Skip to main content

Using 2D and 3D Landmarks to Solve the Correspondence Problem in Cognitive Robot Mapping

  • Conference paper
Spatial Cognition IV. Reasoning, Action, Interaction (Spatial Cognition 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3343))

Included in the following conference series:

Abstract

We present an approach which uses 2D and 3D landmarks for solving the correspondence problem in Simultaneous Localisation and Mapping (SLAM) in cognitive robot mapping. The nodes in the topological map are a representation for each local space the robot visits. The 2D approach is feature based – a neural network algorithm is used to learn a landmark signature from a set of features extracted from each local space representation. Newly encountered local spaces are classified by the neural network as to how well they match the signatures of the nodes in the topological network. The 3D landmarks are computed from camera views of the local space. Using multiple 2D views, identified landmarks are projected, with their correct location and orientation into 3D world space by scene reconstruction. As the robot moves around the local space, extracted landmarks are integrated into the ASR’s scene representation which comprises the 3D landmarks. The landmarks for an ASR scene are compared against the landmark scenes for previously constructed ASRs to determine when the robot is revisiting a place it has been to before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yeap, W.K., Jefferies, M.E.: Computing a representation of the local environment. Artificial Intelligence 107, 265–301 (1999)

    Article  MATH  Google Scholar 

  2. Yeap, W.K.: Towards a Computational Theory of Cognitive Maps. Artificial Intelligence 34, 297–360 (1988)

    Article  Google Scholar 

  3. Cheng, K.: A purely geometric module in the rat’s spatial representation. Cognition 23, 149–178 (1986)

    Article  Google Scholar 

  4. Gallistel, C.R., Cramer, A.E.: Computations on metric maps in mammals: getting oriented and choosing a multi-destination route. The Journal of Experimental Biology 199, 211–217 (1996)

    Google Scholar 

  5. Huttenlocher, J., Newcombe, N., Sandberg, E.H.: The coding of spatial location in young children. Cognitive Psychology 27, 115–147 (1994)

    Article  Google Scholar 

  6. Wang, R.F., Spelke, E.S.: Updating egocentric representations in human navigation. Cognition 77, 215–250 (2000)

    Article  Google Scholar 

  7. Hähnel, D., Burgard, W., Fox, D., Thrun, S.: An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proceedings Intelligent Robots and Systems (2003)

    Google Scholar 

  8. Thrun, S., Hahnel, D., Ferguson, D., Montemerlo, M., Triebel, R., Burgard, W., Baker, C., Omohundro, Z., Thayer, S., Whittaker, W.: A system for volumetric robotic mapping of abandoned mines. In: Proceedings International Conference on Robotics and Automation (2003)

    Google Scholar 

  9. Hähnel, D., Thrun, S., Wegbreit, B., Burgard, W.: Towards lazy data association in SLAM. In: Proceedings 10th International Symposium of Robotics Research (2003)

    Google Scholar 

  10. Gutmann, J.-S., Konolige, K.: Incremental mapping of large cyclic environments. In: Proceedings International Symposium on Computational Intelligence in Robotics and Automation (1999)

    Google Scholar 

  11. Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tomatis, N., Nourbakhsh, I., Siegwart, R.: Hybrid simultaneous localization and map building: Closing the loop with multi-hypotheses tracking. In: Proceedings International Conference on Robotics and Automation (2002)

    Google Scholar 

  13. Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S.: An Atlas framework for scalable mapping. In: Proceedings International Conference on Robotics and Automation (2003)

    Google Scholar 

  14. Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  15. Chown, E., Kaplan, S., Kortenkamp, D.: Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping. Cognitive Science 19, 1–51 (1995)

    Article  Google Scholar 

  16. Kuipers, B.J., Byun, Y.-T.: A Robust, Qualitative method for Robot Spatial learning. In: Proceedings of the National Conference on Artificial Intelligence, AAAI 1988 (1988)

    Google Scholar 

  17. Kuipers, B., Beeson, P.: Bootstrap learning for place recognition. In: Proceedings 18th International Conference on Artificial Intelligence (2002)

    Google Scholar 

  18. Kuipers, B., Modayil, J., Beeson, P., MacMahon, M.: Local metrical and global topological maps in the hybrid Spatial Semantic Hierarchy. In: Proceedings IEEE International Conference on Robotics and Automation, ICRA 2004 (2004)

    Google Scholar 

  19. Jefferies, M.E., Baker, J., Weng, W.: Robot cognitive mapping: A role for a global metric map in a cognitive mapping process. In: Proceedings Workshop on Robot and Cognitive Approaches to Spatial Mapping (2003)

    Google Scholar 

  20. Jefferies, M.E., Weng, W., Baker, J.T., Mayo, M.: Using context to solve the correspondence problem in simultaneous localisation and mapping. In: Proceedings 2004 Pacific Rim Conference on Artificial Intelligence (2004)

    Google Scholar 

  21. Modazil, J., Beeson, P., Kuipers, B.: Using the topological skeleton for global metric map-building. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004 (2004)

    Google Scholar 

  22. Jefferies, M.E., Cosgrove, M.C., Baker, J.T., Yeap, W.K.: The correspondence problem in topological metric mapping - Using absolute metric maps to close cycles. In: Proceedings 2004 International Conference on Knowledge-Based Intelligent Information and Engineering Systems (2004)

    Google Scholar 

  23. Huttenlocher, J., Presson, C.C.: The Coding and Transformation of Spatial Information. Cognitive Psychology 11, 375–394 (1979)

    Article  Google Scholar 

  24. Jefferies, M.E., Weng, W., Baker, J.T., Cosgrove, M.C., Mayo, M.: A hybrid approach to finding cycles in hybrid maps. In: Proceedings Australian Conference on Robotics and Automation (2003)

    Google Scholar 

  25. Rofer, T.: Using histogram correlation to create consistent laser scan maps. In: Proceedings IEEE International Conference on Intelligent Robotics Systems (2002)

    Google Scholar 

  26. Siegel, A.W., White, S.H.: The Development of Spatial Representations of Large-Scale Environments. Advances in Child Development & Behavior by H.W. Reese 10 (1975)

    Google Scholar 

  27. Moar, I., Carleton, L.R.: Memory for routes. Quarterly Journal of Experimental Psychology 34A, 381–394 (1982)

    Google Scholar 

  28. Montello, D.R.: A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In: Egenhofer, M.J., Golledge, R.G. (eds.) Spatial and Temporal Reasoning in Geographic Information Systems, pp. 143–154. Oxford University Press, New York (1998)

    Google Scholar 

  29. Pollefeys, M.: 3D modeling from inages. In: Proceedings Tutorial Notes 2000 European Conference on Computer Vision (2000)

    Google Scholar 

  30. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings 4th ALVETY Vision Conference (1998)

    Google Scholar 

  31. Noble, J.: Descriptions of Image Surfaces. PhD thesis Robotics Research Group, Department of Engineering Science, Oxford University (1989)

    Google Scholar 

  32. Klette, R., Schlüns, K., Koschan, A.: Computer Vision: Three-Dimensional Data from Images. Springer, Singapore (1998)

    MATH  Google Scholar 

  33. Gupta, G.S., Win, T.A., Messom, C., Demidenko, S., Mukhopadhyay, S.: Defect analysis of grit-blasted or spray-painted surface using vision sensing techniques. In: Proceedings Image and Vision Computing New Zealand (2003)

    Google Scholar 

  34. Kouzoubov, K., Austin, D.: Hybrid Topological/Metric Approach to SLAM. In: Proceedings 2004 IEEE international Conference on Robotics and Automation (2004)

    Google Scholar 

  35. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: Proceedings AAAI 2002 (2002)

    Google Scholar 

  36. Taylor, C.J., Kriegman, D.: Vision-based motion planning and exploration algorithms for mobile robots. IEEE Transactions on Robotics and Automation 14(3), 417–427 (1998)

    Article  Google Scholar 

  37. Thrun, S.: Robot mapping: A survey, in Exploring Artificial Intelligence in the New millennium. In: Lakemeyer, G., Nebel, B. (eds.), Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  38. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  39. Lamon, P., Tapus, A., Glauser, E., Tomatis, N., Siegwart, R.: Environmental Modeling with Fingerprint sequences for topological global localization. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  40. Kosecka, J., Li, F.: Vision based topological markov localization. In: Proceedings 2004 International Conference on Robotics and Automation (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jefferies, M.E., Cree, M., Mayo, M., Baker, J.T. (2005). Using 2D and 3D Landmarks to Solve the Correspondence Problem in Cognitive Robot Mapping. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds) Spatial Cognition IV. Reasoning, Action, Interaction. Spatial Cognition 2004. Lecture Notes in Computer Science(), vol 3343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32255-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32255-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25048-7

  • Online ISBN: 978-3-540-32255-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics