
ITC

Institute for
Communication
Technologies

www.itc.com.unisi.ch

Faculty of
Communication
Sciences

Università della
Svizzera
italiana

via Buffi 13
CH-6900
Lugano

Technical report No. 1

Agent communication and institutional reality (extended version)

Nicoletta Fornara, Francesco Viganò, and Marco Colombetti

Institute for Communication Technologies
Università della Svizzera Italiana, 2004.

Agent Communication and Institutional Reality?

Nicoletta Fornara1, Francesco Viganò1, and Macro Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara, francesco.vigano, marco.colombetti}@lu.unisi.ch,

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

Abstract. In this paper we propose to regard an Agent Communica-
tion Language (ACL) as a set of conventions to act on a fragment of
institutional reality, defined in the context of an artificial institution.
Within such an approach, we first reformulate a previously proposed
commitment-based semantics for ACLs. In particular we show that all
commonly used types of communicative acts can be defined in terms of
a single basic type, namely declarations, within an artificial institution
that we call Basic Institution. We then go on defining special institutions,
that augment the Basic Institution by adding ontological and normative
elements. Finally, as an example of a special institution we give a partial
definition of the institution of English Auctions.

1 Introduction

In the last few years the concept of social commitment has been largely used by a
growing number of researchers to define the semantics of Agent Communication
Languages (ACLs). After the first studies carried out by Singh and by Colombetti
[24, 6], further investigations have been carried out from an operational point of
view [12, 18], following a logical approach [26], and in the field of argumentation
studies [1, 3]. The main advantages of this approach are that commitments are
objective and independent of an agent’s internal structure, and that it is possible
to verify whether an agent is behaving according to the given semantics.

Social commitments are used to represent the evolution of social relation-
ships among agents during interactions. Communicative acts are then viewed as
actions carried out to modify such relationships by creating, updating or can-
celling commitments according to a predefined set of shared rules [26, 13]. More
precisely, communicative acts are regarded as a sort of institutional actions, that
is, as actions performed within an institution to modify a fragment of social re-
ality [22]. Defining the semantics of an ACL has therefore two sides: one side is
the definition of the institutional effects brought about by the performance of
communicative acts; the other side is the definition of the social context in which
agents can carry out institutional actions, and that we call an (artificial) insti-
tution. Indeed, our main tenet is that without the definition of an appropriate
institution it is impossible to specify the semantics of an ACL.
? Supported by Swiss National Science Foundation project 200021-100260, ”An Open

Interaction Framework for Communicative Agents”

2

This paper is structured as follows. In Section 2 we introduce the fundamen-
tal concepts on which we base our treatment of agent communication, namely
the concepts of an institutional action, of a convention, and of a ”counts as” rela-
tionship between an instrumental action and the corresponding communicative
act. In Section 3 we define the institutional actions that can be performed on
commitments. In Section 4 we describe the Basic Institution (i.e., the institution
that regulates the management of commitments) and introduce the concept of
a special institution. In Section 5 we give a partial description of a specific case
of a special institution, that is, the institution of English Auctions. Finally in
Section 6 we draw some conclusions and delineate some directions for future
work.

2 Fundamental concepts

We view a multiagent system (MAS) as a technological extension of human so-
ciety, by which individual persons and human organizations can delegate the ex-
ecution of institutional actions to the artificial system. Examples of such actions
are establishing appointments, signing contracts, and carrying out commercial
transactions. For this reason there are strong connections between some aspects
of a MAS and some aspects of human society, and therefore the concepts used to
model a MAS interaction framework have to reflect some crucial characteristics
of their human counterpart.

The context within which artificial agents operate can be modelled as con-
sisting of a set of entities that can have natural or institutional attributes, that
is, attributes that exist only thanks to the common agreement of the interacting
agents (or more precisely of their users). For example, the color of a book is
a natural attribute, while the book’s price and its owner are institutional at-
tributes. Natural attributes are assumed to reflect the physical properties of the
corresponding entities of the real world, and typically cannot be changed by
artificial agents (unless the agent controls a physical robot). On the contrary,
institutional attributes can be affected by institutional actions performed by
purely software agents.

2.1 Institutional actions

Institutional actions are particular types of actions [8] that are crucial for the for-
malization of communicative interactions taking place in open interaction frame-
works. The effect of institutional actions is to change institutional attributes,
that exist only thanks to common agreement. Therefore, agents cannot perform
such actions by exploiting causal links occurring in the natural world, as it would
be done to open a door or to remove a physical object. Rather, as we shall see,
institutional actions are performed on the basis of a shared set of conventions.

Because of their intrinsic social nature, a crucial condition for the actual per-
formance of institutional actions is that they must be public, that is, made known
to the relevant agents by means of some action that can be directly executed by

3

an artificial agent. It is therefore natural to assume that all institutional actions
are performed by sending suitable messages to the relevant agents. An example
of institutional action, that will be discussed in Section 5, is the act of opening
an auction; as we shall see, an agent (the auctioneer) can perform such an action
by sending a suitable message to the relevant group of agents (the participants).
However, the act of sending the message is merely instrumental, and should not
be confused with the institutional action of opening the auction.

We define institutional actions by specifying their preconditions and postcon-
ditions, therefore abstracting from the way in which such actions are concretely
carried out. More precisely, an institutional action is characterized by:

– an action name followed by a possibly empty list of parameters;
– a possibly empty set of (ontological) preconditions, that specify the values

that certain institutional attributes must have for the action to be meaningful
(for example, opening an auction is meaningful only if the auction is not
already open);

– a nonempty set of postconditions, that specify the values of certain institu-
tional attributes after a successful performance of the action.

2.2 Instrumental actions

As we have already remarked, an institutional action is performed by executing
an instrumental action, conventionally associated to the institutional action. In
the human world such instrumental actions vary from certain bodily movements
(raising one’s arm to vote), to the use of specific physical tools (waving a white
flag to surrender), to the use of language (saying ”the auction is open” to open
an auction). In a system of artificial agents, it is natural to assume that all
institutional actions are performed by means of a single type of instrumental
actions, namely exchanging a message.

For the purposes of the current treatment, a message consists of: a message
type, a sender, one or more receivers, and a content. The action of exchanging a
message will be represented with the following notation:

exchMsg(message type, sender, receiver(s), content)

Note that here sender and receiver are just fields of a message. That such
fields correctly represent the agent that actually sends the message and the
agents to which the message is delivered has to be guaranteed by the underlying
message transport system.

2.3 The ”counts as” relation

Following Searle [22], the construction of social reality in the human world is
possible thanks to constitutive rules of the form X counts as Y in C ; in the
particular case where X and Y are actions, the performance of an action of
type X in context C can count as performing an action of type Y . Similarly, in
an artificial system, thanks to shared conventions, the action of exchanging a

4

particular message can ”count as” the execution of some institutional action, if
certain contextual conditions are satisfied.

According to Searle’s Speech Act Theory [21], declarations are the particu-
lar category of communicative acts whose point is to bring about a change in
the institutional reality in virtue of their successful performance. By definition
the content of a declaration describes precisely the institutional changes that it
brings about. Therefore, we take messages of type declare as the fundamental
means to perform institutional actions. The convention that binds the exchange
of a declare message to the performance of the institutional action (iaction),
described in its content, can be described as follows:

exchMsg(declare, sender, receiver, iaction(parameters))=conv

iaction(parameters)

By itself, however, a convention is not sufficient to guarantee the successful
performance of an institutional action by the exchange of a declare message:
indeed, some additional conditions about the agent that sends the message and
about the state of system must be satisfied. In general, an agent must be au-
thorized to perform an institutional action; for example, only the auctioneer can
open an auction by sending a suitable message to the participants. Further con-
textual conditions about the state of the system, expressed by suitable Boolean
expressions, may be required; for example, it may be established that an auction
is validly opened only if there are at least two participants.

Assuming that every agent in the interaction system has an identifier (agent id),
authorizations will be represented with the following notation:

Auth(agent id, iaction(parameters), contextual conditions)

Our notion of authorization should not be confused with the notion of permis-
sion. The distinction we make between these two concepts is similar to the one
between institutionalized power and permission proposed by Jones and Sergot in
[16]. While authorizations are necessary conditions for the performance of insti-
tutional actions, permissions (like obligations) are brought about by norms (see
Section 4.2), that is, by rules that affect the normative positions of the agents
in the system. The crucial difference between authorizations and permissions is
highlighted in the cases when they are not granted. If an agent is not authorized
to perform an institutional action, a performance of the corresponding instru-
mental action does not count as a performance of the institutional action (the
institutional action is thus not executed). On the contrary, if an authorized agent
performs an institutional action without permission, the institutional action is
successfully performed, but the agent violates a norm and it may be sanctioned
for its behavior.

In the specification of an interaction system it is useful to express authoriza-
tions in term of the roles filled by agents, in order to abstract from the concrete
agents that will be actually involved in an interaction. For example, the autho-
rization to open and close an auction is granted to the agent that fills the role
of the auctioneer, independently of its individual identity.

5

The concept of a role is very broad: for example, it is possible to regard
social commitments as institutional entities that define two roles: the debtor of
the commitment and its creditor. This fact appears to be general; that is, roles
are defined relative to an institutional entity. We can then abstractly define the
authorization to perform a specific institutional action (with given parameters)
associating it to a role defined in the context of a specific institutional entity
(ientity):

Auth(ientity.role, iaction(parameters), contextual conditions)

In a concrete interaction, the authorizations associated to roles need to be
transformed into authorizations of an actual agent in the system. Such transfor-
mation can be obtained searching among all the institutional entities present in
the system the ones that match the description given through the parameters
of the institutional action, and then creating a concrete authorization for each
agent having the role indicated in the abstract authorization.

3 A commitment-based Agent Communication Language

The semantics of ACLs that we have proposed in [12, 13] is based on the as-
sumption that the performance of a communicative act in a multiagent system
has the effect of changing the social relationship between the sender and the
receiver, and that this change can be represented by means of an institutional
entity, that is, social commitment. To specify the meaning of various types of
communicative acts in terms of effects on commitments, it is necessary to define
an ontology of commitment and the institutional actions necessary to operate
on commitments.

3.1 The Ontology of Commitment

We regard a commitment as an entity with the following attributes: an identifier ;
a debtor ; a creditor ; a content ; a state, used to keep track of the temporal evo-
lution of the commitment. Commitments will be represented with the following
notation:

Commid(state, debtor, creditor, content)

The content of a commitment can be represented by means of a temporal
proposition (for a detailed treatment of temporal propositions see [13, 7]), that
is, a proposition about a state of affairs or about the performance of an ac-
tion, referred to a specific interval of time. At every time instant, a temporal
proposition has a truth value, that can be undefined, true, or false.

The state of a commitment undergoes a life cycle, described by the state
diagram of Figure 1, and can change as an effect of the execution of institutional
actions (solid lines) or of environmental events (dotted lines). Relevant events
are due to the change of the truth-value of the commitment’s content.

6

content.truth_value=1

makeCommitment

setPending

violated

fulfilled

setCancel

system_time>timeout

setCancel

content.truth_value=0

content.truth_value=1

unset

pending

cancelled

Fig. 1. The life-cycle of commitments.

The creditor of a commitment can be a single agent or a group of agents. It
is important to remark that a commitment taken with a group of agents need
not be equivalent to a conjunction of commitments taken with every member of
the group. This point has been thoroughly analyzed in the literature [5, 9] but
is behind the scope of this paper.

Institutional actions on commitment The institutional actions that operate
on commitments are defined below; preconditions and effects are described using
Object Constraint Language (OCL) [20].

– name :makeCommitment(debtor, creditor, content)
pre : not Comm.allInstances → exists(c|c.debtor = debtor

and c.creditor = creditor and c.content = content)
post : Comm.allInstances → exists(c|c.state = unset and

c.debtor = debtor and c.creditor = creditor and c.content = content)
– name : setCancel(debtor, creditor, content)

pre : Comm.allInstances → exists(c|(c.state = unset or c.state = pending)
and c.debtor = debtor and c.creditor = creditor and c.content = content)

post : Comm.allInstances → exists(c|c.state = cancel and
c.debtor = debtor and c.creditor = creditor and c.content = content)

– name : setPending(debtor, creditor, content)
pre : Comm.allInstances → exists(c|c.state = unset and

c.debtor = debtor and c.creditor = creditor and c.content = content)
post : Comm.allInstances → exists(c|c.state = pending and

c.debtor = debtor and c.creditor = creditor and c.content = content)

It is often useful to define institutional macro-actions, that is, actions whose
execution coincides with the sequential execution of a list of existing institutional
actions, conceived of as a single transaction. For example:

name: makePendingComm(debtor, creditor, content) =def

makeCommitment(debtor, creditor, content), setPending(debtor, creditor, content)

7

3.2 Communicative Acts Libraries

As we already discussed in Section 2, the exchange of a message of type declare
can be considered as the universal act for the performance of institutional ac-
tions; in particular, every type of communicative act can be performed by means
of a declaration. This means that, at least in principle, an ACL can be defined
on the basis of a single type of messages1.

To make a more natural set of communicative acts available to human de-
velopers, we now define a library of messages that gets closer to FIPA ACL [15].
The content of all messages defined below is a temporal proposition, that is, a
description of a state of affairs or the description of a physical action referred to
a certain interval of time. The symbol =def means that performing the action on
the left-hand side is the same as performing the action on the right-hand side.

– exchMsg(inform, sender, receiver, content) =def exchMsg(declare, sender,
receiver,makePendingComm(sender, receiver, content))

– exchMsg(request, sender, receiver, content) =def exchMsg(declare, sender,
receiver,makeCommitment(sender, receiver, content))

– exchMsg(accept, sender, receiver, content) =def

exchMsg(declare, sender, receiver, setPending(sender, receiver, content))
– exchMsg(reject, sender, receiver, content) =def

exchMsg(declare, sender, receiver, setCancel(sender, receiver, content))

4 Artificial Institutions

The word institution is used in the literature with different meanings. An institu-
tion can be seen as an established organization (especially of a public character)
with a code of law, like for example a hospital or a university. With a different
meaning, the word is used to refer to a set of concepts that exist only thanks to
the common agreement of a community of agents, like for example in the case
of money, ownership, or marriage.

In multiagent systems research the term artificial institution is commonly
used to refer to a specific organization or to an abstract pattern that regulates
the interaction among agents [10] [25]. On the contrary, we use the term “artificial
institution” to refer to the abstract description of shared concepts and rules that
regulate a fragment of social reality. In this perspective a concrete organization
is a reification of one or more artificial institutions. In our view, the specification
of an institution consists of the following components:

– the core ontology, that is, the definitions of the institutional concepts intro-
duced by the institution and of the institutional actions that operates on
them;

1 Carrying out a communicative act by declaration corresponds to a performative
execution of the communicative act [23]. In human languages, however, only the
communicative acts that are completely overt may have a performative execution;
certain communicative acts, like for example the act of insinuating, cannot be per-
formed by declaration, because they intrinsically contain a concealed component.

8

– a set of authorizations specifying which agents are empowered to perform
the institutional actions;

– a set of norms that impose obligations and permissions on the agents that
interact within the institution.

Of course, in order that the proposed model can actually be used in real
applications it is necessary that the fundamental concepts, used to define the
structure of institutions, are collectively accepted by the designers and users of
open interaction frameworks.

4.1 The Basic Institution

The Basic Institution is the institution that defines and regulates the manage-
ment of commitments, which we regard as the fundamental concept of every
interaction. In the previous section commitment has been introduced as an in-
stitutional entity, together with a set of institutional actions to operate on it. We
showed that commitments can be used to define basic types of communicative
acts that can be performed by exchanging declare messages.

As discussed in Section 2, the ”count as” relation between the action of ex-
changing a message and the associated institutional action takes place if some
conditions are satisfied; more precisely, the sender of the message must be autho-
rized to perform the institutional action and some contextual conditions must
hold. We have also shown how authorizations can be associated to roles.

We now define a set of authorizations concerning the creation and the ma-
nipulation of commitments. Such authorizations will be associated to the two
roles introduced by commitments themselves: the role of debtor and the role
of creditor. Moreover, we assume a universal role, RegAgt, that every registered
agent plays throughout its lifetime.

– Any registered agent can create an unset commitment with any other regis-
tered agent as debtor or creditor:

Auth(RegAgt,makeCommitment(debtor, creditor, content));

– the debtor of an unset commitment can set it to pending :

Auth(Comm(debtor, creditor, content).debtor, setPending(debtor, creditor,
content));

– the debtor of an unset commitment can set it to cancelled :

Auth(Comm(unset, debtor, creditor, content).debtor, setCancel(debtor,
creditor, content));

– the creditor of a commitment can set it to cancelled :

Auth(Comm(debtor, creditor, content).creditor, setCancel(debtor, creditor,
content)).

9

Note that these authorizations allow an agent to perform all communicative acts
defined in Section 3.2. These basic authorizations may be modified or new ones
may be introduced within special institutions (see Section 5).

In general, institutions also define sets of norms to regulate the behavior of
agents. In our current view, the Basic Institution specifies no norms. However,
norms are introduced by most special institutions, and in particular by the spe-
cial institution of English Auctions described in Section 5. Therefore, in the next
subsection we give a detailed description of our concept of norm.

4.2 Norms

In a special institution, the execution of an action by an authorized agent often
needs to be regulated by another fundamental component of artificial institu-
tions, that is, a system of norms. For example, the auctioneer of an English
Auction not only is authorized to declare who is the winner, but he is also
obliged to do so in certain circumstances. Furthermore, there are conditions un-
der which it is forbidden to the auctioneer to declare an agent as the winner (for
instance during a period of time reserved for offers).

Norms prescribe which institutional actions should or should not be executed
among those that are authorized. In doing so, norms play an important function,
in that they make an agent’s behavior at least partially predictable and allow
agents to coordinate and plan their actions according to the expected behavior
of the others, as studied in [19, 2]. In particular, we think that norms can be used
to specify protocols, because they can dictate that in certain circumstances an
agent ought to send a given type of message, or react to a message in a specific
way, to comply with the regulations of a specific institution. How this can be
done will be shown in Section 5.

We regard norms as event-driven rules that fire under appropriate conditions
and, by doing so, create, update or cancel commitments affecting a predefined
set of agents. At an abstract level, a norm is part of the definition of an artificial
institution; its instances then regulate and are bounded to the organization that
reifies the institution. Agents are liable to all the norms associated to the roles
they play in an institution.

A norm is defined within an institution, observes an entity of an institution,
is activated by an event concerning such an entity, and then fires if certain
contextual conditions are met. Typically, interesting event types are the filling
of a role by an agent, a value change of an institutional attribute, the reaching
of certain instant of time, and so on.

When a norm fires, it is applied to a collection of liable agents, that are
described by a suitable selection expression; in general, the collection of liable
agents corresponds to the set of agents that play a given role in the institution.
For every liable agent, the norm creates, updates or cancels a set of commitments.

The general structure of a norm can be described as follows:

within context name: ientity
on e: event type

10

if contextual conditions then
foreach agent in liable agent selection expression
do commitmentActionDescription{; commitmentActionDescription}∗
Many studies have been devoted to the analysis of the relationship holding

between norms and commitments, which is often perceived as a fundamental
aspect of institutions [10] and organizations [5]. For example in [11] commitments
are viewed as a specialization of norms, while in [5] and [17] norms are a special
kind of commitments, called metacommitments.

From our point of view, norms are not themselves commitments, but rules
that manipulate commitments of the agents engaged in an interaction. In fact,
norms are associated to roles rather than to individual agents; they do not have
a debtor or a creditor, and strictly speaking they cannot be fulfilled or violated.
Indeed, what can be fulfilled or violated is not a norm, but a commitment created
by the application of a norm.

There are, in conclusion, two types of commitments: the ones created by
individual agents through the execution of communicative acts, and the ones
created by norms and acquired by an agent in virtue of its role in an institution.

5 The English Auction

In this section we will describe an example of a special institution, concerning
the specification of a widely studied interaction framework: the English Auc-
tion. The formalization proposed exploits the conventional nature of this type
of interaction, making explicit the social concepts and rules that constitute and
regulate the interaction.

In the literature there are other attempts to specify the English Auction,
like for instance the one proposed by FIPA [14] and the one presented in a
previous work of ours [13]. But we think that the definition of the English Auction
as a special institution overcomes some drawbacks of those formalizations. In
particular in the approach presented in [14] commitments between the winner
and the auctioneer are created only when the auction is closed. On the contrary
in the current formalization and in [13] commitments are undertaken by the
agents during the auction.

Another important advantage of this approach with respect to [13] is that
the explicit formalization of the context of the interaction simplifies the content
of the exchanged messages. For instance if the context is not made explicit, the
auctioneer of an English Auction has to accept a bid of a participant, committing
the auction house to give the product to that participant, on condition that no
higher bids will be submitted. Otherwise the context can be made explicit for
example by introducing the role current winner and a norm that creates a com-
mitment for the current winner to pay the ask price to the auction house, and
a commitment for the auction house to give the product to the current winner
of the last round. Using this formalization, the exchanged messages for bidding
and for declaring the winner are simple institutional actions, as will be shown
in the next section.

11

5.1 The English Auction ontology (EAOntology)

Entities The ontology of the English Auction consists of some institutional enti-
ties and is described by the class diagram reported in Figure 2. The fundamental
entity called EnglishAuction is identified by its id and can assume three different
states: unset, during the registration phase, open and closed. An EnglishAuction
has a product that will be sold at the ask price, which starts from the reserva-
tion price and can only increase. During an English Auction there are periods of
time, that we model by introducing the Round entity, during which agents can
made their Bids. A Round has a fixed duration (round duration) and it should
be closed after its close time has expired. If there are no bids in a Round or if
the maximum number of rounds (max round) is reached, the English Auction is
closed.

An agent that takes part in an English Auction can fill the role of participant,
or of auctioneer. Participants can only raise their Bids and the highest bidder
is declared the current winner. During one auction we assume that an agent
cannot be both a participant and an auctioneer, while it must be a participant
in order to be allowed to become a current winner. Furthermore, all the agents
that are related to the auction are gathered in the EAGroup.

Other concepts that are fundamental for every MAS, like Agent and Individ-
ualAgent, are assumed to be defined in external ontologies.

UnsetEnglishAuction OpenEnglishAuction ClosedEnglishAuction

id
start_time
max_round
current_round
round_duration
transaction_time

EnglishAuction
Object

1
0..1

product

AgentEAGroup

IndividualAgent

1
1 organization

current_offer
close_time

Round

*

*

member

*

0..1

auctioneer

* *

participant

*
0..1

current_winner

{xor: }

{subset: }

1

*

has

id
Bid

1 *

made_in
value
Currency

0..1

0..1

ask_price

1

0..1

reservation_price

1 0..1

price

1

*
offers

OpenRound CloseRound

Fig. 2. Class diagram representing the English Auction ontology.

12

Institutional Actions The institutional actions that operate on EnglishAuc-
tion entities allow agents to open and close the auction, to make a bid, to set
the current winner or a new ask price, to open and close a round.

To describe an institutional action a slight extension of OCL is needed. In
fact, using the terminology introduced in [8], object oriented specifications usu-
ally treat actions as events, because they only model state changes in the world.
Instead, an action is an event brought about by an agent, and may have differ-
ent effects depending on which authorized agent has performed it. For example,
the act of bidding creates a new offer for the bidder and not for other agents.
Therefore, we introduce a new reserved word, actor, that is used to refer to the
agent that is performing the action. Below we formally define the institutional
actions made available by the EAOntology. The action for opening an auction
is:

name : openAuction(auct id)
pre : UnsetEnglishAuction.allInstances → exists(id = auct id)
post : OpenEnglishAuction.allInstances → exists(id = auct id)

It can be successfully performed only if the auct id corresponds to an auction
not yet opened.

When an auction is opened, an agent can change the ask price, that can only
rise, executing the following action:

name : setAskPrice(auct id, price)
pre : OpenEnglishAuction.allInstances → exists(id = auct id

and ask price.value < price)
post : OpenEnglishAuction.allInstances → exists(id = auct id

and ask price.value = price)

The phase when participants can place their bids is represented by the Round
entity. An EnglishAuction can have only one Round open. In our formalization,
opening a bid session correspond to create a new Round, calculate when it should
be closed and increase the current round counter.

name : newRound(auct id)
pre : not OpenEnglishAuction.allInstances → select(id = auct id)

.round → exists(oclIsTypeOf(OpenRound))
post : let a: EnglishAuction = EnglishAuction.allInstances → select(

id = auct id)
a.round → select(r | not a.round@pre → including(r) and
r.oclIsTypeOf(OpenRound) and close time = now + a.round duration))
→ sizeOf() = 1 and a.current round = a.current round@pre + 1

During a round, an agent can only make one bid with a price higher than
the ask price. A successful act of bidding increments the number of offers ,that
is used to identify a new Bid of the actor with the offered price.

13

name : makeBid(auct id, price)
pre : let a: OpenEnglishAuction = OpenEnglishAuction.allInstances →

select(id = auct id)
a.round → select(r | r.oclIsTypeOf(OpenRound)).bid →
select(actor = offers) → isEmpty() and a.ask price.value < price)

post : OpenEnglishAuction.allInstances → select(id = auct id).round
→ select(r.oclIsTypeOf(OpenRound) and r.current offer
= round.current offer@pre + 1 and r.bid → select(b |
not r.bid@pre → including(b) and b.offers = actor and
b.price.value = price) → sizeOf() = 1))

A participant can be declared the current winner only if he has made the
highest bid.

name : currentWinnerIs(auct id, agent)
pre : let a:OpenEnglishAuction = OpenEnglishAuction.allInstances

→ select(id = auct id)
a.round.bid → select(b | b.price.value = a.round.bid.price.value → max())
.offers = agent

post : OpenEnglishAuction.allInstances → select(id = auct id)
.current winner = agent

An agent can close an open round, and, as a consequence of this action, all
rounds associated with the auction result closed:

name : closeRound(auct id)
pre : OpenEnglishAuction.allInstances → select(id = auct id).round

→ exists(oclIsTypeOf(OpenRound))
post : OpenEnglishAuction.allInstances → select(id = auct id).round

→ forAll(oclIsTypeOf(ClosedRound))

Finally, an agent can close an open auction:

name : closeAuction(auct id)
pre : OpenEnglishAuction.allInstances → exists(id = auct id)
post : CloseEnglishAuction.allInstances → exists(id = auct id)

5.2 Authorizations

A participant is authorized only to make bids:

Auth(EnglishAuctionid.participant, makeBid(id, price))

Auctioneers are authorized to perform all other actions defined by the EAOn-
tology. Some of these authorizations are conditioned, for example an auctioneer
is authorized to open an auction only if its start time has elapsed and if there
are at least two agents registered as participants:

14

Auth(EnglishAuctionid.auctioneer, openAuction(id),
now > EnglishAuctionid.start time and EnglishAuctionid.participant → size() > 2)

In a similar way, an auctioneer is authorized to close a round only if its
close time has elapsed.

Auth(EnglishAuctionid.auctioneer, closeRound(id),
now > EnglishAuctionid.round → select(r.oclIsTypeOf(OpenRound)).close time)

The auctioneer is authorized to perform the remaining actions without any
constraint.

Auth(EnglishAuctionid.auctioneer, setAskPrice(id, price))
Auth(EnglishAuctionid.auctioneercloseAuction(id))
Auth(EnglishAuctionid.auctioneer, newRound(id))
Auth(EnglishAuctionid.auctioneer, currentWinnerIs(id, agent))

5.3 Event types

Before describing norms in details, we need to discuss further how to model
event types and event tokens, an individual belonging to an event type (see [8]),
in order to describe more precisely which kind of events activates a norm and
how norms can detect their occurrences.

The Unified Modeling Language (UML) [4] models four kinds of events: sig-
nals, calls, passing of time and change in state. Unfortunately, the notation
proposed in UML for modeling events is bound to features of State Machine
and Statechart Diagrams, while we need a way to describe events in general.
Inspired by UML notation for signals, here we propose to model type of events
as stereotyped classes. A stereotype extends the UML vocabulary, creating new
building blocks that are derived from existing ones. In this case, event stereo-
type is derived by UML class, that we use also to represent physical objects
and institutional entity. As classes, an event type can have attributes, providing
information about the state transition that caused it, and it is possible to model
hierarchies of events. Furthermore, we assume that the system returns the time
at which an event token has occurred, by means of the time of() operator.

In our formalization we have singled out three three main categories of events:

– TimeEvent, that occurs when the system reaches a certain instant of time.
– ChangeEvent, that happens when an institutional entity changes in some

way. This kind of event type can be specialized further:
• InstitutionalPropertyChange is registered when an attribute has changed

its value.
• InstitutionalRelationChange, that is, when a new relation is created or an

existing one between the institutional entity and another one is dropped.
• InstitutionalStateChange occurs when an entity modifies its type in a

given taxonomy.For example, when an auction from unset becomes open.

15

– ActionEvent happens when an agent perform an action. In particular, an
interesting type of this kind of events is ExchangeMessage, that represents
the act of sending a message.

These main categories and their specializations are represented in Figure 3.

-instant

«event»
TimeEvent

«event»
ChangeEvent

«event»ActionEvent

-attributeName
-oldValue
-newValue

InstitutionalPropertyChange

-relationName
-operation

«event»
InstitutionalRelationChange

-previousState
-currentState

«event»
InstitutionalStateChange

Entity

* 1

in

Entity

* 1

involved

Agent

* 1

acted_by

ExchangeMessage ACLMessage

* 1

exchanged

Fig. 3. Class diagram representing main event types.

The definition of event types allow us to describe event tokens and event
templates, that are, event types with some restriction on certain attributes. The
main difference between event token and event template is that the first describes
only one occurrence, while the latter describes a set of possible event occurrences.

Event descriptor are used in the on section of a norm: when an event matches
the given descriptor, the corresponding norm is fired and its variable e is filled
with the event that activated it.

5.4 Norms

In this section, we will describe the set of norms that dictate the behaviour of
agents that has joined an interaction system regulated by the English Auction
Institution. Each norm prescribes what agents should or should not do in corre-
spondence of relevant institutional events. To prevent system overload due to the
exchange of useless messages, we will assume that exists a special norm that for-
bids registered agents to execute those institutional actions that are ontologically
impossible or that are not authorized. We will not present such norm explicitly,
because its formalization requires some concepts related to commitment content
that has not discussed in this paper.

If this set of norms is respected, the consequent interaction can be described
with the interaction diagram of Figure 4, where in each state there is represented
the value of main attributes and edges indicate the successful performance of an
institutional action by an authorized actor.

16

State_1
UnsetEnglishAuction

time < start_time

State_2
OpenEnglishAuction

time>start_time
ask_price = 0

current_winner = null

auctioneer, openAuction(id)

State_3
ask_price = price

auctioneer, setAskPrice(id, price)

State_4
new OpenRound
current_round+1

auctioneer, newRound(id)

State_7
all CloseRound

auctioneer,closeAuction(id)

State_9
ClosedAuction

auctioneer, closeAuction(id)

auctrioneer, closeRound(id)

State_5
new Bid

current_offer+1

participant, makeBid(id, price)

participant, makeBid(id, price)

State_6
all CloseRound

auctioneer, closeRound(id)

State_8
ask_price=price

auctioneer, setAskPrice(id, price)

auctioneer, roundWinnerIs(id, agent)

auctioneer, roundWinnerIs(id, agent)

Fig. 4. The protocol prescribed by norms of the English Auction Institution

State 1 corresponds to the registration phase, during which agents assume
the role of participants or auctioneer. When the start time is elapsed and if two
agents has been registered as participants, a norm create an obligation for the
auctioneer to open the auction:

within a: UnsetEnglishAuction
on e: TimeEvent(a.startTime)
if a.participant.sizeOf() >= 2 then

foreach agent in a.auctioneer
do

makePendingComm(agent, a.organization,
(openAuction(a.id), [now, now + δ],∃))

Where δ is the time allowed to the auctioneer to fulfill its obligation.
It is important to remark that norms concerning the auctioneer have a recur-

rent pattern. In fact, at every stage of the interaction, the auctioneer is obliged

17

to do a specific action among those that are ontologically possible and it is au-
thorized to perform, whereas it is forbidden from doing any of the others. This
pattern can be recognized in the following norm:

within a: EnglishAuction
on e: InstitutionalStateChange(a,UnsetAuction,OpenAuction)
if a.ask price = 0 then

foreach agent in a.auctioneer
do

makePendingComm(agent, a.organization,
(setAskPrice(a.id, a.reservation price), [now, now + δ], ∃))

makePendingComm(agent, a.organization,
(not newRound(a.id), [now, time of(e :
InstitutionalStateChange(a,OpenAuction,ClosedAuction))], ∀))

The previous norm states that when the auction is declared open (State 2),
the auctioneer should set the reservation price. Furthermore, it forbids the auc-
tioneer from opening a round until the auction is closed. Actually, that prohibi-
tion is cancelled by another norm when the auctioneer sets a new ask price and
an obligation to open a round of offers is created:

within a: EnglishAuction
on e: InstitutionalRelationChange(a.ask price, created)
if a.current round < max roundthen

foreach agent in a.auctioneer
do

foreach comm in Comm.AllInstances → select(debtor = agent and
creditor = a.organization and
content.match(not newRound(a.id)))

do
setCancel(comm.debtor, comm.creditor, comm.content)

makePendingComm(agent, a.organization,
(newRound(a.id), [now, now + δ], ∃))

makePendingComm(agent, r.englishAuction.organization,
(not setAskPrice(a.id,−), [now, time of(e :
InstitutionalStateChange(a,OpenAuction, ClosedAuction))], ∀))

makePendingComm(agent, r.englishAuction.organization,
(not closeRound(a.id), [now, time of(e :
InstitutionalStateChange(a,OpenAuction, ClosedAuction))], ∀))

makePendingComm(agent, r.englishAuction.organization,
(not currentWinnerIs(a.id,−), [now, time of(e :
InstitutionalStateChange(a,OpenAuction, ClosedAuction))], ∀))

When the auctioneer declare a new ask price (State 3), a set of authorized
and ontologically possible actions should be prohibited, because we assume that

18

the current winner and the ask price should be declared only when a Round is
closed. Instead, an auction can be closed only when the the current round has
reach the max round or when it has not received any bid from participants as
described by the following two norms:

within a: EnglishAuction
on e: InstitutionalRelationChange(a.ask price, created)
if a.current round = max round then

foreach agent in a.auctioneer
do

foreach comm in Comm.AllInstances → select(debtor = agent and content.match(not
closeAuction(r.englishAuction.id))
do

setCancel(comm.debtor, comm.creditor, comm.content)
makePendingComm(agent, a.organization,

(closeAuction(a.id), [now, now + δ], ∃))

within r: Round
on e: InstitutionalStateChange(r,OpenRound,CloseRound)
if r.bid → isEmpty() then

foreach agent in r.englishAuction.auctioneer
do

foreach comm in Comm.AllInstances → select(debtor = agent and content.match(not
closeAuction(r.englishAuction.id))
do

setCancel(comm.debtor, comm.creditor, comm.content)
makePendingComm(agent, r.englishAuction.organization,

(closeAuction(r.englishAuction.id), [now, now + δ], ∃))

When a new round is opened (State 4), preconditions of makeBid become
true and participants can make only one bid performing that institutional action
. Unlike the auctioneer, a participant has the permission to make a bid, but it
is not obliged.

After the round duration has elapsed, the auctioneer is committed to close
the round:

within r: Round
on e: TimeEvent(r.close time)
if r.oclIsTypeOf(OpenRound) then

foreach agent in a.auctioneer
do

foreach comm in Comm.AllInstances → select(debtor = agent and
creditor = r.englishAuction.organization and
content.match(not closeRound(r.englishAuction.id)))

do

19

setCancel(comm.debtor, comm.creditor, comm.content)
makePendingComm(agent, a.organization,

(closeRound(a.id), [now, now + δ], ∃))

If there is a valid offer, the auctioneer is obliged to proclaim current winner
the agent that has made the highest bid and to set the value offered as the new
ask price (State 6 and State 8).

within a: EnglishAuction
on e: InstitutionalRelationChange(a.ask price, created)
if a.round → notEmpty() then

foreach agent in a.auctioneer
do

makePendingComm(agent, a.organization,
(currentWinnerIs(a.round.bid → select
((b1, b2 | b1 <> b2implies
((b1.price.value > b2.price.value) or (b1.price.value =
b2.price.value and b1.id > b2.id).offers), [now, now + δ],∃)))

within r: Round
on e: InstitutionalStateChange(r,OpenRound,CloseRound)
if not r.bid → isEmpty() then

foreach agent in r.englishAuction.auctioneer
do

foreach comm in Comm.AllInstances → select(debtor = agent and
content.match(notsetAskPrice(r.englishAuction,−))

do
setCancel(comm.debtor, comm.creditor, comm.content)

makePendingComm(agent, r.englishAuction.organization,
(setAskPrice(r.englishAuction, r.bid.price.value → max()))
, [now, now + δ], ∃))

Every time an agent is declared current winner, it is committed to buy the
product on sale at the price of its last bid, whereas a similar commitment with
debtor the previous winner is cancelled.

within a: EnglishAuction
on e: InstitutionalRelationChange(a, current winner, created)
if true then

foreach agent in a.current winner
do

makePendingComm(agent, a.auctioneer,
(give(agent, a.auctioneer, a.ask price),
[time of(e : InstitutionalStateChange(a,OpenAuction,ClosedAuction)),

20

time of(e : InstitutionalStateChange(a,OpenAuction, ClosedAuction))
+a.transactionTime], ∃))

within a: EnglishAuction
on e: InstitutionalRelationChange(a, current winner, create)
if true then

foreach agent in a.participant
do

foreach comm in Comm.AllInstances → select(debtor = agent and
creditor = a.auctioneer and
content.match(give(agent, a.auctioneer,−)))

do
setCancel(comm.debtor, comm.creditor, comm.content)

At the same moment, an obligation for the auctioneer to give the product to
the previous current winner is canceled, whereas a similar one is created with
the new current winner as the creditor.

within a: EnglishAuction
on e: InstitutionalRelationChange(a, current winner, create)
if true then

foreach agent in a.auctioneer
do

foreach comm in Comm.AllInstances → select(debtor = agent and
content.match(give(agent,−, a.product))
do

setCancel(comm.debtor, comm.creditor, comm.content)
makePendingComm(agent, a.current winner,

(give(agent, a.current winner, a.product), [time of(e :
InstitutionalStateChange(a,OpenAuction,ClosedAuction)), time of(e :
InstitutionalStateChange(a,OpenAuction,ClosedAuction))+
a.transaction time], ∃))

makePendingComm(agent, a.organization,
(not currentWinnerIs(a.id,−), [now, time of(e :
InstitutionalStateChange(a, OpenAuction,ClosedAuction))], ∀))

6 Conclusions

In this paper we have defined an ACL as a set of conventions to act on a fragment
of institutional reality, defined in the context of an artificial institution, called the
Basic Institution. Within such an approach, we proposed a commitment-based
semantics for an ACL, and showed that all commonly used types of communica-
tive acts can be defined in terms of a single basic type, namely declarations.

21

Then we have defined special institutions, that augment the Basic Institution by
adding ontological and normative elements, and showed how a well known inter-
action framework, the English Auction, can be regarded as a special institution,
its interaction protocol being defined as a set of norms.

We believe that our approach helps clarifying the strict relationships holding
between language, institutional reality, and interaction rules in a MAS. More-
over, we believe that the adoption of an operational modelling style makes our
proposal reasonably easy to implement. In fact, we plan to implement our frame-
work as an extension of JADE in the near future.

References

1. L. Amgoud, N. Maudet, and S. Parsons. An argumentation-based semantics for
agent communication languages. In F. V. Harmelen, editor, Proceedings of the
European Conference on Artificial Intelligence (ECAI-2002), pages 38–42, Lyon,
France, July 2002. IOS Press.

2. M. Barbuceanu, T. Gray, and S. Mankovski. Coordinating with obligations. In
K. P. Sycara and M. Wooldridge, editors, Proceedings of the 2nd International
Conference on Autonomous Agents (Agents’98), pages 62–69, New York, 1998.
ACM Press.

3. J. Bentahar, B. Moulin, and B. Chaib-draa. Commitment and argument network: A
new formalism for agent communication. In F. Dignum, editor, Advances in Agent
Communication, International Workshop on Agent Communication Languages,
ACL 2003, Melbourne, 2003, volume 2922 of LNCS, pages 146–165. Springer, 2004.

4. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, USA, 1 edition, 1999.

5. C. Castelfranchi. Commitments: From individual intentions to groups and organi-
zations. In V. Lesser, editor, Proc. First International Conference on Multi-Agent
Systems, pages 528–535, San Francisco, USA, 1995. AAAI-Press and MIT Press.

6. M. Colombetti. A commitment–based approach to agent speech acts and con-
versations. In Proc. Workshop on Agent Languages and Communication Policies,
4th International Conference on Autonomous Agents (Agents 2000), pages 21–29,
Barcelona, Spain, 2000.

7. M. Colombetti, N. Fornara, and M. Verdicchio. A social approach to communi-
cation in multiagent systems. In J. A. Leite, A. Omicini, L. Sterling, and P. Tor-
roni, editors, Declarative Agent Languages and Technologies, volume 2990 of LNAI,
pages 121–150, to be published. Springer, 2004.

8. M. Colombetti and M. Verdicchio. An analysis of agent speech acts as institutional
actions. In C. Castelfranchi and W. L. Johnson, editors, Proc. First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002),
pages 1157–1166, Bologna, Italy, 2002. ACM Press.

9. F. Dignum and L. Royakkers. Collective obligation and commitment. In In Proc.
of 5th Int. conference on Law in the Information Society, Florence, Italy, 1998.

10. M. Esteva, J. A. Rodŕıguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On the
formal specification of electronic institutions. In F. Dignum and C. Sierra, editors,
Agent Mediated Electronic Commerce, The European AgentLink Perspective (LNAI
1991), pages 126–147. Springer, 2001.

22

11. F. Lopez y Lopez and M. Luck. Modelling Norms for Autonomous Agents. In
E. Chavez, J. Favela, M. Mejia, and A. Oliart, editors, Proceedings of Fourth Mex-
ican International Conference on Computer Science, pages 238–245, 2003.

12. N. Fornara and M. Colombetti. Operational specification of a commitment-based
agent communication language. In C. Castelfranchi and W. L. Johnson, editors,
Proc. First International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2002), pages 535–542, Bologna, Italy, 2002. ACM Press.

13. N. Fornara and M. Colombetti. Defining interaction protocols using a commitment-
based agent communication language. In J. S. Rosenschein, T. Sandholm,
M. Wooldridge, and M. Yokoo, editors, Proc. Second International Joint Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS 2003), pages
520–527, Melbourne, Australia, 2003. ACM Press.

14. Foundation for Intelligent Physical Agents. FIPA English Auction Interaction
Protocol Specification. http://www.fipa.org, 2001.

15. Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification. http://www.fipa.org, 2002.

16. A. Jones and M. J. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3):429–445, 1996.

17. M. P. Singh. An ontology for commitments in multiagent systems: Toward a
unification of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

18. P. McBurney and S. Parsons. Posit spaces: a performative model of e-commerce.
In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Proc.
Second International Joint Conference on Autonomous Agents and MultiAgent Sys-
tems (AAMAS 2003), pages 624–631. ACM Press, 2003.

19. Y. Moses and M. Tennenholtz. Artificial social systems. Computers and AI,
14(6):533–562, 1995.

20. Object Management Group, OMG . Object Constraint Language Specification 1.4.
http://www.omg.org/, 2003.

21. J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, United Kingdom, 1969.

22. J. R. Searle. The construction of social reality. Free Press, New York, 1995.
23. J. R. Searle and D. Vanderveken. Foundations of Illocutionary Logic. Cambridge

University Press, Cambridge, UK, 1984.
24. M. P. Singh. A social semantics for agent communication languages. In Proceedings

of IJCAI-99 Workshop on Agent Communication Languages, pages 75–88, 1999.
25. J. M. V. Marik and M. Pechoucek, editors. Modelling Electronic Organizations,

volume 2691 of LNAI. Springer, 2003.
26. M. Verdicchio and M. Colombetti. A logical model of social commitment for agent

communication. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo,
editors, Proc. Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2003), pages 528–535, Melbourne, Australia, 2003.
ACM Press.

Technical report No. 1
Agent Communcation and Institutional Reality
N. Fornara, F. Viganò, M. Colombetti
2004

ITC

Institute for
Communication
Technologies

www.itc.com.unisi.ch

Faculty of
Communication
Sciences

Università della
Svizzera
italiana

via Buffi 13
CH-6900
Lugano

