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Abstract. In recent years there has been an incredible explosion of computational studies of molecular
biology systems, particularly those related to the analysis of the structure and organization of molecular
networks, as the initial steps toward the possible simulation of the behavior of simple cellular systems.
Needless to say, this task will not be possible without the availability of a new class of data derived from
experimental proteomics. Large-scale application of the yeast two-hybrid system, affinity purification
(TAPs-MS), and other methodologies are for the first time providing overviews of complete protein
interaction networks. Interestingly a number of computational methods are also contributing substantially
to the identification of protein interactions, by comparing genome organization and evolution. Other
disciplines, such as structural biology and computational structural biology, are complementing the
information on interaction networks by providing detailed molecular descriptions of the corresponding
complexes, which will become essential for the direct manipulation of the networks using theoretical or
experimental methods. The storage, manipulation and visualization of the huge volumes of information
about protein interactions and networks pose similar problems, irrespective of the source of the
information: experimental or computational. In this sense, a number of competing systems and emerging
standards have appeared in parallel with the publication of the data. In this review, we will provide an
overview of the main experimental, high-throughput methods for the study of protein interactions, the
parallel developments of computational methods for the prediction of protein interactions based on
genome and sequence information, and the development of databases and standards that facilitate the
analysis of all this information.



INTRODUCTION

Proteins are involved in key cellular processes, including signal transduction, metabolism, cellular
architecture and information transfer. To carry out these functions, proteins interact to form complexes of
varying nature and stability, from stable interactions of structural proteins to transient contacts modulated by
post-translational modifications, as is typical of signaling proteins.
During the last few years, proteomics has produced spectacular advances in the description of these
complexes, utilizing high-throughput techniques such as systematic yeast 2-hybrid approaches [1-4], Tandem
Affinity purification followed by Mass Spectrometry resolution of the isolated complexes [5], and various
combinations of information obtained from peptide libraries [6, 7]. Other techniques, such as chromatin
immunoprecipitation (ChIP), have systematically addressed the relationship between transcription factors and
their specific DNA binding sites [8, 9]. Nevertheless, establishing the complete structure of the complexes
and protein interactions in a living cell, including the modulation of the interactions in different cellular states
(temporal) and compartments (spatial), is a formidably complex problem.
Despite its limited size, the public release of the first set of proteomic data has produced an avalanche of
theoretical studies on the organization of protein interaction networks, the identification of the basic control
and interaction motifs, and the comparison to other non-biological networks [10-18]
At the formal level, the structure of metabolic and protein interaction networks has been fitted to power law
distributions similar to those of many other biological and non-biological systems [19, 20]. As in these other
systems, the implication is that the protein interaction networks are in a meta-stable situation (or critical
state), which makes it impossible to predict the future development of the network and the fate of individual
interactions. Considerable effort has also been put into the search for well-defined regions of the interaction
network associated with defined biological properties, such as metabolic pathways with distinctive patterns of
interactions [15, 21-24].
Here we review the sources of information available for protein interaction data, their organization in
databases, and the potential of computational biology methods to complement the experimental information
by inferring new interactions. Clearly, the availability of large-scale, well organized interaction data with the
proper quality controls is essential for the success of theoretical studies of the properties of the molecular
systems.

1. LARGE-SCALE STUDIES OF PROTEIN COMPLEXES: THE PROTEOMES.

1a. Experimental methods for the large-scale detection of protein interactions

Several experimental methods are being applied for the large-scale detection of protein interactions. Some of
these involve the implementation of standard techniques to study protein-protein interactions. One of the
methods most often used is the yeast two-hybrid system (Y2H) [25, 26], based on the modular properties of
the Gal4 protein of the yeast S. cerevisiae, as well as its modifications for application to membrane proteins
[27]. A similar approach is based on beta-lactamase activity recovery [28]. Genome-wide studies involving
variations of the Y2H protocol have been carried out in yeast, H. pylori, C. elegans and Drosophila [1-5, 29].
Ho et al., applied ultra-sensitive mass spectrometry to identify protein complexes in S. cerevisiae, covering
25% of the yeast proteome [30]. Tandem-affinity purification (TAP) and mass spectrometry was used by
Gavin et al. to characterize multi-protein complexes in S. cerevisiae [5]. Yeast protein chips and microarrays
have also been used to screen protein-protein interactions and protein-drug interactions [31]. Tong et al.
applied a combination of computational prediction of interactions from phage-display ligand consensus
sequences with large-scale two-hybrid physical interaction tests, to identify interaction partners of yeast SH3
domains [7].
Large-scale proteomics also implies some limitations, and the introduction of certain artefacts, such as those
produced by the presence of promiscuous proteins with an artifactual preference to interact with many other
proteins in Y2H assays or the over-representation of small proteins in complex purification strategies [32-36].
As in other high-throughput applications (e.g. DNA arrays), accuracy in the determination of individual
properties is sacrificed in order to gain insight into the global properties of the system [37].



1b. Extrapolating experimental information to build interaction networks of related species

A number of attempts have been made to extrapolate the information on protein interactions obtained from
model systems (S. cerevisae, C. elegans, H. pylori, D. melanogaster) to other genomes. In general, inferences
have been made by assuming that orthologous sequences will participate in similar interactions. For example,
the experimental interactions determined for H. pylori were extrapolated to E. coli by combining sequence
similarity searches with a clustering strategy, based on interaction patterns and interaction domain
information [38]. Lappe et al. developed an integration system to combine, compare and analyze interaction
data from different sources and different organisms at a single level of abstraction [39]. Matthews et al.
proposed a method to search for 'interologs' (potentially conserved interactions) in C. elegans using
experimentally identified interacting protein partners of S. cerevisae [40-43]
These studies are very interesting, and certainly correspond to the most-simple assumption of conservation of
interactions across different species. Nevertheless, the risk of extrapolating too far is considerable, even more
so given that the principle of conservation of interactions across large evolutionary time has yet to be
demonstrated and the combinatorial possibilities of protein domains complicates the situation significantly.
An interesting exploration of this problem has been published by Aloy and Russell [44] in which they
calculated the degree of conservation of the interaction regions for pairs of proteins with different degrees of
similarity. The conclusion of this study was that similar interaction sites can be predicted for proteins with
sequence similarities as low as 30-40 %, even if the noise of the system is considerable. It is important to bear
in mind that this study only implies that proteins that do interact tend to do so using similar regions, and not
that similar proteins will necessarily interact (see below for a discussion of the problem of predicting
interaction specificity).

2. COMPUTATIONAL METHODS FOR THE PREDICTION OF INTERACTION
PARTNERS

A number of computational methods have recently appeared that use sequence information to predict physical
or functional interactions between proteins. Five of them are described in Box 1 [45, 46], although others are
likely to appear.
The possibility of using sequence and evolutionary information to identify potential interaction partners
brings additional opportunities to enrich the collection of interactions available for modeling studies.
However, a definitive evaluation of these methods is still incomplete since the collections of experimental
data on interacting proteins that can be used as controls have their own limitations (see the section on
experimental methods above) and the overlap between the sets of predicted or experimental interactions is
currently limited. Nevertheless, taking all these limitations into account, the increasing availability of
genomic sequence information and the improvement of the methods still makes it likely that computational
methods for predicting protein-protein interactions could achieve coverage and accuracies similar to those of
the high-throughput experimental methods [47, 48]
Not surprisingly, interaction networks predicted by the various experimental and computational methods that
are based on similar principles tend to have similar organizations [17].

2a. Methods based on domain composition

An alternative to the prediction of functional relationships between protein interactions is the study of the
statistical association between proteins that share domains. The assumption in this case is that proteins that
share a given domain will be functionally related by virtue of having this domain. Given the large number of
multidomain proteins found in eukaryotes, it is easy to see that such a network will be highly complex and
extremely dense. One approach attempts to elucidate which domains participate more often in protein
interactions by considering the pairs of interacting yeast proteins recorded in the MIPS, MYGD and DIP
databases, and the sequence domains included in the InterPro Database [49]. Another approach considers



proteins as collections of conserved domains, where each domain is responsible for a specific interaction with
another and a Markov chain Monte Carlo approach is used for the prediction of posterior probabilities of
interaction between sets of proteins [50, 51]

2b. Hybrid methods based on sequence and structure. Extrapolating from interaction partners to
interacting regions.

In order to manipulate molecular systems, by simulation or employing experimental methods, it is important
to have information available not only about the general interaction networks, but also the details of the
specific interaction at a molecular level. For example, the experimental manipulation of a signaling pathway
with point mutations requires specific knowledge of the amino acid residues involved in the interactions. In
other words, it is important to develop methods for the discovery of interacting regions, as a way of
channeling the capacity of molecular biology and simulation techniques for the exploration of interaction
networks.
Computational methods for the prediction of interaction partners based on genome comparisons (phylogenetic
profiles, conservation of gene neighborhood and gene fusion detection; see inset) do not provide information
about the molecular details; the predictions remain at the level of functional relationships between sequences.
In contrast, the predictions of the other two methods described here (mirror-trees and in-silico-two-hybrid)
can be translated at the residue level for particular proteins.
Structural biology is also contributing substantially to the study of protein complexes, and perhaps the most
important milestone in this area has been the determination of the structure of the ribosome [52]. Generally
speaking, information about the structure of proteins is an essential component of the study of biological
systems. From this type of experimental information we have learned about stable and transient protein
complexes, about their interaction surfaces, and, to some extent, about the specificity of their interactions. A
very interesting new avenue has been recently open by Aloy et al. [53] with the combination of experimental
structure, protein models, and biochemical information to build the structure of new complexes whose general
shape was solved by systematic electron microscopy studies of protein complexes purified by TAPs-MS.
From a computational point of view, major advances have been in the development of programs for the
prediction of the structure of protein complexes (docking programs, [54, 55]), and a number of sequence-
related analysis systems for the prediction of potential interaction regions.[56] In the near future, interesting
progress is expected in the prediction of interaction regions by combining structural and sequence
information.
Beyond the prediction of complex structure for interacting proteins of known structure, we still have to face
the problem of distinguishing between potentially interacting proteins, e.g. all the pairs of proteins belonging
to two protein families, versus the few protein pairs that are actually interacting. The specificity of those
interactions is essential for the function of cellular systems in which members of the same protein family,
using the same basic architecture, are able to trigger different signaling pathways. It is conceivable that a
combination of protein modeling techniques and sequence information analysis will contribute to the search
for the molecular basis of protein-protein recognition specificity. A few methods have been developed to this
end. These methods make use of residue pair potentials obtained from interacting surfaces of known
complexes. The information is then used to assess the extent to which the homologues of two interacting
proteins of known structure will interact [57, 58]. Lu et al. have extended their protein structure prediction
method to the prediction of the stability of protein complexes (Multiprospector). In this case, all combinations
of protein sequences are tested for their compatibility in the framework of known protein complexes. The
rationale is that proteins that will naturally form complexes will be more stable when associated with their
partners than in isolation [59, 60]. The application of this method to complete genomes shows an impressive
capacity for predicting potential interactions and an accuracy similar to other prediction methods [61]. Our
group has studied the problem of molecular specificity in various systems in which computational predictions
have allowed us to manipulate the molecular basis of specific recognition in protein interactions [62-66].
However, in some cases accurate prediction of interactions is not possible due to the complexity of the
conformational changes in the interaction surfaces



3. ORGANIZATION OF THE INFORMATION ON INTERACTIONS IN SPECIFIC
DATABASES.

In recent years, high-throughput methods have made molecular biology a data-intensive discipline. These data
have to be stored in a structured way for data retrieval and analysis. A number of protein interaction results
have been stored in this manner and made accessible via web services (see Table 1). All of these projects are
still in an initial phase, which explains the current lack of differentiating characteristics that in the long run
will determine their utility and survival in competition with other initiatives.
The Human Proteome Organization (HUPO) has launched an effort to establish standards for interaction
databases that would be acceptable for all existing projects. These standards contain the minimum sufficient
information to describe interactions, with the intention of facilitating information exchange between
interaction databases. The consortium behind these initiatives has already designed the basic layer (XML) for
the exchange, and a technical vocabulary for the description of the many experimental and theoretical
techniques that produce data on protein interactions. Similar initiatives are taking place in related areas such
as metabolic pathway databases[67]. The main databases of this kind have been running for years EMP [68,
69], WIT [70], KEGG [71], EcoCyc [72], and new ones are still appearing (aMAZE) [73, 74]. They are
designed for storing information on enzymes, biochemical reactions and small molecules, and in some cases,
the corresponding kinetic parameters. There are initiatives to create compatible standards between metabolic
databases (see for example BioPAX-http://www.biopax.org/), which in the future may include protein
interaction databases
Alongside the data standardization structure, other projects have focused on a solution to another major
database problem: data distribution. Many institutes and labs have relevant scientific information that is
accessible through static web interfaces that are rarely visited. New technologies are now arising that are able
to make all these data accessible through a single interface that can retrieve the information from its main
source. An example of this technology is the PLANET project (see http://eu-plant-genome.net), where
different data repositories are being made accessible through a single interface thanks to BioMoby technology
[75].
The internet has offered a fast channel for information interchange. This has been particularly the case for the
development of computational biology. Massive data exchange operations have made data reliability a major
concern. Error propagation has proved to be a concern in areas with database annotation, making the link
between annotation and the underlying experimental information an important issue. This need has increased
the efforts in text mining research to recover the links between protein interaction databases and the
corresponding sentences in the literature. During the last few years the technology in this area has developed
rapidly [76-79]. Nevertheless, key problems remain in the field, such as the identification of protein and gene
names. For example, in 2001 it was possible to link only 30% of the DIP database entries to the literature [80-
82]. Only 20% of the missing links were explained by inaccuracies in the text mining system; the remaining
80% were produced because the protein names used in the database were not found in any of the available
Medline entries, or because there was no information about the interactions in the literature. In the current
status of the technology, the number of synonyms has grown, as well as the number of technical possibilities
for detecting interactions[79]. Thus, this technology is maturing fast and may soon be able to facilitate the
tasks of annotating databases, and to keep direct pointers between the interactions and the literature. (Very
recently a collaborative effort has been launched to assess technologies in this area, see
http://www.pdg.cnb.uam.es/BioLink)

CONCLUDING REMARKS

Genomic sequencing, proteome characterization and structural genomics projects are providing a wealth of
information about genes and proteins. Proteomics now offers the possibility of entering a new dimension of
understanding, directly related to the organization of the basic components in protein networks and
complexes. The experimental and computational approaches published in the last five years have provided the
first wide ranging view of the properties, organization, evolution and complexity of protein interaction



networks. Computational Biology is contributing to this collective effort with, firstly, new methods to identify
protein interaction partners on a large scale, and secondly with new approaches able to provide detailed
descriptions, and associated predictions, of protein interaction sites.
It is important to bear in mind that the characterization of protein interaction networks is only one initial step
towards the understanding of cellular systems; a step for which high-throughput proteomics, bioinformatics
and computational biology are inherently associated with the success of Computational Systems Biology.
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Boxes

Box 1: Computational methods for the prediction of interaction partners.

Phylogenetic profiles. This method is based on the identification of genes that have the same pattern of
presence/absence in a number of genomes. A group of genes with the same phylogenetic profile is assumed to
encode proteins that are functionally related (for example, they may be part of the same metabolic pathway)
and that may or may not interact physically. The drawback of the method is that it can only be applied to
complete genomes [83, 84].
Conservation of gene neighborhood. Especially in prokaryotes, the neighborhood of a gene has a tendency to
be conserved, both in terms of identity and order of the genes. This is partly related to the fact that genes in
prokaryotes are often organized in operons. Operons contain genes that need to be expressed in a coordinated
fashion, usually because they are involved in related functions. The observed relationship between
chromosome proximity and function [85] has been exploited to predict gene interactions, both in the physical
and in the functional sense [86, 87].
Gene fusion. Two proteins, or protein domains, encoded by different genes are assumed to interact physically,
or at least functionally, if in some species they are coded by a single gene, presumably originating from a
gene fusion event [88, 89]. It has been shown that fusion events are particularly common in metabolic
proteins [90].
Mirror trees. Interacting proteins are expected to co-evolve. Therefore, the corresponding phylogenetic trees
should be more similar than those of non-interacting proteins. The first qualitative assessments of this concept
were performed with the pairs composed of the insulin and their receptors [91], and dockerins and cohexins
[92]. Later, linear correlation between the distance matrices used to construct the trees was proposed to
measure tree similarity [93] and the approach was applied to large data sets [94]. Recently, a method based on
this concept has been developed for predicting interaction specificity [95].
In silico two-hybrid. The co-evolution of interacting proteins can be studied by analysis of mutations in one of
the partners that compensate mutations in the other. The detection of correlated mutations has been used to
predict the tendency of pairs of residues to be in physical proximity [96]. This method has been applied to
large data sets of proteins and domains [97].

Table 1.

Main databases on protein-protein interactions.

Database Site and Description

DIP [80-82] Stores experimentally determined interactions between proteins. Currently, it
includes 18,488 interactions for 7134 proteins in 104 organisms.



includes 18,488 interactions for 7134 proteins in 104 organisms.
http://dip.doe-mbi.ucla.edu/

MINT [98] Designed to store functional interactions between biological molecules
(proteins, RNA, DNA). It is now focusing on experimentally-verified direct
and indirect protein-protein interactions. http://cbm.bio.uniroma2.it/mint/

BIND [99] Contains full descriptions of interactions, molecular complexes and pathways
http://www.bind.ca/

MIPS [100] Large collection of diverse types of interactions. Commonly used as
e q u i v a l e n t  t o  ' h a n d - c u r a t e d '  s e t s  o f  i n t e r a c t i o n s .
http://www.mips.biochem.mpg.de/

PathCalling Yeast Interaction
Database  [1]

Identifies protein-protein interactions on a genome-wide scale for functional
assignment and drug target discovery
http://portal.curagen.com/extpc/com.curagen.portal.servlet.Yeast

The GRID [101] A database of genetic and physical interactions that contains interaction data
f rom severa l  sources ,  inc lud ing  MIPS and  BIND
http://biodata.mshri.on.ca/grid/servlet/Index

IntAct [67] The project (funded by a European Commission grant, TEMBLOR) aims to
represent and annotate protein-protein interactions, and to develop a public
database of experimentally identified and predicted interactions. The database
structure is designed to incorporate experimentally determined and predicted
interactions, with special care in tracing the origin of the information. The
interactions will be directly linked to original sentences in the literature
describing them, for which text mining technology will be used.
http//www.ebi.ac.uk/intact

STRING [46] STRING is a database of known and predicted protein-protein interactions.
 http://string.embl.de/newstring_cgi/show_input_page.pl

HPID [42] The human protein interaction database. Contains human protein interactions
inferred by homology searches against experimental interaction data.
http://www.hpid.org/

Prolinks [102] A database of protein functional linkages derived from coevolution. Contains
functional links predicted by several methods.
http://169.232.137.207/cgi-dev/functionator/pronav

Predictome [103] A database of putative functional links between proteins. Contains functional
links establish by a variety of techniques, both experimental and
computational
http://predictome.bu.edu/
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