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Abstract. Three different methodologies have been applied to microar-
ray data from brains of Alzheimer diagnosed patients and healthy pa-
tients taken as control. A clear pattern of differential gene expression
results which can be regarded as a molecular signature of the disease.
The results show the complementarity of the different methodologies,
suggesting that a unified approach may help to uncover complex genetic
risk factors not currently discovered with a single method. We also com-
pare the set of genes in these differential patterns with those already
reported in the literature.

1 Introduction

Alzheimer’s disease affects ten percent of the population aged over 65 and that
nearly half of all individuals aged above 85 will experience its effects. Since the
first clear onset of the symptoms, a sufferer of Alzheimer’s would an average life
span of eight years and occasionally up to two decades. Since this disease is a
progressive brain disorder that affects the patient ability to learn new things, to
make judgements, and to accomplish simple daily activities, Alzheimer also has
an emotional impact on families. This is aggravated by the fact that the sufferers
may have an increasingly complex pattern of changes in personality and behavior
as well as increasing anxiety, suspiciousness, agitation and forms of delusions or
hallucinations. Memory loss is generally the first and worst symptom, but oth-
ers include difficulty performing familiar tasks, communication, temporal /spatial
disorientation, poor or decreased judgment, difficulty with task that require ab-
stract thinking, misplacing objects, and passivity and loss of initiative 3.

After a certain point, people with Alzheimer’s generally require 24-hour care.
Estimations of total cost abound but differ very little, with the average lifetime

3 http://www.alz.org/Resources/FactSheets.asp



cost of care per patient around US$200,000. Alzheimer’s is the third most ex-
pensive disease in the United States, only second to heart disease and cancer,
with the latter being a generic name for many different disease forms. According
to figures provided by the Alzheimer’s Association, the cost of 24-hours care
plus diagnosis, treatment, and paid care costs, is estimated to be US$100 bil-
lion annually. In the US, only a small percentage is covered, in almost equal
parts by the federal government and the states (US$8.5 billion total), the rest
is paid by both patients and their families, putting a severe stress, that apart
of the emotional cost, may also compromise their finances. With an increasingly
aging population in the developed world, there is a need for more research on
the causes of Alzheimer’s disease. While a skilled physician would be able to
diagnose it with 90 percent accuracy, an early genetic diagnosis of risks would
help enormously. Quoting Zaven Khachaturian, “If we can push back the onset of
Alzheimer’s for just five years, we can reduce by 50 percent the number of people
who get the disease, add years of independent functioning to people’s lives, reduce
the amount of care they need, and save this country billions of dollars in health-
care costs.” * Accordingly, more research on the genetic basis of this disease is
needed as demographically the picture is not good for developed countries, with
a large number of their aging individuals getting the disease thus impacting on
society as a whole.

We have conducted an extensive search in the scientific literature to try to
identify which genes have already been reported as linked to Alzheimer’s disease,
resulting in a set of 95 genes. For 29 of them, we have found that there is a
microarray data study in the public domain that contains their gene expression
in control and Alzheimer’s affected brains. A visual inspection of the relative
gene expression of this dataset (containing approximately 2,000 genes), clustered
with our memetic algorithm [1], clearly shows a pattern of differentiated gene
expression in healthy and Alzheimer’s affected brains (see Fig. 1).

From the set of 29 genes (out of those 95 identified as somewhat related),
seven have already been reported in [2] (COXT7B, IDI1, MAPK10, PRKCBI,
RARS, SMS, WASF1 and YWHAH). The others are: ABCB1 [3], ADAM10 [4],
ATOX1 [5], ATP [6], BCL2L2 [7], BRD2 [8], CRH [9], CTCF [10], GSK3B [11],
HFETF [12], HTR2A [13], LAMC1 [14], NCSTN [15], NRG1 [16], NUMB [17],
PRDX2 [18], PRDX5 [19], PRKR [20], PSEN1 [21], MAPK14 [22], and VSNL1
[23]. The two in boldface have been found by the methods we will present in this
paper and were not reported in [2]. Tt is clear that a differential pattern of
expression exists for these genes between Normal and AD brains, as shown in
Fig. 1(b). In this paper we present a set of 70 genes which also show correlated
patterns that may be useful to understand the genetic risk factors of the disease.

2 Modeling the Gene Subset Selection Problem

In order to model the problem of finding gene subsets of interest, we will proceed
in two steps. Firstly, we will introduce the («, 3) — k—FEATURE SET Problem,

4 http://wuw.fda.gov/fdac/features/1998/398_alz.html



Fig. 1. (a) Gene expression of 2,100 genes in both Alzheimer (AD) and normal (N)
brains (dataset from [2]). The columns correspond to different voxels (as described in
[2]). It is clear that there exist a relatively large number of genes which are differentially
expressed within different regions in AD and N brains. (b) Gene expression of the
29 genes found in our literature search (from a total of 95 we identified as possibly
related) which are also present in the dataset. (c) The 34 genes highlighted in Table
3 of Ref [2]. These 34 genes are those of the union of the four subsets (I, II, III, and
V) from Fig. 2 and have been obtained using a singular-value decomposition approach
[2]. In all figures, we provide a high-quality clustering of the gene expression patterns
using the memetic algorithm described in [1].

so as to provide a combinatorial setting for the target problem. Then we will
address how to discretize microarray measurements to obtain a problem instance
of the (a, 3) — k—FEATURE SET Problem.

2.1 The (a,3) — k—Feature Set Problem

The (o, 3) — k—FEATURE SET Problem is a generalization of k—FEATURE SET
and it has been introduced with the aim of obtaining subsets of features of



robust discriminatory power [24]. Its use coupled with standard data mining
algorithms has led us to successfully predict the outcome of the 2004 US Pres-
idential election, two months in advance of the actual voting, only based on
historical information from previous elections [25]. The problem can be formally
defined as follows:

— Instance: A set of m examples X = {z(!), ..., 2™} such that for all i,
z® = {J:gi),mg),...,xsf),t(i)} € {0,1}"*1, and three integers k > 0, and
a, 3 =0.

— Question: Does there exist an («, 8) — k-feature set S, S C {1,---,n}, with
|S| < k and such that:

o for all pairs of examples i # j, if t) # t(9) there exists S’ C S such that
|S’| > v and for all [ € S’ a?l(z) # xl(]) ?

e for all pairs of examples i # j, if t() = ¢(9) there exists S’ C S such that
S| > 5 and for all [ € &' ") = 2\ 7

We remark that the set S’ is not fixed for all pairs of examples, but it is a
function of the pair of examples chosen, so in the definition we mean S’ = S’(i, j).
Obviously, the problem is NVP—hard as it contains the k—Feature Set Problem
as special case [26]. Furthermore, the («, ) — k—FEATURE SET problem is not
likely to be fixed-parameter tractable for parameter k£ as Cotta and Moscato
have recently proved that the k—Feature Set Problem is W[2]-complete [27].

‘We mentioned before that robustness is the goal. Indeed, robust feature iden-
tification methods are essential since microarray data measurements are noto-
riously prone to errors. This robustness comes at a price though. When this
problem is used as a modelling tool for pattern recognition, robustness comes
with redundancy in the number of features required for discrimination of a pair
of examples. This may appear as counter-intuitive at first sight. A large number
of approaches in data mining, and particularly in Bioinformatics, are concerned
with finding “minimal” cardinality solutions. In the area of microarray data anal-
ysis, however, the true requirement is different. A small number of examples, as
compared with the number of features, means that by just random chance a
certain feature could dichotomize a set of examples. This said, the problem is
how to preserve in our solutions a potentially useful set of features that could
explain the examples, since they could be left aside due to the requirements of
finding a minimal cardinality solution. Given a set of measurements obtained
by means of a microarray experiment on m samples/conditions, the 0-1 values
for each one of the features would correspond to under- or over-expressed genes
respectively after a threshold value is determined.

2.2 Threshold Selection Issues

An instance of the («,/3) — k—FEATURE SET problem can be obtained once
thresholds for discretizing gene-expression values have been set. The associated
problem (finding appropriate thresholds given the particular values of «, 8 and
k in the instance sought) can be formalized as follows:



(cr, 3)—THRESHOLD SELECTION

— Input: A m x n R—matrix X, class identifiers t()) € IN for every row i,
1 < i < 'm, and two integers «, 8 > 0.

— Question: Does there exist an array of m thresholds 6y, - - -, 0,, (i.e., one for
each of the rows in X ) such that each entry in the ith row of X greater than
the 6; is given the value 1, and 0 otherwise, and such that

1. Vi, j, t® %t the number of columns where )N(l(l) £ Xl('7) (disagree) is
at least «, and

2. Vi, j, t) = ¢\ the number of columns where Xl(i) = Xl(j) (agree) is at
least 3 7

We note that this is a necessary but not a sufficient condition to create a
yes-instance of the («, ) — k—FEATURE SELECTION problem. Unfortunately, it
is unlikely that an efficient algorithm for («, 3)—THRESHOLD SELECTION would
be found as it is N P—complete [24]. However, Cotta, Sloper and Moscato have
shown that evolutionary search strategies may help in practice to find thresholds
allowing (a, 8) — k—feature sets to be found in microarray data in lymphomas,
opening the possibility of using the methodology in other domains as well.

3 Methodologies for Gene Subset Selection

We will now present three different, complementary methodologies for gene sub-
set selection.

3.1 The Statistical Approach and the Microarray Dataset

The gene expression dataset is obtained from samples of normal and Alzheimer-
affected diseased humans (for the complete description see [2]). Samples are
obtained from spatially registered voxels (cubes) which produce multiple volu-
metric maps of gene expression. The technique is analogous to the reconstructed
images obtained in biomedical imaging systems. A total of 24 voxel images of
coronal hemisections at the level of the hippocampus of both the normal human
brain and Alzheimer’s disease affected brain were acquired for 2,100 genes. The
statistical methods involve the use of a standard singular value decomposition
(SVD) analysis. They show the most strongly differentially expressed genes be-
tween Alzheimer’s affected and normal brains (having p-values < 0.05). They
show, notably, that the SVD results allow to produce images which correlate
well with the neuroanatomy, including cortex, caudate, and hippocampus. This
suggests that this technique will be a useful approach for understanding how the
genome, and gene expression, constructs and regulates the brain.

3.2 The Evolutionary Search Approach

The evolutionary method used is similar to the one described in [24]. Therein,
the authors present results of an evolution strategy that allowed to find, on



a microarray dataset of two different types of diffuse large B-cell lymphoma
(each one containing 4 samples, and gene-expression profiles for 2,984 genes), an
a = f =k =100 feature set. For « = 8 = 200 and o« = 8 = 300, the ES found
gene subsets of 227.3 and 360.5 genes on average respectively, 25% smaller gene
subsets that those provided by a greedy heuristic.

In this case, we have utilized a (1,10)-ES with binary tournament selection,
gaussian mutation with independent self-adaptive stepsizes for each variable, and
no recombination. For each candidate set of thresholds, the algorithm generates
an (a, ) —k—FEATURE SELECTION problem instance, and uses a combination of
kernelization techniques and greedy heuristics to solve it. The particular dataset
we have considered seems to be difficult in practice for this algorithm, due to the
fact that the size of this underlying (a, 8) — k—FEATURE SELECTION problem
that is being continuously generated and solved scales quadratically with the
number of columns. Nevertheless, we have been able to identify several (10, 10) —
k—feature sets with 17 < k < 19 (see Fig. 3(c)).

3.3 The Integer Programming Approach

For the initial exploratory tests, we have used an standard integer programming
(IP) formulation of the (o, 3) — k—FEATURE SET problem as described in [28].
For some values of « and 3 we have been able to solve the instances to optimal-
ity using the CPLEX 9.0 mathematical software package. Treating all voxels’
samples in the Alzheimer and control brains as 48 examples of two different
classes (24 from each), allows us to find groups of genes differentially expressed
in all regions of the brain (and expressed consistently within a class due to the
large values of § > 0 obtained). However, we expect a degree of gene expression
variation within different parts of a brain (both AD and control) to be present
(due to normal functional differentiation). As a consequence, we adapted the IP
formulation to look at the problem from a different perspective.

The aim of our new IP approach is now to find genes that are diffentially
expressed in the same voxel in both the AD and control brains. This said, the
number of pairs of examples corresponding to different classes drops from 242 to
just 24 and the number of pairs of examples that belong to the same class drops
to zero. This said, the IP model reflects our aim to find () — k—feature sets
with large values of « and small values of k (the parameter § makes no sense
here as we are treating any individual example as a member of a different class).
This allows us as to find minimal sets of genes that are differentially expressed
in both the AD and control brains in the same voxel.

In addition, in [28] good results were obtained by using an IP model in which
we fix the number of features required to be in the solution with the objective
of finding those features that maximize the “coverage”. The coverage represents
the sum of the cardinalities of all the sets S’(4, ) as defined in Sect. 2.1. Due
to our good experience with this model, we fixed k = 52 and we have been able
to find a feature set with o = 40 and maximum coverage (998). The thresholds
were fixed in this case, unlike the ES methodology, at the median value of the
expression of each individual gene on the 48 samples.



| — DNCI1, KIAA0069, LOC51628, NR1I3, TAF2F

Il —=1DI1, MAPK 10, WASF1, RAP2A

Single Value

Evolutionary Search .
Decomposition

111 —ICAP-1A, FOXJ3, KIAA0992, LOC51235, YWHAH

(this paper)
(Brownetal.2002) | |y - HAX1, LOC54460, PRDX5 + 8 ESTs (Clone IDs 377827, 395436, 669471,
858450, 884653, 1032362, 1161775, 1500241)

V — BICD1, CCS, COX7B, DRAP1, DSCRIL1, IDH3A, LIMSL, NFATC3,
PRKCB1, PSCA, PSCD2, PTPRN2, RAB2, RARS, SALL2, SEPW1, SMS, TIF1,

XPO1, ZNF142
VI — ADD1, ATP6F, CANPX, CYBA, EIF2C1, EIF4B, FLJ11132, FLJ11200,

GLG1, GNGI0, INSL4, KIAA0154, KIAA0608, MAPK 14, MCF2, NFIX, THBSL,
TPD52, USP16 + 12 ESTs (Clone IDs 246116, 308788, 768324, 824479, 867751,
868188, 1034472, 1291971, 1292501, 1292893, 1493181, 1505783)

VIl — APOC4, ATPSG3, FLJL1220, FLJL2895, FLJ20323, GAPDH, IL11RA,

Integer Programming KIAAO308, LOC153561, NFKBIB, PPP2RIA, SI00ALl, SIAHL, SLC2AS5,

Model (this paper) SLCOA6, SMAP, SRI, SRP46, Z391G + 9 ESTS (Clone |Ds 48906, 147192, 462944,
469379, 796548, 813813, 126858, 1493137, 1505240)

Fig. 2. A Venn diagram helps us to present the results of our comparison. We have
uncovered a total of 70 genes not reported in [2] obtained from the solution of two dif-
ferent methodolgies, one is a variant of the evolutionary search methodology presented
in [24] and the other is a truncated complete anytime algorithm based on the integer
programming model discussed in Sect. 3.3 (with o = 40 and 52 genes) based on the
method presented in [28] (union of the subsets IV, VI, and VII in the diagram). Our
solutions also contained 14 genes already reported in [2] (subsets I, II and III). Ten
genes from these sets, marked in boldface, have been also linked to Alzheimer’s and
neurodegenerative diseases (references are provided in Sect. 1)

4 Results

The main results are described with the aid of Fig. 2 and Fig. 3 and their
accompanying captions. Another result worth mentioning is that the combined
use of these three methodologies has uncovered that, in the union of all the
genes (see Fig. 3) that provide a clear pattern of differential gene expression,
there exists a peculiarity in the gene expression of area D2 of the normal brain
(following the grid labeling used of [2]) °. The gene expression pattern (for this
subset of the genes) for region D2 in normals seems to be highly similar to the
pattern of activities for other regions of the Alzheimer’s brain. Puzzled by this
fact, we conducted an experiment where we performed a hierarchical clustering of
the columns as well as genes and indeed the pattern of activities for region D2 in
normals was clustered together to those of Alzheimer’s, though it appeared as an
outgroup. This is intriguing, as this differential pattern of activity for this voxel
is also clear in Fig. 1(b) and Fig. 1(c) where a distinctive dark column clearly
stands out within a pattern of under expressed genes in the normal brain. All the
methods revealed a similar characteristic and it could be visually appreciated
even with our clustering of the entire set of 2,100 genes (Fig. 1(a)). While more
research is needed, we believe that new analysis on this area, as differential to
other areas in the normal and AD brains, may help to provide a bridge between
genomics, functional differentiation and disease.

5 http:/ /labs.pharmacology.ucla.edu/smithlab /genome_research_data/voxelgrid2.htm



Fig. 3. (a) A clustering using the memetic algorithm of [1] of the union of all the genes
reported in Fig. 2. (b) Clustering of the 52 genes found with the truncated exact search
method based on the integer programming model (subsets I, 111, IV, and VI of Fig. 2).
(¢) Clustering of the 48 genes found with the evolutionary search strategy proposed in
this paper (subsets I, II, IV, and VII of Fig. 2). The evolutionary method searches for
appropriate thresholds that will allow an o = 8 = 10-feature set to exist.

5 Conclusions

We have observed that the combination of results obtained in separately from
evolutionary search, statistical and integer programming methods, allows the
identification of a large number of genes differentially expressed in normal and
Alzheimer’s affected brain. The analysis has shown that there exist at least one
hundred candidates for further exploration, mainly by correlating them with the
activities of some of the genes in this study. This issue, as well as a combined
methodology that would encompass the three methods so far applied to this
dataset, plus a user-defined bias based on annotated information from biologists
(and the biomedical literature) will be the subject of further studies.
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