one of the most widely used measures
for assessing the structure of the landscape. It also constitutes a very informative
measure to evaluate the problem difficulty for evolutionary algorithms [31]. FDC
allows quantifying the correlation between fitness values, and the distance to
the nearest optimum in the search space. Landscapes with a high FDC typically
exhibit a big valley structure [32] (this is not always the case though [30, 33]).

It is typically assumed that low FDC is associated with problem difficulty for
local search. Nevertheless, the interplay of this property with other landscape
features is not yet well understood. Indeed, it will be later shown how landscape
ruggedness and neighborhood irregularity can counteract high FDC values.

Focusing on the problem under consideration, the optimum value optn for
n-mark Golomb rulers is known (up to n = 24, enough for our analysis). We
can then obtain a sample of m locally-optimal solutions A = {a1, . . . , am} ⊂ S
and easily calculate the sets F = {fi | fi = f(ai), 1 ≤ i ≤ m, ai ∈ A} and
D = {di | di = d(ai, optn), 1 ≤ i ≤ m, ai ∈ A}. Then we can compute the
correlation coefficient as FDC = CFD/ (σF σD), where

CFD =
1
m

m∑

i=1

(fi − f)(di − d) (3)

is the covariance of F and D, and σF , σD, f and d are, respectively, the standard
deviations and means of F and D. Observe that this definition depends on the
definition of the distance function, and as shown in Section 3.1, we consider two
different definitions for the two problem representations.

The FDC values computed for the two representations are shown in Fig.
3. In all cases, locally optimal solutions are computed by using hill climbing
from a fixed sample of seed feasible solutions. Notice firstly the high correlation
for the direct formulation, specially for low values of the local radius ε. This
can be explained by the fact that the fitness of a solution is actually the value
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Fig. 3. Fitness distance correlation in a 12-mark Golomb ruler problem. The upper
four figures correspond to the direct formulation (from top to bottom and left to right,
ε = 1, 2, 3, and 4), and those at the bottom to the indirect formulation (ε = 1, and 2).



of the last mark, and this value will not change above the given ε within the
neighborhood. FDC starts to degrade for increasing values of this local radius.
To be precise, FDC values for ε = 1 up to ε = 4 are 0.9803, 0.9453, 0.8769, and
0.8221 respectively. In the case of the indirect formulation (ε = 1), the FDC
value is 0.8478, intermediate between ε = 3, and ε = 4. These results indicate
that the indirect formulation can attain FDC values comparable to those of the
direct formulation, but without suffering from some of the problems of the latter.
Actually, the high FDC values for the direct formulation are compensated by
two related facts, namely that there is a drift force towards low-fitness regions
as mentioned in Sect. 3.1, and that the number of local optima is higher for low
values of the local radius, specially in the high-fitness region.

4 Experimental Validation

In order to confirm our findings from the landscape analysis, we have performed
some experiments using a variable neighborhood search algorithm (VNS) [34].
This is a generalization of the conspicuous hill climbing algorithm in which dif-
ferent neighborhoods are used during the search. More precisely, a collection of
neighborhoods N1, · · · ,Nk is considered. The search starts from the first neigh-
borhood in the collection, and proceeds to the next one when no improvement
can be found. Whenever an improvement is found, the search continues from
the first neighborhood again. The underlying idea here is the fact that locally
optima solutions for one neighborhood are not necessarily locally optimal in the
next one. Hence, the algorithm can escape from such non-common local optima,
and progress further towards the global optimum. The search finishes when a
solution is found that is locally optimal for all neighborhoods.

The VNS algorithm has been deployed on the two problem representations
considered. In both cases, neighborhoods N1 up to N4 have been considered,
where Ni(x) refers to the set of solutions within distance i (in the corresponding
fitness landscape) of solution x. Neighborhoods are explored by sampling 100
solutions, and retaining the best one. If no improving solution is found, the
neighborhood is considered exhausted.

The results for n = 12 marks are shown in Table 1. VNSi indicates that
VNS is restricted to neighborhoods N1 to Ni. As it can be seen, the results
of the indirect representation are better than those of direct representation for
VNS1 and VNS2. The difference between both representations tends to decrease
for increasing radius: very similar results (no statistical difference according to
a Mann-Whitney U test) are obtained in both cases for VNS3, and the direct
representation turns out to be better for VNS4.

Two facts must be noted here. First of all, the magnitude of the radius has not
the same meaning in the different representation, and hence, the data in Table
1 should not be interpreted as paired columns. Secondly, the computational cost
(not shown in Table 1) of exploring each neighborhood is quite different (around
three orders of magnitude larger in the case of the direct representation, as
measured in a P4–3GHz 1GB PC under Windows XP). This is so, even allowing



Table 1. Results (averaged for 30 runs) of variable neighborhood search on the two
representations. As a reference, starting solutions have a mean value of 127.57± 7.64.

direct indirect indirect (exhaustive)
mean ± std.dev. median mean ± std.dev. median mean ± std.dev. median

VNS1 127.43 ± 7.73 125 114.10 ± 4.11 115 112.80 ± 3.91 113
VNS2 120.63 ± 6.09 120.5 107.43 ± 3.86 107 108.93 ± 3.71 109
VNS3 104.70 ± 5.19 105 105.83 ± 2.61 105 101.77 ± 3.03 101.5
VNS4 98.87 ± 2.49 100 105.17 ± 2.55 105 97.33 ± 1.97 97

an exhaustive exploration of the neighborhood for the indirect representation.
The results in this latter case are shown in the two rightmost columns of Table 1.
Notice the improvement with respect to the direct representation.

5 Conclusions

This work has tried to shed some light on the question of what makes a problem
hard for a certain search algorithm. We have focused on the Golomb ruler prob-
lem, an extremely interesting problem due to its simple definition yet tremendous
hardness. It is also a problem for which several representations had been tried,
but that lacked an analysis of the combinatorial properties of the associated
fitness landscapes.

Our analysis indicates that the high irregularity of the neighborhood struc-
ture for the direct formulation introduces a drift force towards low-fitness regions
of the search space. This contrasts with other problems in which the drift force
is beneficial, since it guides the search to high-fitness regions (see [29]). The
indirect formulation that we have considered does not have this drawback, and
hence would be in principle more amenable for conducting local search in it. The
fact that fitness-distance correlation is very similar in both cases also support
this hypothesis.

The empirical validation provides consistent results: a VNS algorithm using
the indirect formulation can outperform a VNS counterpart working on the direct
representation, in a low computational cost scenario. It is also very interesting to
note that these results are also consistent with the performance of evolutionary
algorithm on this problem, despite the fact that even when the representation
may be the same, they do not explore exactly the same landscape.

Future work will be directed to confirm these conclusions in the context of
other constrained problems. We will also try to identify new problems in which
the irregularity of the neighborhood structure play such a central role, and study
alternative formulations for these.
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