Skip to main content

Perception and Tracking of Dynamic Objects for Optimization of Avoidance Strategies in Autonomous Piloting of Vehicles

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3343))

Abstract

In the autonomous piloting of vehicles, the characterization of nearby dynamic object motion by perception and tracking techniques aids in the optimization of avoidance strategies. Knowledge of the features of object motion in goal-driven navigation allows for accurate deviation strategies to be implemented with appropriate anticipation. This perceptual competence is a fundamental issue in the design of unmanned commercial outdoor vehicles with an often reduced capability for maneuvering. To this aim, a grid map representation of the local panorama is proposed such that laser rangefinder images are converted into grid cells that are segmented and assigned to objects, allowing classification and monitoring. The motion properties of objects are thus used to establish avoidance behavior to smartly control the vehicle steering, such that a safe and optimal detour maneuver is carried out while driving to a target. The developed perceptual ability is demonstrated here in several tests performed in a relatively clutter-free area to detect and track walking pedestrians. Some results are also shown to highlight the modulation of moving object properties on trajectories described by a robot when a fuzzy avoidance strategy is used to control the steering angle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacFarland, D., Bosser, T.: Intelligent behavior in animals and robots. MIT Press, Cambridge (1993)

    Google Scholar 

  2. Arbib, M.A., Cobas, A.: Schemas for prey-catching in frog and toad. In: From Animals to Animats: Proceedings of the first International Conference on Simulation of Adaptive Behavior, pp. 142–151 (1990)

    Google Scholar 

  3. Arkin, R.C., Fujita, M., Takagi, T., Hasegawa, R.: En ethological and emotional basis for human-robot interaction. Robotics and Autonomous Systems 42, 191–201 (2003)

    Article  MATH  Google Scholar 

  4. Nordlund, P., Uhlin, T.: Closing the loop: Detection and pursuit of a moving object by a moving observer. Image and Vision Computing 14, 265–275

    Google Scholar 

  5. Guinea, D., Recio, F., Vicente, J.: Framing autonomy: A visual tracking architecture. In: Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, CA (1997)

    Google Scholar 

  6. Borenstein, J., Koren, Y.: The vector field histogram fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation 7(3), 278–288 (1991)

    Article  Google Scholar 

  7. García-Alegre, M.C., Ribeiro, A., Gasós, J., Salido, J.: Optimization of fuzzy behavior-based robots navigation in partially known industrial environments. In: Proceedings of the IEEE Inter.Conf.on Industrial Fuzzy Control and Intell.Syst., Houston,TX, pp. 50–54 (1993)

    Google Scholar 

  8. Simmons, R.: The curvature-velocity method for local obstacle avoidance. In: Proceedings of the 1996 International Conference on Robotics and Automation, Minneapolis, USA (1996)

    Google Scholar 

  9. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 23–33 (1997)

    Google Scholar 

  10. Benayas, J.A., Fernández, J.L., Sanz, R., Diéguez, A.R.: The beam-curvature method: a new approach for improving local real time obstacle avoidance. In: Proceedings of the 15th Triennial World Congress of the International Federation of Automatic Control IFAC, Barcelona, Spain (2002)

    Google Scholar 

  11. Fod, A., Howard, A., Mataric, M.J.: A laser-based people tracking. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2002)

    Google Scholar 

  12. Montesano, L., Montano, L.: Identification of moving objects by a team of robots based on kinematic information. In: Proceedings of IROS 2003 (2003)

    Google Scholar 

  13. Cruz, A., Muñoz, V., García-Cerezo, A., Ollero, A.: Moving obstacles avoidance algorithm for mobile robots under speed restrictions. In: Proceedings of the IFAC, Intelligent Components for Vehicles, ICV 1998, Madrid, Spain, pp. 233–238 (1998)

    Google Scholar 

  14. Kwon, Y.D., Lee, J.S.: A stochastic map building method for mobile robot using 2-D laser range finder. Autonomous Robots 7, 187–200 (1999)

    Article  Google Scholar 

  15. Prassler, E., Scholz, J., Elfes, A.: Tracking multiple moving objects for real-time robot navigation. Autonomous Robots 8, 105–116 (2000)

    Article  Google Scholar 

  16. Bennewitz, M., Burgard, W., Thrun, S.: Adapting Navigation Strategies Using Motions Patterns of People. In: Proc. of the IEEE International Conference on Robotics and Automation (ICRA), May 2003, vol. 2, pp. 2000–2005 (2003)

    Google Scholar 

  17. Wang, C.C., Thorpe, C., Thrun, S.: Online Simultaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas. In: Proc. IEEE Intern Conf on Robotics and Automation (May 2003)

    Google Scholar 

  18. Papanikolopoulos, N.K.: Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision. IEEE Transactions on Robotics and Automation 9(1), 14–35 (1993) (1996)

    Article  Google Scholar 

  19. Guinea, D., Sánchez, G., Bustos, P., García-Alegre, M.C.: A distributed architecture for active perception in autonomous robots. In: Proceedings IEEE International Conference on Systems, Man and Cybernetics, Vancouver, Canada (1995)

    Google Scholar 

  20. Nair, D., Aggarwal, J.K.: Moving obstacle detection from a navigating robot. IEEE Transactions on Robotics and Automation 14(3), 404–416 (1998)

    Article  Google Scholar 

  21. Ning, H., Tan, T., Wang, L., Hu, W.: People tracking based on motion model and motion constraints with automatic initialisation. Pattern Recognition 37, 1423–1440 (2004)

    Article  Google Scholar 

  22. Elfes, A.: Occupancy grids: a stochastic representation for active robot perception. In: Proc. 6th Intern Conf on Uncertainty in A.I. (1990)

    Google Scholar 

  23. Cañas, J.M., García-Alegre, M.C.: Modulated agents for autonomous robot piloting. In: Proceedings of 8th Conf. Española para la Inteligencia Artificial (CAEPIA 1999), Murcia, Spain, pp. 98–106 (1999)

    Google Scholar 

  24. Munkres, J.R.: Algorithms for the assignment and transportation problems. Journal of. SIAM 5, 32–38 (1957)

    MATH  MathSciNet  Google Scholar 

  25. García-Alegre, M.C., Ribeiro, A., García-Pérez, L., Martínez, R., Guinea, D., Pozo-Ruz, A.: Autonomous Robot in Agriculture Tasks. In: Proccedings of the 3ECPA European Conf. On Precision Agriculture, Montpellier (June 2001)

    Google Scholar 

  26. García-Pérez, L., García-Alegre, M.C.: A Simulation Environment to Test Fuzzy Navigation Strategies. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Pérez, L., García-Alegre, M.C., Ribeiro, Á., Guinea, D., Cañas, J.M. (2005). Perception and Tracking of Dynamic Objects for Optimization of Avoidance Strategies in Autonomous Piloting of Vehicles. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds) Spatial Cognition IV. Reasoning, Action, Interaction. Spatial Cognition 2004. Lecture Notes in Computer Science(), vol 3343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32255-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32255-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25048-7

  • Online ISBN: 978-3-540-32255-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics