
Automatic Certification of Heap Consumption

Lennart Beringer1, Martin Hofmann2, Alberto Momigliano1, Olha Shkaravska2

1 Laboratory for Foundations of Computer Science, The University of Edinburgh,
Mayfield Road, Edinburgh EH9 3JZ;{lenb,amomigl1}@inf.ed.ac.uk

2 Institut für Informatik, Ludwig-Maximilians-Universiẗat München, Oettingenstraße 67,
80538 M̈unchen;{mhofmann,shkaravska}@tcs.ifi.uni-muenchen.de

Abstract. We present a program logic for verifying the heap consumption of
low-level programs. The proof rules employ a uniform assertion format and have
been derived from a general purpose program logic [1]. In a proof-carrying code
scenario, the inference of invariants is delegated to the code provider, who em-
ploys a certifying compiler that generates a certificate from program annotations
and analysis. The granularity of the proof rules matches that of the linear type sys-
tem presented in [6], which enables us to perform verification by replaying typing
derivations in a theorem prover, given the specifications of individual methods.
The resulting verification conditions are of limited complexity, and are automati-
cally discharged. We also outline a proof system that relaxes the linearity restric-
tions and relates to the type system of usage aspects presented in [2].

1 Introduction

Validating the resource consumption of a program obtained from an unknown or un-
trustworthy code producer is an important task of any security architecture targeting
devices with limited resources. The Mobile Resource Guarantees (MRG) project [17]
is developing Proof-Carrying Code (PCC) technology [14] to endow mobile code with
certificates of bounded resource consumption that can be validated automatically. These
certificates are generated by a compiler which, in addition to translating high-level pro-
grams into machine code, derives formal proofs based on programmer annotations and
program analysis. The foundation of the validation process is a program logic that is
sufficiently powerful to formulate expressive certificates. As the logic and the certifi-
cate checker are trusted components from the point of view of the program recipient,
soundness of the logic with respect to an operational model of the target architecture
is crucial, and should ideally be present in a machine-checkable form. In [1], we pre-
sented our general-purpose logic, including proofs of soundness and completeness, the
latter relative to the ambient logic HOL. The development is completely backed up
by an implementation in Isabelle/HOL, building upon, and extending, earlier work on
formalised program logics by Kleymann, Nipkow and others [8, 15]. In this paper, we
use this logic to justify more specialised logics for the resourceheap consumption. We
develop proof rules that allow the code producer to certify the heap consumption of a
low-level program in such a way that the recipient can validate the memory behaviour
prior to execution. Judgements in these heap logics arise from the base logic by restrict-
ing assertions to syntactically uniform representations and formally deriving proof rules

in the theorem prover. The assertion formats are motivated by, and closely related to,
typing judgements used in a certifying compiler for inferring the memory requirements
of programs at source level.

Our approach to deriving proof rules for restricted assertion formats from the base
logic achieves several goals: firstly, soundness of the heap logics with respect to the
operational model is obtained from the soundness of the base logic. Secondly, a method
for certificate generation is achieved: the type systems infers invariants (in our case:
method specifications) for the low-level code based on the strategy used for compiling
high-level programs. Thirdly, a strategy is obtained that allows the program recipient to
verify the validity of a proof automatically: the proof rules are set up in such a way that
methods can be proved in a largely syntax-directed way, with side conditions that are
of low complexity. The granularity of proof rules matches that of the type systems: se-
quences of low-level instructions that originate from a high-level language construct are
combined in a single proof rule. Thus, the consumer-side verification can follow a val-
idation tactic that essentially replays typing judgements, where the compiler-generated
invariants eliminate the need to perform complex proof search.

In the main part of this paper, we outline this certification strategy for an (affinely)
linear assertion format that interprets the type system of Hofmann and Jost [6]. Contin-
uing our work on formalisation, the derivation of the proof system from the base logic
has been implemented in Isabelle/HOL, as has the verification tactic at recipient side.
However, in order to demonstrate that our approach is more widely applicable, we also
outline an extension that considers assertions corresponding to the more powerful type
system of [2]. Here, the linearity requirements are relaxed by distinguishing between
three usage disciplines a program may obey with respect to a data structure. While the
formalisation of the corresponding proof system for derived assertions in a theorem
prover is under way, the syntax-directedness and the computational simplicity of the
side conditions again make an automatic verification by the recipient appear feasible.

2 Components of the MRG Architecture

In this section we summarise MRG’s PCC architecture. We start by introducing our rep-
resentation of low-level code, the Grail language, and the program logic that forms the
foundation of the certification. We then move to the high-level language, Camelot, and
discuss the compilation of programs into Grail, with particular emphasis on memory
management. Finally, we outline the static analysis of memory consumption that will
be the basis of the proof rules in the following section. For details, see [1, 4, 6, 12].

Syntax and Semantics of GrailThe target of MRG’s compilation, and the language to
which certificates refer, is a restricted form of Java bytecode, Grail [4]. This language
retains the object and method structure of bytecode, but represents method bodies as
sets of mutually tail-recursive first-order functions. The syntax comprises instructions
for object creation and manipulation, method invocation and primitive operations such
as integer arithmetic, as well as let-bindings to combine program fragments. The main
characteristic of Grail is its dual identity: its (impure) call-by-value functional seman-
tics coincides with an imperative interpretation of the expansion of Grail programs into

the Java Virtual Machine Language, provided that some mild syntactic conditions are
met. In particular, we require that actual arguments in function calls coincide syntac-
tically with the formal parameters of the function definitions. In [4] we showed that
this discipline, together with Administrative-Normal-Form (ANF)-style normalisation
of let-expressions, allows function calls to be interpreted as immediate jump instruc-
tions, and admits the definition of a code transformation that is the exact reversal of the
expansion of Grail expressions into JVML. The formal syntax of expressions

e∈ expr ::= null | int i | var x | prim op x x| new C [ti := xi] | x.t | x.t:=x |
C.t | C.t:=x | let x=ein e | e ; e | if x then eelse e | call f | C.M(a)

a∈ args ::= var x | null | i

is defined over mutually disjoint sets of method names, class names, function names
(i.e. labels of basic blocks), (static) field names and variables, ranged over byM, C, f ,
t, andx, respectively. In the grammar,i ranges over integers andop denotes a primitive
operation of typeV ⇒V ⇒V such as an arithmetic or a comparison operator. HereV
is the semantic category of values (ranged over byv), comprising integers, referencesr,
and the special symbol⊥, which stands for the absence of a value. Heap references are
eithernull or of the formRef l wherel ∈ L is a location.

Expressions represent basic blocks and are built from operators, constants, and pre-
viously computed values (names). They correspond to primitive sequences of bytecode
instructions which may, as a side effect, alter the heap. For example,x.t and x.t:=y
represent (non-static) field access instructions, whileC.t andC.t:=y denote their static
counterparts. The bindinglet x=e1 in e2 is used if the evaluation ofe1 returns an
integer or reference value on top of the JVM stack whilee1 ; e2 represents non-binding
composition, used for example ife1 is a field update. Object creation includes the ini-
tialisation of the object fields according to the argument list. Function calls follow the
Grail calling convention (i.e. correspond to immediate jumps) and do not carry argu-
ments. The instructionC.M(a) represents static method invocation. While formal pa-
rameters of method invocations are variables, actual arguments can be variables, in-
teger constants ornull. Although a formal type and class system may be imposed on
Grail programs, our program logic abstracts from these restrictions. We assume that all
method declarations employ distinct names for identifying inner basic blocks.

A program is represented by a tableFtable mapping each function identifier to
an expression and a list of formal arguments, and a tableMtable associating method
parameters and the name of the initial basic block to class names and method identifiers.
The formal basis of the program logic is an operational semantics that is expressed as a
big-step evaluation relationE ` h,e⇓ h′,v. For expressione, such a judgement relates
an (initial) variable environmentE ∈E and an initial heaph∈H to a final heaph′ ∈H
and the result valuev ∈ V . Heaps are finite maps from locations and field names to
values, while environments are modelled as total maps from variable names to values.
The rules for defining the operational semantics are omitted, but are available in [1].

The Core Program LogicIn our program logic [1], judgements take the formGBe : P
wheree is a Grail expression,G a context used for storing verification assumptions for
recursive methods and functions, andP an assertion. Deviating from both Hoare-style

and VDM-style logic [7], we combine pre- and post-conditions into single assertions:
P is a predicate (in the meta-logic HOL) over the semantic components, and relates the
initial and final heaps, the initial environment, and the result value:P : E →H →H →
V → B, whereB is the set of booleans. For example, the rule for program composition

GBe1 : P1 GBe2 : P2

GBlet x=e1 in e2 : λ E h h′ v. ∃ h1 w. (P1E hh1w) ∧ w 6=⊥ ∧
(P2 (E〈x := w〉)h1h′ v)

VLET

existentially abstracts the intermediate heap and models the binding ofx to the result
of evaluatinge1 by interpretingP2 in the extended environmentE〈x := w〉. Satisfaction
of a specificationP by programe is denoted by|= e : P and asserts thatE ` h,e⇓ h′,v
implies PE h h′ v. In [1] we proved the soundness and (relative) completeness of the
program logic with respect to this (partial) interpretation, i.e. the statement∅ B e :
P⇐⇒ |= e : P. Associations between methods and their specifications are collected in a
method specification tableMST. In order to allow the usage of a proof rule for method
invocation that includes parameter adaptation, each method specification additionally
also abstracts over a list of actual arguments.

Compilation of Camelot ProgramsThe high-level language Camelot is a first-order
functional language with ML-style polymorphism and algebraic datatypes [12]. The
following example code introduces a data type of integer lists and functions that imple-
ment the insertion sort algorithm.

type L = !Nil | Cons of int * L
let ins a l = match l with Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x
then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)

The compiler translates a program into Grail following a whole-program compilation
approach with phases such as monomorphisation and let-normalisation. The resulting
code contains a classInsSort comprising one (static) method for each Camelot function.
For example, the code for insertion sort yields methodsInsSort.ins and InsSort.sort
whose (slightly pretty-printed) Grail representations are shown next:

method InsSort.ins(int a, D l) = call f
f : let b=prim isNull l l in

if b then let l =null in D.make(a, l)
else let v3= l .HD in let v2= l .TL in D.free(l) ; let b=prim less a v3 in

if b then let l =D.make(v3,v2) in D.make(a, l)
else let l = InsSort.ins(a,v2) in D.make(v3, l)

method InsSort.sort(D l) = call g
g : let b=prim isNull l l in

if b then null

else let v3= l .HD in let v2= l .TL in D.free(l) ;
let l = InsSort.sort(v2) in InsSort.ins(v3, l)

Furthermore, a classD is defined that declares sufficiently many fields for representing
values of all declared types (in our case:HD andTL), plus some internal fields (TAG,
FLIST, NEXT). The latter are used for discriminating between the various datatype
constructors (TAG, only used for datatypes with more than one non-nullary construc-
tor), and for implementing a freelist, i.e. a (non-cyclic) list ofD-objects whose initial
member is pointed to by the static fieldFLIST, and whose elements are linked via field
NEXT. The declaration ofD also contains methods for performing the operations typ-
ical of a freelist: objects can be inserted into the freelist using the methodfree, while
the methodmake allocates a fresh object (methodalloc) and initialises its application
fields according to its method parameters (methodfill). The code for these memory
management methods is shown next:

method D.free(D nd) = let f =D.FLIST in nd.NEXT:= f ; D.FLIST:=nd
method D.alloc() = let f =D.FLIST in let b=prim isNull f f in

if b then new D []
else let t = f .NEXT in D.FLIST:=t ; f

method D.fill(D x, int v,D w) = x.HD:=v ; x.TL:=w ; x
method D.make(int v,D w) = let x=D.alloc() in D.fill(x,v,w)

Notice that of all methods,alloc is the only one that contains the instructionnew. Fresh
memory can thus only be allocated through the memory management interface, and this
operation is only performed if the freelist is empty. This discipline is at the heart of our
verification: the interpretation of assertions in the derived program logic ensures that all
requests from the freelist can be served without executingnew.

Two further aspects of the compilation are worth mentioning, as they concern pro-
grammer annotations in the source program. In each datatype declaration, (at most) one
constructor (likeNil in our example code) can be equipped with the annotation!, thus
instructing the compiler to use a heap-free representation. The effect is visible in the
compiler output: conditionals corresponding to match statements w.r.t. this construc-
tor discriminate over the conditionisNull instead of inspecting the content of the field
TAG. The second programmer annotation,@_, indicates that the corresponding (branch
of the) pattern match may be implemented destructively, i.e. the memory cell inhabited
by the value against which the match is performed is returned to the freelist after the
components have been accessed. The compiler output reflects this by calling method
free after de-constructing the cons-cells in methodsins andsort. The compiler verifies
that both annotations are used safely: a constructor annotated with! must not have
arguments, and pattern matching using@_ is only admitted if the data structure may
indeed be destroyed, i.e. it is not used in the continuation of the program.

Inference of Heap Space ConsumptionIn order to analyse the memory requirements
of functional programs, Hofmann and Jost [6] introduced a type system that solves the
following problem. Given a programeof type, say,bool list→ bool list, calculate
a (linear) functionf such that computinge(L) for some input listL will not require
more thanf (|L|) additional heap cells, provided that a freelist is available for storing
temporarily unused cells. In the context of the Camelot compilation, the result of such
an analysis can be used to ensure that the evaluation ofe(L) will not perform a call

to new, by wrapping the evaluation with code that allocates a freelist of the sufficient
length f (|L|) prior to callinge.

The analysis of [6] is formulated using an extended notion of types such that differ-
ent portions of the input can contribute a different amount to memory consumption. For
each (non-heapfree) datatype constructor, a numeric annotation indicates the amount
of heap that is required for a single build operation using that constructor. For exam-
ple, L(5) indicates the type of an integer list where each occurrence ofCons requires
five free memory cells to be available – constructing the list, say,[97;634;42] thus
requires fifteen additional cells to be available. Judgements in the type system are of
the formΓ,n` e : T,mwhereT is the (extended) type ofewith respect to the contextΓ
(which maps free variables ofe to extended types), whilen andm represent constants
that describe memory requirements that are independent of the size of the data struc-
tures. The typing rules are defined in such a way thatm and the numeric annotations
in T are expressed relative to the size of theoutputdata structure, whilen and the an-
notations inΓ refer to the size of theinput data structures. For example, evaluating a
programe with typing x : L(5), 4 ` e : L(2),7 in an environment wherex is bound
to the list[97;634;42] requires no more than 4+(5∗3) cells to be available in the
freelist, and leaves a freelist of length (at least) 7+2∗ |M| whereM is the output list.

We present next some of the typing rules, which are motivated by this understand-
ing. The rule for constructing a list node, CONS, requires the initial freelist to contain
at least as many elements as the final freelist does, plus one cell for representing the
value itself, plus the additionalk cells specified in the desired return type. In order to
construct lists with homogeneous memory behaviour, the type associated to the tailt in
the context must also beL(k).

n≥ 1+k+m
Γ,h : int, t : L(k),n` Cons(h, t) : L(k),m

CONS

Γ,n` e1 : A,m Γ,h : int, t : L(k),n+1+k` e2 : A,m
Γ,x : L(k),n` match x with Nil⇒ e1| Cons(h, t)@ ⇒ e2 : A,m

DM

Γ,n` e1 : A,m Γ,h : int, t : L(k),n+k` e2 : A,m
Γ,x : L(k),n` match x with Nil⇒ e1| Cons(h, t)⇒ e2 : A,m

M

Γ1,n` e1 : A,k Γ2,x : A,k` e2 : B,m
Γ1,Γ2,n` let x = e1 in e2 : B,m

LET
Γ,x : A1,y : A2,n` e : A,m

Γ,z : A1⊕A2,n` e[z/x,z/y] : A,m
SHARE

The effect of a pattern match on the freelist depends on whether the match is performed
destructively or not. In both cases, the branch executed in the case of an empty list
has exactly the same memory behaviour as the composite expression. In the case of a
non-empty list, the freelist available for the continuation grows at least by the amount
k “stored in” the list node that is taken apart. In case of a destructive match, the cell in-
habited by this node becomes available as well, which explains the additional+1 in rule
DM that is not present in the rule for a non-destructive match, M. The rule for program
composition, LET, reflects the above-mentioned interpretation of typing judgements, in
particular the fact that the result type and the right-hand-side annotationm of a judge-
ment refer to the size of the result of the computation, as the typing of the composite

statement may be obtained compositionally from the typing of the sub-terms, glued to-
gether by the freelist-constantk, and the typeA, that occur in both hypothesis. Finally,
the rule SHARE allows us to split resources between different variables representing
the same data structure – operation⊕ recursively descends through the type structure
and adds the annotations in the leafs. As this contraction results in the data structure
being aliased, the soundness of this rule relies on the semantic condition ofbenign
sharing: whenever a celll is returned to the freelist during a destructive pattern match,
the program continuation will not accessl through any aliasing access path. Various
static approximations to this conditions can be considered. Of these, imposing alinear
typing discipline (i.e. considering the type system without rule SHARE, and interpreting
the context split in rule LET to be a disjoint partitioning) is rather restrictive, but only
moderately complex to implement, and is therefore chosen in the formal interpretation
of assertions in the next section. However, as many programs cannot be typed under
such a discipline, it is desirable to have alternative means at hand. The generalisation of
our assertion format in Sect. 6 is a step in that direction, as it corresponds to the more
permissive type system of usage aspects presented in [2].

The inference process for the type system consists of two stages. First, a skele-
ton type derivation is constructed where the numerical annotationsn,k,m, . . . are in-
terpreted as (rational) variables, constrained by side conditions such as the one in rule
CONS. These side conditions are collected, and in a second step handed over to a linear
programming solver. Any feasible solution to the linear program corresponds to a pos-
sible typing derivation. This inference process has been implemented for the language
considered in [6] and for Camelot, and scales well even to programs where skeleton
derivations contain thousands of variables or constraints.

In the context of certificate generation, the solution inferred by the analysis (if ex-
isting) is presented as a signature that contains one (extended) typing for each Camelot
function. In the case of our example program, one such signature is

{ins : 1,int×L(0)→ L(0),0, sort : 0,L(0)→ L(0),0.}

For both functions, this signature asserts that the heap consumption does not depend on
the size of the input:ins consumes one heap cell, whilesort executes in-place: the
cell that is required in the call toins has previously been gained in the pattern match.

3 Format and Interpretation of Assertions

In this section we introduce a class of assertions that interpret judgements of the high-
level type system in the program logic. These assertions have a uniform syntactic form,
and their interpretation expands to a predicate over the semantic components (environ-
ment, pre-heap, post-heap and return value), as is required of specifications by the core
logic. This syntactic form,

JU,n,Γ I T,mK

comprises components similar to the type system:

n,m∈ N represent the numerical results from the analysis. In the interpretation these
numbers will relate to the initial and final length of the freelist, respectively.

Γ is the typing context, a partial map from program variables to extended types.
U (a finite set of program variables) is used to enforce the linear typing discipline.
T indicates the type of an expressione that satisfies the assertion.

In this paper, we only consider the data type of integer list. In the grammar

T ∈ T ::= 1 | I | L(k)

the constructors represent respectively the unit (void) type, the integer type, and the type
of lists where each occurrence of theCons constructor is equipped withk∈N additional
free heap cells and theNil constructor does not reserve any space. In [3] we consider
additional types, for representing e.g. integer trees.

The interpretation of assertions, and the proof rules that will be presented in the
following section, are formulated in such a way that the setU is inferred during the
verification condition generation, and coincides with the free variables ofe. Thus, the
restricted contextΓ�U amounts to the minimal context in which an expressionemay be
typed.

Before giving the semantic definition of an assertion, we introduce some auxiliary
predicates. Given a valuev of typeT and a heaph, the predicatev,h |=T R,n computes
the regionR inhabited byv, and the numbern of free heap cells associated with it
according to the numerical annotations inT.

⊥,h |=1 ∅,0
REGU

i,h |=I ∅,0
REGI

LIST(n, r,R,h)
r,h |=L(k) R,k∗n

REGL

In rule REGU, we abuse the earlier notation slightly and let the symbol⊥ also denote
the canonical value of type1. In ruleREGL, the list predicateLIST(n, r,R,h) is satisfied
if referencer in heaph points to a (cycle-free) linked list of lengthn, whose cells inhabit
exactly locationsR.

LIST(0,null,∅,h)
NIL

h(l).HD = i h(l).TL = r LIST(n, r,R,h)
LIST(n+1,Ref l,R] l,h)

CONS

The definition directly reflects the layout of data values implemented by the Camelot
compiler – the disjoint sum notation] indicates the implicit side condition{l}∩R= ∅.

Next, we define a predicateΓ,U |=E
h R,n that computes the amountn of free heap

associated to the variables inΓ�U and the heap regionR inhabited by the corresponding
data structures.

Γ,∅ |=E
h ∅,0

HEAPE
E〈x〉,h |=Γ(x) R1,n Γ,U |=E

h R2,m

Γ,U]x |=E
h R1]R2,n+m

HEAPV

Rule HEAPV, in combination with the above definition of the datatype representation
predicates, enforces a strict separation both between and within data structures. We will
relax some of these separation conditions in Sect. 6.

A further auxiliary predicate,freelist(h,F,N), is defined byFL(N,h〈D.FLIST〉,F,h)
and expresses the fact that in heaph, the static fieldD.FLIST points to a (non-cyclic)
list of lengthN, where the cells collectively inhabit locationsF and are linked via field
NEXT. The predicateFL(, , ,) is defined analogously to the predicateLIST(, , ,).

Finally, the predicatefootprint(R,h,h′)≡∀l ∈ dom h\R. h(l) = h′(l) bounds the set
of locations on which two heaps may differ.

The interpretationJU,n,Γ I T,mK is now defined by

JU,n,Γ I T,mK≡ ∀ qF R.
∃ N K. freelist(h,F,N) ∧

Γ,U |=E
h R,K ∧

R∩F = ∅ ∧
n+K +q≤ N

−→


∃QSM H. v,h′ |=T Q,S ∧ freelist(h′,H,M) ∧

Q∩H = ∅ ∧ (Q∪H)⊆ (R∪F) ∧
footprint(F ∪R,h,h′) ∧
m+S+q≤M ∧ dom h= dom h′


where the free variablesE, h, h′ and v are implicitly abstracted over. A judgement

GBe : JU,n,Γ I T,mK thus asserts that, whenever

– the initial heaph contains a freelist of lengthN, inhabiting locationsF ,
– the regionR inhabited by the data structuresΓ�U is disjoint fromF , and
– the lengthN of the freelist is at least the amountK of heap owned byΓ�U , plus the

additionally required sizen and some constantq,

and the evaluation ofe terminates, then there areM andSand regionsQ andG s. t.

– the resultv (according to the typeT) inhabits regionQ (in the final heaph′) and
contributesScells to the (final) freelist,

– the final heap contains a freelist of lengthM inhabiting regionG,
– the result and the final freelist do not overlap,
– bothG andQ are contained in the initial freelist regionF , extended by the locations

reachable (in the initial heap) by the variables inΓ�U ,
– locations that are neither part of the freelist nor reachable from variables fromΓ�U

remain unchanged, i.e.F ∪R is an approximation of the locations touched,
– the final lengthM of the freelist is at least the amountScontributed by the result,

plus the analysis numbermand the constantq, and
– no new objects have been allocated.

Thus, data structures represented by variables inΓ�U are potentially destroyed. Corre-
sponding locations may have been recycled during the evaluation ofe, may have been
inserted into the freelist, or have become unreachable. In contrast, locations not reach-
able from variables inΓ�U remain unchanged.

4 Proof Rules

Having introduced the assertion format, we can derive proof rules for various Grail
phrases by unfolding the interpretation. The design of the proof rules was guided by the
aim of minimising the complexity of verification conditions that arise from side con-
ditions, and to mirror the high-level typing rules. Indeed, the granularity of the proof
rules corresponds to that of the typing system: match statements and constructor appli-
cations are verified as single entities, i.e. only the soundness proof of the rules inspects
the constituent instructions of the corresponding methods.

We first present the rules for basic syntactic constructs of Grail. There are no proof
rules for object creation and (virtual or static) field access instructions, since these op-
erations are only performed inside the memory management methods. The rules for
function calls and method invocations are the rules of the base logic.

m≤ n
GBnull : J∅,n,Γ I L(k),mK

NULL
m≤ n

GBint i : J∅,n,Γ I I ,mK
INT

m≤ n Γ(x) = T
GBvar x : J{x},n,Γ I T,mK

VAR
{x,y} ⊆ domΓ m≤ n

GBprim op x y: J{x,y},n,Γ I I ,mK
PRIM

GBe1 : JU1,n,Γ I 1,mK GBe2 : JU2,m,Γ I T,kK
GBe1 ; e2 : JU1]U2,n,Γ I T,kK

COMP

GBe1 : JU1,n,Γ I S, lK GBe2 : JU2, l ,(Γ,x : S) I T,mK S 6= 1
GBlet x=e1 in e2 : JU1] (U2 \{x}),n,Γ I T,mK

LET

GBe1 : JU1,n,Γ I T,mK GBe2 : JU2,n,Γ I T,mK
GBif b then e1 else e2 : JU1∪U2,n,Γ I T,mK

IF

(G∪{(call f ,P})BFtable f : P
GBcall f : P

CALL

(G∪{(C.M(a),P}) B
Mtable C M: λ E h h′ v. ∀ E′. E = frame(params C M) a E′ −→ PE′h h′ v

GBC.M(a) : P
INVS

Next, we present the rules for non-destructive and destructive match operations, and
for constructorCons. Treating the freelist management operations atomically reflects
the fact that the states at intermediate program points of these composite statements
do not satisfy formulae of the restricted form – they contain dangling pointers and
incompletely built data structures. In rule DMATCH, the additional side conditionx 6= t
is needed to avoid the insertion oft into the freelist by instructionD.free(x).

Γ(x) = L(k) h /∈ {x, t} GBe : JU,n+k,(Γ,h : I , t : L(k)) I T,mK
GBlet h=x.HD in let t =x.TL in e : J(U \{h, t})]x,n,Γ I T,mK

MATCH

Γ(x) = L(k) h /∈ {x, t} x 6= t
GBe : JU,n+k+1,(Γ,h : I , t : L(k)) I T,mK

GBlet h=x.HD in let t =x.TL in D.free(x) ; e :
J(U \{h, t})]x,n,Γ I T,mK

DMATCH

Γ(y) = L(k) Γ(x) = I
GBD.make(x,y) : J{x,y},m+k+1,Γ I L(k),mK

MAKE

Finally, we give some structural rules.We will comment on their role in verification
condition generation in the next section.

GBe : JU,n,Γ I T,mK n≤ n′ m′ ≤m
GBe : JU,n′,Γ I T,m′K

RELAX

GBe : JV,n,Γ I T,mK V ⊆U
GBe : JU,n,Γ I T,mK

GEN
GBe : JU,n,Γ I T,mK

GBe : JU,n+k,Γ I T,m+kK
SHIFT

GBe : JU,n,Γ I T,mK ∀ x∈U. ∆(x) = Γ(x)
GBe : JU,n,∆ I T,mK

CTXT

Theorem 1. All proof rules presented in this section are derivable in HOL from the
core logic.

The proof rules enforce benign sharing in a way that corresponds to linearity in the type
system. The rules COMP and LET combine theU-sets using the disjoint union operator
]. From the point of view of surrounding code, linearity is also observed in the rules
MATCH and DMATCH, despite variablex occurring repeatedly in the program text.

5 Verification

We now return to our example program, insertion sort, and outline the verification pro-
cess. As was remarked earlier, compiling the Camelot code for insertion sort results in
two class declarations: the classD with fields for the representation of data types and
the (pre-verified) memory management methods, plus a classInsSort containing the
application methodsins andsort. In addition, the compiler generates a certificate that
contains the result of the program analysis in a form that can be automatically verified.
The certificate contains the method specification table, the definition of a proof context
G, and calls to a predefined Isabelle tactic. Before describing the global verification
strategy, we first outline how this tactic verifies an individual method body.

For verifying that method bodyMtable C Msatisfies a specification of the restricted
form, i.e. thatGB Mtable C M : JU,n,Γ I T,mK holds, we have implemented an Is-
abelle tactic (≈ 150 lines of ML) that starts by applying the GEN rule, then applies
the syntax-directed and memory management proof rules discharging the side condi-
tions locally, and finally verifies that the initial side condition of GEN, V ⊆U , holds
for the inferred setV. The tactic maintains a stack of open goals that ensures that only
ground conditions arise. Inspecting the proof rules shows that apart from numerical
comparisons, set inclusions, and context look-ups, no advanced simplification nor de-
cision procedures are required. The tactic is applied with a specification tableMST that
contains entries representing the result of the type analysis. Assertions are formulated
from the perspective of the method body, i.e. the chosen variable names are the formal
parameters. Method invocations are verified using a variation of INVS that incorporates
the effect of rules SHIFT and CTXT, and a notion of variable renaming for assertions
that is needed to handle the passing from actual arguments to formal parameters. In our
example program, the specification table contains two entries that correspond to

Ins Spec≡ J{a, l},1, [a : I , l : L(0)] I L(0),0K
Sort Spec≡ J{l},0, [l : L(0)] I L(0),0K

Note that we have made no effort to employ efficient data structures and we rely on
naive representation of contexts and sets as provided by Isabelle/HOL. However, we
have implemented a technique that allows us to verify each function body only once,
based on compiler-generated merge point information. For some details see [3].

Global verification is based on the rule

goodContext MST G finite(G) (C.M(a),MST Ma) ∈G

∅BC.M(b) : MST Mb
VADAPTS

which derives∅BC.M(b) : B (notice the empty context), provided the existence of a
contextG that fulfils propertygoodContextand contains an entry(C.M(a),A) whereA
andB arise by instantiating the method specification table entry forM with the method
argumentsa andb, respectively. The generated certificate contains the definition of such
a contextG, consisting of one entry(C.M(a),MST M a) for each method invocation
occurring in the program. In our example program, the contextG is given by

G≡
{

(InsSort.ins(a,v2), MST ins [a,v2]), (InsSort.ins(v3, l), MST ins [v3, l]),
(InsSort.sort(v2), MSTsort [v2])

}
.

The definition ofgoodContext(see [1] for details) requires each such entry to satisfy
GBMtable C M: ϕ(MST M), whereϕ models the passing of method arguments to the
formal parameters. As the result of applyingϕ is of the formJU,n,Γ I T,mK, discharg-
ing the condition of thegoodContextpredicate may be performed by the tactic discussed
above. Our verification script verifies first each method body individually, before com-
bining the resulting local correctness statements. We thus obtain correctness of thesort
method for arbitrary method arguments

Theorem 2. We have∅B InsSort.sort(x) : MSTsort [x]

for arbitraryx using a strategy that verifies each method body only once, despite the
existence of two entries forins in G.

6 Usage Aspects

As we pointed out earlier, the interpretation of assertionsJU,n,Γ I T,nK corresponds
to a linear type system at the Camelot level. Although guaranteeing benign sharing, this
discipline is overly restrictive, as may be illustrated by the expressionCons(length(x),
x), wherex is used as an argument forlength, but also in the surrounding code. Mo-
tivated by similar examples involving nontrivial sharing of heap cells, Aspinall and
Hofmann [2] introduced a less restrictive type system that distinguishes three different
usages a program can make of a variable. Theseaspectsare ordered in increasing order
of permissiveness:

1. modifying use, e.g.l in sort l , or the destroyed parameter in in-place list append;
2. non-modifying use, but shared with result, e.g. the second argument in append;
3. non-modifying use, and not shared with result, e.g.l in length l .

Based on aspects we can allow duplication of variables in certain cases while preserving
benign sharing. For instance the nonlinear expressionlet x =e1(y3) in e2(xi , y1)
will be allowed, where variables are annotated with their relative usage aspects. In the
remainder of this section, we outline an assertion format for the type system of [2],
suitably adapted to the setting of Camelot compilation. To increase readability we omit
numerical annotations as they have the same format and meaning as in the linear system.

Usage Aspects for the Source LanguageWe define a notion of usage-aspect aware
contextsΓ in which variables are decorated with their usage aspects; for instancexi : A
if x : A is used with aspecti ∈{1, 2, 3}. If xi : A ∈ Γ, we writeΓ(x) = AandΓ[x] = i. The
“committed toi” context∆i is the same as∆, but each declarationx2 : A is replaced
with xi : A. If we have two contexts∆1, ∆2 which only differ on usage aspects, we
define the context∆ = ∆1 ∧∆2, to have the same domain and typing, but such that
∆[x] = min(∆1[x], ∆2[x]). Some of the typing rules are:

Γ,xi : A` e : B j ≤ i
Γ,x j : A` e : B

LDROP
Γ ` e1 : B Γ ` e2 : B

Γ,x3 : I ` if x then e1 else e2 : B
LIF

x2 : A` x : A
LVAR

Γ,∆1 ` e1 : A Θ,∆2, xi : A ` e2 : B Φ(i)
Γi , Θ, ∆i

1∧∆2 ` let x=e1 in e2 : B
LLET

The LVAR rule has default aspect 2, although variables can be raised (not shown here)
if heap-free or weakened (LDROP) to a more destructive usage. The most complex rule
is LLET: first, the context is split into parts according to variables specific toe1 (or e2),
that isΓ (or Θ), and common variables, possibly used with different aspects∆1,∆2. A
variable whose region overlaps with the result ofe1 (i.e. of a variable that is of aspect 2
in Γ, ∆1) inherits the aspect ofx in e2 - this is whyΓi and∆i

1 appear in the succedent.
Additionally, for a variable occurring in both contexts, the resulting usage aspect should
not supersede its aspects in the two antecedents. The additional side conditionΦ(i)
prevents any common variable from being modified ine1 or e2 before being referenced
in e2: namely,∆1[z] = 1 is never allowed,∆1[z] = 3 is always allowed,∆1[z] = 2 is only
allowed, provided neitheri = 1 nor∆2[z] = 1. Further, we exclude∆1[z] = ∆2[z] = 2.
For more details, please see [2].

Derived Assertions for Usage AspectsIn preparation of the definition of derived asser-
tions, we extend the previous auxiliary judgements by a (boolean)separationflag p; the
relationv,h |=L(A) R, p means thatv points to a well formed list occupying a regionR
in a heaph. If the separation flagp is set tofalse then the regions occupied by elements
of the list are allowed to overlap (internal sharing). Otherwise, these regions must be
located in separated parts of the heap.

This definition is generalised to a relation over environments, heaps, contexts and
regions in the following way:

E〈x〉,h |=Γ(x) R1,true Γ,U |=E
h,1 R2

Γ,U]x |=E
h,1 R1]R2

E〈x〉,h |=Γ(x) R1,true Γ,U |=E
h,2 R2,true

Γ,U]x |=E
h,2 R1]R2,true

E〈x〉,h |=Γ(x) R1, false Γ,U |=E
h,2 R2, false

Γ,U]x |=E
h,2 R1∪R2, false

E〈x〉,h |=Γ(x) R1, false Γ,U |=E
h,3 R2

Γ,U]x |=E
h,3 R1∪R2

The interpretation of aspect-aware assertions mirrors the correctness theorem in [2],
extended with a freelist, but not including any reasoning about the freelist’s length:

JU1,U2,U3,Γ I TK≡ ∀ F R1R2R3

U1]U2]U3 ⊆ domΓ ∧
freelist(h,F) ∧
Γ,U1 |=E

h,1 R1 ∧
Γ,U2 |=E

h,2 R2, false ∧
Γ,U3 |=E

h,3 R3 ∧
R1∩ (R2∪R3) = ∅ ∧
F ∩ (R1∪R2∪R3) = ∅


−→



∃QH. v,h′ |=T Q, false ∧
freelist(h′,H) ∧ Q∩H = ∅ ∧
footprint(F ∪R1,h,h′) ∧
Q⊆ (F ∪R1∪R2) ∧
H ⊆ (F ∪R1) ∧
dom h= dom h′ ∧
Γ,U2 |=E

h,2 R2,true−→ v,h′ |=T Q,true


A judgementGBe : JU1,U2,U3,Γ I TK thus asserts that, whenever

– variables inUi point in the initial heaph to sets of locationsRi according to their
type inΓ and usage aspecti, with internal sharing allowed wheni ≥ 2,

– the heap regions associated with variables of aspect 1 do not overlap with heap
regions related to other aspects, i.e.R1∩ (R2∪R3) = ∅,

– the initial heap contains a freelist inhabiting regionF , which does not overlap with
any region pointed to by a variable inU1∪U2∪U3,

and the evaluation ofe terminates, then there exist regionsQ andH such that:

– in h′, resultv according to typeT inhabits regionQ, possibly with internal sharing,
– the final heap contains a freelist in regionH, not overlapping withQ,
– data structures pointed to by variables outsideU1 andF remain unchanged,
– the result region consists of locations from the initial freelistF , locations fromR1

(corresponding to destroyed data substructures, whose space has been recycled)
and fromR2, which may overlap with the result regionQ,

– the final freelist region consists of locations of the initial freelist andR1,
– no new objects are allocated,
– if regionR2 does not contain any shared (sub)structures, then neither doesQ.

For example, in-place list append admits a typing that corresponds to the assertion
Bappend(l1, l2) : J{l1},{l2}, /0,(l1 : L(A), l2 : L(A)) I L(A)K where l1(l2) is the de-
stroyed (aliased) argument.

Proof Rules for Usage AspectsWe now introduce some of the derived rules.

Γ(x) = T
GBvar x : J∅,{x},∅,Γ I TK

DUVAR
GBe : JU1,U2]x,U3,Γ I TK
GBe : JU1]x,U2,U3,Γ I TK

DUDROP21

GBe1 : JU1,U2,U3,Γ I TK GBe1 : JU1,U2,U3,Γ I TK
GBif x then e1 else e2 : JU1,U2,U3]x,(Γ,x : I) I TK

DUIF

GBe1 : JU11,U12,U13,Γ I SK x∈U2i
GBe2 : JU21,U22,U23,(Γ,x : S) I TK Ψ(i)

GBlet x=e1 in e2 : JU1,U2,U3,Γ I TK
DULET

These rules are direct counterparts of the typing rules. In particular, in the DULET rule
the real work is done by the side conditionΨ(i), which statically approximates benign
sharing. For instance, fori = 2 the side conditionΨ(2) specialises to the conjunction of
static assumptionsU1 = U11∪U21, U2 = (U12\U21)∪ (U22\ {x}), U3 =

(
U13\ (U21∪

U22)
)
∪

(
U23\(U11∪U12)

)
,U11∩(U21∪U22∪U23) = ∅,U12∩(U21∪U22∪U23)⊆U23.

7 Conclusion and Related Work

In this paper, we have described a logic for derived assertions that allows the results
of [6]’s analysis to be verified in Grail’s bytecode logic. Although we have presented
the logic for a specific datatype, our approach applies to algebraic datatypes in general.
Because the MRG project aims to verify the consumption of a variety of resources,
we have employed a general purpose logic as the basis of our formalisation. Our work
is thus best compared to other work on mechanical or at least formal verification of
pointer programs using variants of traditional (general purpose) Hoare logic. Histori-
cally, some of the first formal verification of pointer programs in [11] (and later [10])
used a model where the store is incorporated in the assertion logic. More recent is the
verification of several algorithms, including list manipulating programs and the Schorr-
Waite graph-marking algorithm, by Bornat [5] using the Jape system. This approach
employs a Hoare logic for a while-language with components that are semantically
modelled as pointer-indexed arrays. Separation conditions are expressed as predicates
on (object) pointers. Mehta and Nipkow [13] employ the same semantic model of the
heap for reasoning about pointer programs in higher-order logics. This effort extends
earlier work by Nipkow et al. [15] on formalised proofs in HOL of soundness and (rel-
ative) completeness of program logics.

Proving heap-related properties has also been the topic of Separation Logic [16].
Indeed, the primitives of Separation Logic appear well suited to express the mutual
separation of data structures, and their separation from the freelist more succinctly. An
Isabelle/HOL implementation is presented in [18], although the author reports proofs
(typically in-place reversal) to be slightly more complicated than in [13]. Furthermore,
little support for automation is currently available, both for proof search and for gener-
ating invariants. Finally, properties such as heap preservation in our predicatefootprint
are more intensional than is usually the case in (Hoare-style) Separation Logic. Differ-
ently from Hoare-style logics in general, the style of our logic allows us to relate pre
and post states without the use of auxiliary variables.

The contribution of the present paper is the translation of typing assertions to state-
ments in the base logic and the formulation of derived rules which allow for automatic
construction of proofs. We have indicated how the linearity restrictions may be over-
come by considering the more generous sharing and separation systems induced by
usage aspects. This could be pushed further toward Konečný’s [9] system for layered
sharing. Comparing the verification of the example programs with the verification of
similar programs in the core bytecode logic demonstrates the general benefit of a proof
system of derived assertions, concerning both the proof complexity and automation. In-
deed, while verification in the bytecode logic appears to depend on the machinery of a
general purpose theorem prover and manual intervention, a logic of derived assertions

may be implementable in a stand alone prover with access to fairly straightforward
simplification capabilities.

AcknowledgementsThis research was supported by the MRG project (IST-2001-
33149) which is funded by the EC under the FET proactive initiative on Global Com-
puting. We would like to thank all our colleagues and in particular David Aspinall for
this role in implementing the certificate generation tactic.

References

1. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic for
resource verification. In K. Slind, A. Bunker, and G. C. Gopalakrishnan, editors,Proceedings
of TPHOLs’04, volume 3223 ofLNCS, pages 34–49. Springer, Sept. 2004.

2. D. Aspinall and M. Hofmann. Another type system for in-place update. In D. L. Métayer,
editor,Proceedings of ESOP’02, volume 2305 ofLNCS, pages 36–52. Springer, Apr. 2002.

3. L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Towards certificate genera-
tion for linear heap consumption. InProceedings of LRPP’04, July 2004.

4. L. Beringer, K. MacKenzie, and I. Stark. Grail: a Functional Form for Imperative Mobile
Code. InProceedings FGC’03, volume 85(1) ofElectronic Notes in Theoretical Computer
Science. Elsevier, June 2003.

5. R. Bornat. Proving Pointer Programs in Hoare Logic. In R. Backhouse and J. Nuno Oliveira,
editors,Proceedings of MPC’00, volume 1837 ofLNCS, pages 102–126, July 2000.

6. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional
programs. InProceedings of POPL’03, pages 185–197. ACM Press, Jan. 2003.

7. C. Jones.Systematic Software Development Using VDM. Prentice Hall, 1990.
8. T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Completeness

Proofs. PhD thesis, LFCS, University of Edinburgh, 1999.
9. M. Koněcný. Functional in-place update with layered datatype sharing. In M. Hofmann,

editor,Proceedings of TLCA’03, volume 2701 ofLNCS, pages 195–210. Springer, June 2003.
10. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of

Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.
11. D. C. Luckham and N. Suzuki. Verification of array, record, and pointer operations in Pascal.

ACM Transactions on Programming Languages and Systems, 1(2):226–244, Oct. 1979.
12. K. MacKenzie and N. Wolverson. Camelot and Grail: Resource-aware Functional Program-

ming on the JVM. In S. Gilmore, editor,Proceedings of TFP’03, pages 29–46. intellect,
2003.

13. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In F. Baader,
editor, Proceedings of CADE-19, volume 2741 ofLNCS/LNAI, pages 121–135. Springer,
Aug. 2003.

14. G. C. Necula. Proof-carrying code. InProceedings of POPL’97, pages 106–119. ACM Press,
1997.

15. T. Nipkow. Hoare Logics for Recursive Procedures and Unbounded Nondeterminism. In
J. Bradfield, editor,Proceedings of CSL’02, volume 2471 ofLNCS, pages 103–119, Sept.
2002.

16. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InProceedings
of LICS’02. IEEE Computer Society, July 2002.

17. D. Sannella and M. Hofmann. Mobile Resource Guarantees. EU Project IST-2001-33149,
2002–2004. http://groups/inf.ed.ac.uk/mrg/.

18. T. Weber. Towards mechanized program verification with separation logic. In
J. Marcinkowski and A. Tarlecki, editors,Proceedings of CSL’04, volume 3210 ofLNCS,
pages 250–264. Springer, Sept. 2004.

