
11 Product Line Use Cases: Scenario-Based
Specification and Testing of Requirements

A. Bertolino, A. Fantechi, S. Gnesi, and G. Lami

Abstract
Use Cases can be employed in system requirements engineering to capture requirements
from an external point of view. In product line modeling, commonalities and variabilities of
a family of systems have to be described. To this purpose, we have defined extensions and
modifications of the Use Cases notation, called Product Line Use Cases (PLUCs). In order
to guarantee the conformance of the derived product with respect to the product line we add
the capability of expressing constraints over the Product Use Cases that can be derived from
a PLUC. Using this notation, it is possible to express in the requirements specification of
the product line not only the possible variant characteristics that can differentiate products of
the same line, but also which combinations of variant characteristics are “legal” and which
are not. Testing is another activity in which PLUCs show their utility. Indeed, for a product
belonging to a product line, testing is a crucial and expensive part of software development.
Yet the derivation of test cases for product lines has so far received little attention. We
outline a simple methodology for this purpose, which relies on the early requirements
specification expressed as PLUCs.

11.1 Introduction

In the first stage of a software project, that is, requirements specification, the informa-
tion and knowledge of the system under construction is acquired. Chapter 4 addresses this
point. When gathering and expressing requirements on a product line two different pro-
blems have to be addressed. On one side there is the problem of capturing both require-
ments common to all members of the product line and requirements valid only for a subset

The development of industrial software systems may often benefit from the adoption of a
development cycle based on the product line engineering approach [5,16]. This approach
aims at lowering production costs by sharing an overall reference architecture and con-
cepts of the products, but at the same time allowing them to differ with respect to particu-
lar product characteristics in order to, e.g., serve different markets. The production process
in product lines is therefore organized with the purpose of maximizing the com-
monalities of the product line and minimizing the cost of variations [14].

of products. On the other side there is the problem of specializing and instantiating the ge-
neric product line requirements into application requirements for a single product.

To deal with these problems, the relations between line and product requirements have
to be handled by the adopted modeling approach, and the concepts of parameterization,
specialization and generalization need to be supported by the modeling concepts. Product
line requirements can be considered, in general, as composed of a constant and a variable

functions common to all the products in the product line and, for this reason, do not need
to be modified. The variable part represents those aspects that can be changed to
differentiate a product from another.

Indeed, a product line can be seen as a set of products with common characteristics that
link them together. While developing a product line it is possible to move from the line
level (which represents those common features) to the product level (which represents the
single product, with all its particular characteristics) by an instantiation process, and on
the contrary from the product level to the line level by an abstraction process.

Use Cases [6] are an easy, natural way to express functional requirements of a system.
Their popularity derives from the simplicity of their approach: a well structured, easy to
understand document written in controlled natural language. Use Cases are widely used in
modern industrial development, so it seems natural to try to find an effective way to

In this direction, we have previously proposed the notation of Product Line Use Cases

requirements of product lines. The well-known Cockburn’s Use Cases allow the
functional requirements of a system to be described, by imposing on requirements
documents a specified structure, which separates the various cases in which the system
can be used by external actors, and for each case defines scenarios of correct and incorrect
usage. The PLUC notation adds variability to Cockburn’s Use Cases, with the possibility
of expressing variation points and optional parts.

In this chapter, we show how the PLUC notation can be exploited for two fundamental
processes in product line engineering:

– The instantiation of a (legal) product from a product line at the early stage of
requirements definition.

– The derivation of a scenario-based test plan for a product of a product line.

Moreover, in [10] it has been shown how PLUCs can also support the abstraction process
for the definition of a product line from product instances.

 The first issue is addressed by providing a PLUC with the capability to express
constraints over the product-related Use Cases that can be derived from it. These
constraints are expressed as Boolean conditions associated to the variation points. The

techniques may even allow for automatic generation of product-specific Use Cases from
the line level Use Cases document.

The importance of the second issue we address in this chapter comes from the observa-
tion that testing takes a predominant amount of development resources and schedule.
Therefore, also reuse of test assets is a crucial issue in production processes. And, in the
same manner that a product line specification and design must tackle variability, the same

the product line requirements; on the other hand, the adoption of constraint-solving

information we add to PLUCs by means of such constraints provides on the one hand the
ability of automatically checking whether a product-related Use Case is conformant to

 A. Bertolino et al. 426

part [1,17,25]. The constant part includes all those requirements that deal with features or

(PLUC) [1,10], an extended version of Cockburn’s Use Cases [7] aimed at expressing

combine them with the product line paradigm.

need applies for testing. As evident from the discussion above, the phase in which the majority
of variation points are introduced is the requirement specification phase. Accordingly, we
believe that planning ahead for testing within the product line development must start
from the requirements. Hence, we base the testing process of product lines back on the
requirement specification, and in particular on the PLUC notation. We defined the PLUTO
methodology to derive specific test cases for product lines, and to instantiate the line
generic test plan into a suite of test scenarios for a specific product.

In Sect. 11.2, we present the proposed PLUC notation, with some examples of PLUC
described using this notation; in Sect. 11.3 we show how to exploit the information of
PLUC to support the derivation process of products conforming to the product line
constraints. Section 11.4 discusses how PLUCs can be exploited to derive test cases.
Section 11.5 presents related works, while Sect. 11.6 concludes the chapter.

11.2 PLUC Notation

Use cases are widely used in modern industrial development for early requirements elici-
tation and specification, so it seems natural to try to find an effective way to combine

system. An actor may be a class of users, roles users can play, or other systems. There are
two kinds of actors: primary actors and secondary actors.

– A primary actor is one having a goal requiring the assistance of the system
– A secondary actor is one from which the system needs assistance

A Use Case is initiated by a primary actor to achieve a goal, and completes

successfully when that goal is satisfied. It describes the sequence of interactions between
actors and the system necessary to accomplish the task that will lead to the goal. Use Case
descriptions also include possible extensions to this sequence, e.g., alternative sequences
that may also satisfy the goal, as well as sequences that may lead to failure in completing
the service in case of exceptional behavior, error handling, etc. The system is treated as a
“black box”; thus, Use Cases capture who (actor) does what (interaction) with the system,
for what purpose (goal), without dealing with system internals. A complete set of Use
Cases specifies all the different ways to use the system, and therefore defines the whole
required behavior of the system.

Generally, Use Case steps are written in an easy-to-understand, structured narrative
using the vocabulary of the domain. An instance of a Use Case is a scenario, and represents
a single path through the Use Case. Thus, there exists a scenario for the main flow through
the Use Case, and as many other scenarios as the possible variations of flow through the Use
Case (e.g., triggered by options, error conditions, security breaches, etc.). Scenarios may
also be depicted in a graphical form using UML Sequence Diagrams.

Figure 11.1 shows the template of the Cockburn’s Use Case taken from [7]. In this tex-
tual notation, the main flow is expressed, in the “Description” row, by an indexed sequence
of natural language sentences, describing a sequence of actions of the system. Variations

A Use Case defines a goal-oriented set of interactions between external actors and the
system under consideration. Actors are parties outside the system that in teract with the

427 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

them with the product line paradigm.

 A. Bertolino et al.

are expressed (in the “Extensions” row) as alternatives to the main flow, linked by their
index to the point of the main flow from which they branch as a variation. This natural
language form of Use Cases has been widely used in industrial practice to specify Use
Cases, e.g., at Nokia [9].

USE CASE # <the name is the goal as a short active verb phrase>
Goal in Context <a longer statement of the goal in context if needed>
Scope & Level <what system is being considered black box under

design>
<one of: Summary, Primary Task, Sub function>

Preconditions <what we expect is already the state of the world>
Success
End Condition

<the state of the world upon successful completion>

Failed
End Condition

<the state of the world if goal abandoned>

Primary,
Secondary Actors

<a role name or description for the primary
actor>,
<other systems relied upon to accomplish Use Case>

Trigger <the action upon the system that starts the Use Case>
Description Step Action
 1 <put here the steps of the scenario from

trigger to goal delivery, and any cleanup
after>

 2 <...>
 3
Extensions Step Branching Action
 1a <condition causing branching> :

<action or name of sub-Use Case>
Sub-Variations Branching Action
 1 <list of variations>

Fig. 11.1. Use Cases template

In [1] we extended the classical Use Case definition given by Cockburn to product
lines, adding variability to this formalism. The proposed extension is based on the
inclusion of tags that indicate those parts of the product line requirements that need to be
instantiated for a specific product in a product-specific document. For doing that, tags are
included into the Use Case sections (main scenario, extensions, etc.) in order to identify
and specify variations.

The tags can be of three kinds:

– Alternative: They express the possibility to instantiate the requirement by selecting an
instance among a predefined set of possible choices, each of them depending on the
occurrence of a condition.

428

This extension is called PLUC, while Product-related Use Cases where all tags have
been instantiated are called Product Use Cases (PUC).

– Parametric: Their instantiation is connected to the actual value of a parameter in the
requirements for the specific product.

– Optional: Their instantiation can be done by selecting indifferently among a set of
values, which are optional features for a derived product.

The instantiation of these types of variabilities will lead to a set of different product-
related Use Cases. Although mostly significant in scenario descriptions, tags can be
inserted in each field of a Use Case, thus leading to variability of actors, preconditions, etc.

Two examples of a PLUC are provided in Figs. 11.2 and 11.3. These PLUCs apply to
different mobile phones belonging to a same PL. We assume that the products differ at
least for the set of games made available to the user and for the provision or not of WAP
connectivity.

The example in Fig. 11.2 describes the behavior of the phones belonging to the product
line when a game is played by the user, while the example in Fig. 11.3 describes the func-
tion of answering an incoming call.

PL USE CASE GamePlay

Goal: Play a game on a [GP0] Mobile Phone and record score
Scope: The [GP0] Mobile Phone
Level: Summary
Precondition: The [GP0] Mobile Phone is on

Trigger: Function GAMES has been selected from the main menu
Primary actor: The Mobile Phone user
Secondary actors: The {[GP0] Mobile Phone} (the system)
 The Mobile Phone Company
Main success scenario

1. The system displays the list of the {[GP1] available} games
2. The user selects a game
3. The user selects the difficulty level
4. The user starts the game and plays it until completion
5.The user records the score achieved {and [GP2] sends the

 score to Club XXX via WAP}

Extensions
1a. No game is available:
 1a1. return to main menu
3a. The user starts the game and plays it until an incoming call arrives. See CallAnswer.

Variations
GP0: Alternative:
 0. Model 0
 1. Model 1
 2. Model 2
GP1: Parametric
if GP0=0 then display msg “No game available”

else if GP0=1 then Snake ll or Space Impact

else if GP0=2 then Snake ll or Space Impact or Bumper.

GP2: Optional
when GP0=2

Fig. 11.2. Example of a Use Case in the PLUC notation

429 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

As shown in the examples, the variation points within the Use Case are enclosed within
curly brackets, and the tags are identified by proper labels ([GPi] for GamePlay PLUC in
Fig. 11.2 and [CAi] for CallAnswer PLUC in Fig. 11.3). Moreover, the possible
instantiations of the variable parts and the type of the variations are defined within an ad
hoc Variations section within the PLUC.

requirements for all the derivable products.

happen that some scenarios in a PLUC depend on other scenarios in another PLUC. In
other words, some functional requirements may span across several Use Cases, bypassing
the modeling capabilities of the simple formalism of PLUCs seen so far. We refer to these
requirements as cross-cutting features. We handle cross-cutting in a simple way: When a
scenario in a PLUC interacts with a scenario in another PLUC, we introduce a textual note
like “see PLUC name.” This is for instance the meaning of the note “See CallAnswer”
within the GamePlay PLUC of Fig. 11.2, i.e., if an incoming call arrives as the user is
playing a game, the related steps to be undertaken can be found in the CallAnswer PLUC.

11.2.1 Specification of a PLUC

 The specification of the tags into a PLUC is a critical step for making the PLUC approach
effective in practice. The examples we have shown in Figs. 11.2 and 11.3 just refer to single
use cases, each of which is intended to give all the possibilities foreseen within the prod-
uct line for the particular function described by the use cases. The derivation of a product
will amount to the instantiation to a given value of all the tags of all the PLUCs of the
product line: However, not all the combinations of values will be feasible, or “legal,”
products. Some more information is needed at the level of the PLUC definition in order to
set some constraints on the variability of the tag values. This requires a method to formal-

ric), as a necessary preliminary step for the verification of the compliance of a PUC to the
product line constraints. In fact, the constraints that characterize the products belonging to
a product line can be expressed in terms of the relations among the different tags indicat-
ing the variation points, both belonging to a single PLUC, and belonging to several
PLUCs (thus addressing cross-cutting features).

To express the variability tags of the PLUCs in a formal way we have to take into
account all the possible situations that can arise during the writing of a PLUC, paying
particular attention to the variable tags of the PLUC itself.

1. A tag is a variable which can assume any value inside a domain (often it is a finite,
explicitly enumerated domain). As already shown in the examples, for readability we
denote tags with the abbreviation of the PLUC name and a number (e.g., CA0).

First of all, we have to define the formalism to be used for expressing those relationships:

ize the three kinds of tags described in Sect. 11.2 (Alternative, Optional, and Param et-

430

A product line definition is given by a set of PLUCs describing the various (generic)

When considering the repository of all Use Cases specified for a product line, it can

PL USE CASE CallAnswer

Goal: Answer an incoming call on a [CA0] Mobile Phone
Scope: The [CA0] Mobile Phone
Precondition: Signal is available; Mobile Phone is switched on
Trigger: Incoming call
Primary actor: The user
Secondary actors: The {[CA0] Mobile Phone} (the system)
 The Mobile Phone Company
Main success scenario
 1.The user accepts the call by pressing the Accept button
 2. The system establishes the connection by following the {[CA1] appropriate} procedure.
Extensions
 1a. The call is not accepted:
 1a.1. the user presses the Reject button
 1a.2. scenario terminates
PL Variability Features

CA0: Alternative:
 0. Model 0
 1. Model 1 [CA2]
 2. Model 2 [CA2]

CA1: Parametric:
case CA0 of
0: Procedure A:
 2.1 Connect Caller and callee
1 or 2: if CA2= a then Procedure B
 2.1 Interrupt the game
 2.2 Connect Caller and callee

else if CA2= b then Procedure C:
 2.1 Save current game status
 2.2 Interrupt the game
 2.3 Connect Caller and callee

CA2: Alternative:
a. games available, but if interrupted status is not saved
b. games available, and if interrupted status is saved

Fig. 11.3. Another PLUC example

2. A tag predicate is a Boolean proposition asserting the value of a tag, such as (CA0 ==

connectives. We use the symbols “||” (the logical OR operator), “&&” (the logical
AND operator) , “==” (the “equal to” logical operator), “=>” (the logical implication
operator) and “~” (the logical NOT operator). We denote tag predicates with a name
such as CA0_tag.

3. A tag predicate for a tag may include propositions about other tags, so to define
relationships between the values of the tags. Moreover, other expressions can set
constraints over the tag’s values; such constraints can span over more than one PLUC.

Using this formalism we can describe the essential types of tags by a logical expression
able to capture their meaning:

– Alternative tag indicates mutual exclusion, which means that during the instantiation
process one and only one from a set of different values can be assigned to the tag.
This type of relationship can be expressed with a logical Exclusive or.

431 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

1), or an expression connecting such propositions using classical propositional

 A. Bertolino et al.

– Optional tag represents a subset of a PLUC steps that can or cannot be present in an
instantiated PUC, depending of the value of some other instantiated tag (i.e., if a
mobile phone type contains game C, the PUC called “starting a game” will have a
step “print GAME C on screen,” otherwise this step will not be present in the PUC).
The propositional connective that models this type of relationship is Implication.

– Parametric tag indicates that some subsets of PLUCs steps can be chosen so that at
least one of them will be chosen for a specific PUC, but more than one is allowed to
be chosen (i.e., there can be more than a way to start a game in a mobile phone
interface, and at least one must be present). This relationship is modeled with a
Logical or.

The two examples of PLUCs shown in Figs. 11.2 and 11.3 can be used to show the

process to be followed to represent the tags indicating variability in a formal way using
the formalism described above. For each of the variability tags in the two PLUCs we
derive a logical expression:

GP0_tag (alternative): (GP0 == 1 XOR GP0 == 2 XOR GP0 == 0);
GP1_tag (parametric): ((GP0 == 0 && GP1 == “display msg “No game available””) || (GP0 == 1 &&

GP1 == “Snake ll or Space Impact”) ||(GP0 == 2 && GP1 == “Snake ll or
Space Impact or Bumper”));

GP2_tag (optional): (GP0 == 2 => GP0 == “and sends the score to Club XXX via WAP ”) || ((GP0
== 1 || GP0 == 0) => (VGP2 == null));

CA0_tag (alternative): (CA0 == 1 XOR CA0 == 2 XOR CA0 == 0);
CA1_tag (parametric): (CA0 == 0 && CA1 == “procedure A”) || ((CA0 == 1 || CA0 == 2) && CA2 == a

&& CA1 == “procedure B”) || ((CA0 == 1 || CA0 == 2) && CA2 == b && CA1 ==
“procedure A”);

CA2_tag (alternative): (CA2 == a XOR CA2 == b)

GP-CA-constraint: CA0_tag == GP0_tag

The last expression is actually a constraint that relates two PLUCs: In this case this

constraint simply states that the first tag is actually common to the two PLUCs.
Due to the expressive power of propositional calculus, it is possible to define some

more complex and structured relationships, which can be used to more easily describe
some common situations we can find when we read through a PLUC. We have just
considered those kinds of expressions that define the three types of tags we have
identified. A deeper analysis of the needs of actual applications of PLUCs may
enlighten the need for other types of tags that should be analogously formalized.

The constraints that define the borders and the characteristics of a product line and that
must drive the specification of a PUC are expressed by means of the formalization of the
tags as seen above. These tags may be considered as the way to represent the conditions to
be satisfied in order to make a variability solution not contradictory with the product line
characteristics.

In summary, a PLUC describes the general behavior which all products should yield
during the accomplishment of a specific task: It acts like a template from which it is pos-
sible to derive single PUCs by the instantiation process of its tags, which can be of many
different types.

432

11.3 PUC Derivation from PLUC

In this section we describe our approach to effectively verify the compliance of a PUC to
the product line constraints. Our approach is in fact inherently conceived to handle closed
product lines, where it is intended that application engineering does not change the
requirement model. On the other hand, the verification of conformance during tag
instantiation, following the principles described below, provide the application engineers
with a means to detect those cases in which this could happen, and to identify the
requirement parts that should be changed to allow for the design of the application outside
the product line.

The process of instantiating tags consists of assigning an actual value to each variable
appearing in the tag expressions of PLUCs we are interested in. The instantiation of the
tags expressing the variabilities of the product line corresponds to the definition of the
compulsory characteristics of the PUC we are deriving. In other words, the instantiation of
the tags defines the requirements of a particular product belonging to the product line.

A possible instantiation of the tags of the two PLUCs in Figs. 11.2 and 11.3 is:

CA0 == GP0 == 1
CA1 == “procedure A”
CA2 == b
GP1 == “display msg “No game available” “
GP2 == null

This instantiation produces two PUCs derived by the two given PLUCs. A PUC is

compliant to the product line if, evaluating the tags expressions defining the constraints in
the product line with the instantiation of variables given for that PLUC, all the tags are
evaluated true. Otherwise, the PUC cannot be accepted as belonging to the product line:
an inconsistent PUC has been identified. The expressions having value false indicates the
points of the instantiation determining the non-compliance. Then it is simple to identify
those instantiation to be modified to achieve the compliance to the product line
constraints.

In the example the value of tag expressions of the PLUC with the actual values of the
variables for the considered instantiation are:

CA0_tag: true
CA1_tag: true
CA2_tag: true
GP0_tag: true
GP1_tag: false
GP2_tag: true

433 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

This means that a PUC with the variabilities solved with the above values does not des-
cribe any valid product of the product line. In this case the lack of compliance is easily
identified as the erroneous instantiation of GP1.

One of the main merits of the methodology we have described is the ease of inserting
changes in product line requirements expressed by means of PLUCs. In fact, if a tag is
modified, because of the parametric nature of the approach, the effects of the modification
affect only its definition and not its individual occurrences over the PLUCs. Moreover, if
some new tags have to be added, the effort for doing that is mainly concentrated on the
corresponding formal definition, and, once the new tag formula has been defined, the

We note that our approach when used for the instantiation process (from product line to
product) allows a designer to enforce closed PLs, i.e., it prevents the insertion of

lines. On the contrary, it is interesting to note how the described methodology can also be
used for supporting the impact analysis of possible new variabilities on the existing (or
planned) products belonging to the product line. When a new variable feature is to be
added in the product line, it is of interest to evaluate its impact on the whole set of the
products of the product line. In particular, for evaluating if the new variability will
determine incompatibility with some of the existing or planned products of the product
line, a preliminary verification can be made adopting the verification procedure shown
above.

11.4 Using PLUCs for Derivation of Test Scenarios

We have addressed so far how PLUCs can help address variabilities and commonalities
during the upfront stages of development, i.e., modeling and specification of Use Case
scenarios. Commonalities and variabilities of course also affect test planning: In fact,
when considering a line, a test plan consisting of a generic frame of test cases pertaining
to the PL domain can be derived. In other terms, the line generic test plan includes a list of
test cases that apply to the whole set of admissible products, plus other test cases which
instead will vary for each specific product, depending on how the variants characteristics
are instantiated. At the product level, then, a methodology should support testers in instan-
tiating from the generic PL test frame the set of test cases relative to the specific product,
inclusive of common and variable test features.

the appropriate place of the affected PLUCs.
updating of the product line requirements simply consists in the inclusion of the tag at

This approach is promising due to its simplicity and effectiveness for being imple-
mented in an automatic way. In fact, it gives the advantage of an explicit identification of
the variability points in a product line requirements specification by means of the tags.

This characteristic may strongly facilitate the application of our approach in the indus-
try because it allows the use of automatic tools for the identification of variabilities. As
an example, a tool can be built able to generate all the admissible PUCs from the PLUC,
by assigning to tags all the combination of values admitted by the tool: This tool may be
useful to explore the possibilities given by possible software products in a product line,
before actually building it.

434

requirements which are not allowed. Then in this sense it is conceived for closed product

11.4.1 PLUTO: A Methodology to Derive Test Scenarios

PLUCs can provide a useful means for the above goal: Based on the PLUC formalism, we
have developed a simple and intuitive methodology for the early derivation of test scenar-
ios from the PL requirements specification, called PLUTO (Product Lines Use Case Test
Optimization) [2].

The PLUTO methodology is inspired by the well-known Category Partition (CP)
method [28], but expands it with the capability to handle PL variabilities and to instantiate
test cases for a specific product. In the following we illustrate the CP method, and how
this has been modified in PLUTO to handle PLUCs variabilities and commonalities.
A remark is noteworthy: We generically speak in terms of “test cases,” for readability.
However, this is not compliant with the common meaning of a test case in the testing
literature. A test case should consist of the precise specification of a test input, a sequence
of events and the expected output. We deal rather with abstract descriptions of test
scenarios: What we derive are not test cases, but scenarios of use that need to be tested for
validating that the user requirements are satisfied. Being derived from the Use Cases
description, which are high level and in natural language, both the input sequence and the
expected behavior are provided at a quite high level of description (the same one in the
considered scenario). A refinement process from these abstract descriptions to more
concrete ones is needed for obtaining executable test cases. This is outside the scope of
the current chapter, but a method for test case synthesis from test scenarios can for
instance be found in Chap. 12. CP is a well-known and quite intuitive method proposed in
the late eighties to derive functional tests from the specifications written in structured,
semiformal language. CP provides a systematic, formalized approach to partition testing
that is one standard functional testing methodology. Generally speaking, partition testing
is based on the simple idea that the input domain is first divided into several equivalence
classes (also called partitions, although to be true partitions these should be non-
overlapping, which is rarely the case in practice); then one or few tests are selected from
within each of the identified partitions, as representative of the behavior of the whole
class.

CP is organized into a stepwise methodology. The first step is to analyze the system
requirements to identify the functional units that will constitute the subjects of the test and
can be considered separately. In the case of PLs the elementary units of analysis are
naturally provided by the PLUCs.

Then, for each functional unit (here a PLUC), the tester identifies the environment
conditions (the required system properties for a certain functional unit) and the parameters
(the explicit inputs for the unit) that are relevant for testing purposes: these are called the
categories.

435 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

For each category, the significant (from the tester’s viewpoint) values that it can take
are then selected, called the choices. A suite of test cases is finally obtained by taking all
the possible combinations of choices for all the categories.

As the approach is based on structured, natural language requirements, the test
derivation has to be done partially manually. In particular, the identification of relevant
Categories and of the Choices to be tested is left to the tester’s skill and judgment, and
then this constitutes the most critical step of the approach. However, lexical and

useful information to identify the relevant Categories. This could be augmented with
pragmatic hints derived from the specific meaning of fields forming a Use Case.
Moreover, this step has been empirically studied, leading to the identification of common
mistakes made by testers and to the compilation of a relative checklist [4].

To prevent the construction of redundant, not meaningful, or even contradictory,
combinations of choices, in CP the choices can be annotated with constraints, which can
be of two types: either (i) properties or (ii) special conditions. In the first case, some
properties are set for certain choices, and selector expressions related with them (in the form
of simple if conditions) are associated with other choices: A choice marked with an if
selector can then be combined only with those choices from other categories that fulfill
the related property. The second type of constraints is useful to reduce the number of test
cases: some markings, namely “error” and “single,” are coupled to some choices. The
choices marked with “error” and “single” refer to erroneous or special conditions,
respectively, that we intend to test, but that need not to be combined with all possible
choices. The list of all the choices identified for each category, with the possible addition
of the constraints, forms a Test Specification. It is not yet a list of test cases, but it
contains all the information necessary to instantiate them by unfolding the constraints.

A specific characteristic of test cases derived from Use Cases is the presence of several
scenarios, i.e., the main success scenario and in addition the possible extensions. Of
course all of them must be exercised during testing. Therefore a Test Specification derived
from PLUCs will normally include a category “Scenarios,” in which all the specified
scenarios are listed as choices.

Finally, when considering PLs, the CP method described above must be adapted for
dealing with the presence of the tags included in the PLUC to identify the PL variation
points. However, this can be done in a quite intuitive way: We use the tags similarly to the
original concept of CP constraints, i.e., in the Test Specification we associate to the
corresponding choices the variability tags; then, in the process of test case derivation we
match the tag values in such a way to establish the combinations that are significant with
respect to a specific product. In particular, in case of:

– An alternative tag: the relevant feature is selected
– An optional tag: the corresponding feature is taken into account or not depending on

whether it is present in the product
– A parametric tag: the feature corresponding to the pertinent value is taken

436

syntactical analyzers for natural language requirements [3,12] could be used to extract

Note that actually parametric tags do not directly contribute to the task of identifying
the test scenarios: In fact, they do not identify possible points of selection, but rather
assign the appropriate values once some other related tags are fixed.

When dealing with PLUCs, to express the selectors, since these are here used to express
relations over tag values, we continue to adopt the formalism of the logical expressions
introduced in Sect. 11.3.1. Hence properties over categories in PLUTO are expressed as
constraints over tags.

Conceptually, the suite of all potential test cases for a PL encompasses all those
combinations of choices that are common throughout the product line and are given by
those test cases that do not include variability tags. In addition to these, all the possible
combinations of choices involving tags form a set of variable test cases. The complete set
of mandatory and variables test cases, which would be obtained in this way, form the asset
of test scenarios for the line.

In PLUTO we do not derive the list of all admissible PL test cases; rather we derive the
PL Test Specification and leave it unfolded. The test cases are actually derived for a
specific product after having instantiated the tags in each PLUC to the appropriate values.

More precisely, for each Test Specification relative to a PLUC, a different set of test
cases will correspond to every specific product of the PL, depending on the tag values.
We observe that this intermediate step of tag instantiation between the definition of the
Test Specification and the derivation of the test sets is the means by which in PLUTO we
tackle variability. For readers familiar with the CP test method, this is also what makes
PLUTO basically different from the traditional CP. In the latter, only one set of test cases
directly correspond to each Test Specification. In PLUTO, from each Test Specification
several different sets of test cases can be instantiated, depending on the tag values.

Considering the testing process, the PLUTO approach addresses the stage of testing for
validation of user requirements, i.e., it can be used to support Acceptance testing against
the documented usage scenarios during application engineering to make certain that the
application works according to the expectations of the targeted users. Such test cases are
executed as Input/Output black box tests on the completed system. Along the application
engineering process, they should be complemented with other test stages addressing unit
and integration testing.

PLUTO could nicely be complemented with the ScenTED approach described in Chap.
13. Such an approach is conceived to derive application test cases for system and
integration test levels. Moreover, unit test techniques should also be considered for
components.

11.4.2 An Example

For illustration purposes, we now apply the PLUTO approach to the GamePlay PLUC in
Fig. 11.2. As a first step, from an analysis of it we identify the following Categories:
“Mobile Phone Model,” “Games,” “Difficulty Level,” and “Club,” plus of course
“Scenarios,” which is always present. These identify the relevant characteristics to be
varied when testing the Mobile Phone system for validating the user requirements with
respect to the functionality of playing games.

We proceed by partitioning these categories into the relevant choices, i.e., we single out
for each of the categories the values that are the relevant cases to be considered in specific

437 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

tests. As said, when applying the CP method to PLs, in general we will have that some of
the choices will be available for all the products of the product line. On the other hand,

some of the categories are specialized into choices that depend on the specific product
considered. For instance, the category “Club,” which relates to the capability to exchange
the achieved game score with other Club affiliates, is relevant only for those models that
support WAP connection. Hence it cannot be tested for any potential applications of the
product line, but only for those supporting this feature. This is specified in the GamePlay
PLUC by means of the GP2 optional tag. Hence, when the test cases are being derived, we
make use of this tag similarly to the “constraint” formalism of the CP method. As shown
in Fig. 11.4 we derive the two possible choices pertaining to the “Club” category, but we
annotate them with an appropriate selector, which is a simple condition stating that
these choices are of interest only when the tag GP0 takes value 2, i.e., the Mobile Phone
is Model 2. The complete Test Specification is shown below in Fig. 11.4.

If we now applied to this Test Specification a generator that takes out all the possible
combinations of choices, we would obtain a long list of test cases. This list would include
all the potential test cases for all the products of the line relative to the PLUC under
consideration. However, what is more interesting in our opinion is that we can instead
derive directly a list of test cases for a specific product of interest. This is obtained easily
by just instantiating the relative tags. So, for instance, if we are interested to test the
Model 2 product of this line, we set the related optional tag to true (recall from Sect.
11.3.1 that this is modeled by Implication) and derive all and only the combinations that
remain valid.

PLUC GAMEPLAY TEST SPECIFICATION
[GP0]: Mobile Phone Model:
0. Model 0
1. Model 1
2. Model 2

Games:
None GP0 == 0
Snake ll GP0 <> 0
Space Impact GP0 <> 0
Bumper GP0 == 2

Difficulty Level: GP0 <> 0
easy
medium
expert

Scenarios:
Main GP0 <> 0
ext: no game available GP0 == 0
ext: a call arrives see CallAnswer [single]

[GP2]: Club:
WAP connection on GP0 == 2
WAP connection off GP0 == 2

Fig. 11.4. Main test categories for the GamePlay PLUC

438

As an example, we list below in Fig. 11.5 some of the test cases that would be thus so
obtained for different products, i.e., for different tag assignments. We show these as
abstract descriptions and leave to the reader the obvious transformation of these into the
corresponding functional test scenarios.

GP0 == 2

Tj1:
Mobile Phone Model: Model 2

Difficulty Level: easy
Scenarios: main
Club: WAP connection on

Tj2:
Mobile Phone Model: Model 2
Games: Bumper
Difficulty Level: expert
Scenarios: main
Club: WAP connection on

……..

Tk:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium
Scenarios: ext: a call arrives - see CallAnswer

Fig. 11.5. Some test scenarios

 This case depicts a cross-cutting feature arising from a functional dependency between
the GamePlay PLUC and another Use Case, the CallAnswer PLUC, that describes the
handling of incoming calls and that we have already presented in Fig. 11.3. Considering
now the CallAnswer PLUC (independently from the GamePlay PLUC), we assume we

Games: Snake ll

PLUC do not depend on the features of another PLUC. Test Tk instead needs further
consideration. It considers the choice “a call arrives” of the Scenarios category, which has
a specific “See CallAnswer” annotation. This is an example of a cross-cutting feature,
whose notion we have introduced in Sect. 11.2. We now see below how this can be
handled in the PLUTO methodology.

11.4.3 Extending the Methodology

In Fig. 11.5 the test cases Tj1, Tj2 refer to a simpler situation in which the features in a

which it was interrupted.

Referring to the example used so far, let us suppose that the Mobile Phone PL under con-
sideration provides for some applications the capability to save the current status of a game
being played in the case that an incoming call arrives. The user may answer or refuse the
call. Then, after the communication is closed, the game can be resumed from the status in

439 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

have already derived a Test Specification by applying to it the PLUTO methodology, as
shown in Fig. 11.6.

PLUC CALLANSWER TEST SPECIFICATION
[CA0]: Mobile Phone Model:

0. Model 0
1. Model 1
2. Model 2

Saving:
a. game status is not saved CA0 <> 0
b. game status is saved CA0 <> 0

Scenarios:
Main: Call is accepted
ext: Call is refused

Fig. 11.6. Main test categories for the CallAnswer PLUC

Similarly to what we have done for GamePlay, if we take all the potential combinations of
choices in the CallAnswer Test Specification, in respect of the associated constraints, we
would obtain the list of test scenarios relative to this PLUC. It is clear however that the
PLUCs GamePlay and CallAnswer are related with respect to the possibility to interrupt
and then retrieve a game play because a call arrives. To identify that a dependency exists,
as said, when we elicited the Use Cases we have annotated the related scenario in the

deriving the test cases from the GamePlay Test Specification (see Fig. 11.4) the case that
a call arrives is contemplated in all those tests in which for the “Scenarios” category the
choice “ext: a call arrives” is taken. In Fig. 11.5 the test case Tk for instance selects this
choice (we report it again below):

Tk:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives - see CallAnswer

However, as described in the CallAnswer PLUC, when a call arrives several behaviors are
possible. This test hence is not complete: It must be further refined into several related test
cases, considering each of the possible combinations of choices offered in its turn by the
CallAnswer Test Specification. Hence for example from the above Tk, considering the
Test Specification relative to the CallAnswer PLUC (Fig. 11.6), we get at least four refined
test cases as follows:

Scenarios:

GamePlay PLUC with the note “See CallAnswer.” Correspondingly, in the process of

440

Tk-1:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium
Scenarios: ext: a call arrives

Saving: game status is not saved
Scenarios: Call is accepted

Tk-2:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives
Saving: game status is saved
Scenarios: Call is accepted

Tk-3:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives
Saving: game status is not saved
Scenarios: Call is refused

Tk-4:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives
Saving: game status is saved
Scenarios : Call is refused

More in general, whenever a test specification includes a directive “See another PLUC,”
the derivation of test cases is made by combining the relevant choices from the two related
PLUCs. Note that the annotation is made in the PLUC that triggers the test cases, in our
example the GamePlay PLUC. Note also that in the GamePlay Test Specification we have
marked the choice “ext: a call arrives” with the [single] constraint. As described above the
common heuristic in the CP method is that special, unusual, or redundant conditions are
not combined with all possible choices, and to recognize them, they are marked as [single].
This heuristic reduces the total number of test cases, while assuring that one frame will be
anyhow created with the marked choice. As explained in [28] the decision to use a [single]
marking is a judgment by the tester that the marked choice can be adequately tested with
only one test case. It is an attempt to trade-off between exhaustive testing of combinations
(which is unfeasible) against the pragmatic testing resource limitations. Accordingly, to
reduce the number of test scenarios, we have decided not to test separately the arrival of a
call together with all possible combinations of GamePlay choices (that are being tested
already along the main scenario). Instead we select one representative combination (as the
Tk example above) on the side of GamePlay, and from this we then derive as many tests
as are the possible refinements when considering the CallAnswer Test Specification.

Scenarios:

Scenarios:

Scenarios:

441 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

11.5 Related Work

The problem of the PL modeling and scoping has been approached following different

variabilities inside PLUCs, is based on the proposal by Mannion [24] that addresses
general product line model requirements: He presents a way to describe the relationships
between product line requirements in order to formally analyze them and to extract
information about the internal consistency of the requirements (i.e., they provide a valid
template for at least one single product) and of the single products derived from the
product line model (i.e., they satisfy all constraints of product line requirements).

We adopt a similar approach and we apply it to the PLUCs, by transforming the
described relationships between PL requirements into relationships between PLUC tags
and between different PLUCs, and we also extend the set of basic relationships with some
composed new ones. The fact that we define a specific notation within which to embed
such constraints and relationships provides the product line engineering with a more
concrete technique, which can be supported by automatic tools as well.

Chapter 15 exploits UML diagrams and their transformation to address product
derivation. The fact that we base our product derivation approach on Use Cases (instead
of UML statechart diagrams) means that we focus on the early stages of the development
process, that is, requirement elicitation. Addressing product derivation at an early stage
has the advantage of early detection of problems and early derivation of test cases, as
shown in Sect. 11.4, advantage paid in terms of a higher level of abstraction.

work, for the purpose of identifying relevant differences and commonalities with our
ongoing research. For the first time, a whole workshop has been devoted to PL testing at
SPLC 2004 [11], recognizing the urgent need for testing to keep pace with PLE

particularly interesting because they address the problem of test cases generation starting
from the PL variability.

In [22] test-related activities in a product line organization are described. Test-related
activities are organized into a test process that is purposely designed to take advantage of
the economies of scope and scale that are present in a product line organization. These acti-
vities are sequenced and scheduled so that a test activity expands on the testing practice
area described by Clements and Northrop [5]. Here we present a test case derivation strat-
egy for PLs described starting from a very general description like the Use Cases are. We
can say therefore that the main difference between [22] and [5] and our work stays in the
focus, which is there on the process while here is on the methodology. A mutual influence
between these two directions of work would certainly be desirable and beneficial. In [18]
the authors propose that variability is introduced in the domain-level test cases corre-
sponding to the variabilities present in the Use Cases and that application specific test
cases are then derived from them. The derivation strategy depends on how the variability
is expressed, and different approaches, including Abstraction, Parameterization, Segmen-
tation, Fragmentation, and Instantiation are overviewed. It is envisaged that a combination
of these approaches needs to be used. The approach is still preliminary and details are
missing, in particular it is not clear to what extent it can be automated. However, the idea
of combining several derivation approaches is interesting and our approach could proba-
bly be incorporated in this general framework as one of the derivation strategies (in

442

approaches [13, 15, 29]. Our approach, aiming at introducing constraints on the

development productivity gains. Some papers presented in that workshop [20, 23, 30] are

For what concerns the field of product line testing, we quickly overview related

particular the Parameterization one). In [27] an approach to expressing test requirements
and to formally validate them in a UML-based development process which takes into
account PL specificities is presented. Behavioral test patterns (i.e., the test requirements)
are built as combinations of use-case scenarios, these scenarios being product-independent
and therefore constituting reusable PL assets. The difference between this approach and
ours is that from a methodological point of view they propose a whole process from early
modeling of requirements to test cases starting from UML specifications, whereas we
instead exploit the description of a PL given in natural language and work at the early
analysis stages. Perhaps the two approaches could be considered in combination, as

RITA [19], an environment under development at the University of Helsinki. RITA is
orthogonal to our work, in that it is specifically designed for framework and framelet-
based PLs, and does not assist the generation of test cases from requirements. Instead,
assuming that the test cases are supplied in input, the environment is conceived for sup-
porting test scripting, execution, result evaluation and more in general for helping with the
test process management activities. Different from ours finally are some recent app-
roaches that attack the testing problem based on the product line software architectures.
Indeed, the increased use of product line architectures in today’s software development
poses several challenges for existing testing techniques. In [26] those challenges are dis-
cussed as well as the opportunities for addressing them. The Component + architecture [8]
defines instead standardized test interfaces that minimize the effort needed to verify the
components by extending software components with configurations.

and shown how this notation allows several kinds of analysis to be performed over such
documents, which are extremely useful in the development of products of a software
product line. We have concentrated in this chapter over the analysis of PLUCs to derive
Product Use Cases and to derive test cases for a product line and its products. In [10] we
have applied PLUCs in the process of product line elicitation, that is, how to define a line
of products by generalization of some similar products.

443 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

addressing different concerns of the PL life cycle. Product line testing is also addressed in

11.6 Conclusions and Future Research

We have presented the PLUC notation for the description of product lines requirements

In order to support our belief that PLUCs can meet industrial expectations for a nota-
tion which is at the same time rigorous and easy to understand, we plan to validate the
methodology through extensive industrial case studies. Another important direction we
are currently working on is the development of a suite of tools that can support both prod-
uct derivation from a line and test case derivation for the products of a line.

Moreover, PLUCs could complement the graphical and intuitive but abstract notation
of UML Use Cases. Defining a UML profile for PLUCs in order to include variabilities in
the diagrams and to associate them with the textual, more detailed descriptions using our
notation could be a step toward a standardized version of PLUCs. When we have com-
pleted the validation of our methodology, we will thus initiate the international standardi-
zation process for PLUCs, facilitating wide industrial adoption and application of the
PLUC notation.

 A. Bertolino et al.

Kamsties, Timo Käkölä, Antti Tevanlinna, and Tewfik Ziadi significantly improved the
quality of this chapter.

References

444

1. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Use case description of requirements for
product lines, REPL’02, Essen, Germany (September 2002)

2. Bertolino, A., Gnesi, S.: Use case-based testing of product lines. Proceedings of ESEC/FSE 2003 (ACM,
New York) pp 355–358

3. Cascini, G., Fantechi, A., Spinicci, E.: Natural language processing of patents and technical documentation.
Proceedings of DAS 2004, 6th IAPR International Workshop on Document Analysis Systems, Firenze, Italy,
September 2004. Lecture Notes in Computer Science, vol 3163 (Springer, Berlin Heidelberg New York
2004)

4. Chen, T.Y. et al: On the identification of categories and choices for specification-based test case generation.
Inform. Softw. Technol. 46: 887–898 (2004)

5. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in Software
Engineering (Addison-Wesley, Reading, MA August 2001)

6. Cockburn, A.: Structuring use cases with goals. J. Object-Oriented Program. Sept–Oct 1997 (part I) and
Nov–Dec 1997 (part II)

7. Cockburn, A., Writing Effective Use Cases (Addison-Wesley, Reading, MA 2001)
8. Component+, “D4 – BIT Case studies”. http://www.component-plus.org (October 2002)
9. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Linguistic techniques for use cases analysis. Proceedings of

the IEEE Joint International Requirements Engineering Conference – RE02, Essen, Germany, 9–13
September 2002

10. Fantechi, A., Gnesi, S., John, I., Lami, G., Dörr, J.: Elicitation of use cases for product lines. 5th International
Workshop on Product Family Engineering, PFE-5, Siena, 4–6 November 2003. Lecture Notes in Computer
Science, vol 3014 (Springer, Berlin Heidelberg New York 2004)

11. Geppert, B., Krueger, C., Li, J.J. (eds): Proceedings of SPLiT 2004, International Workshop on Software
Product Line Testing, co-located with SPLC 2004, Boston, MA, USA, August 2004, Avaya Labs Research
Tech. Rep. series ALR-2004-031. http://www.research.avayalabs.com/techreport.html

12. Gnesi, S. et al: An automatic tool for the analysis of natural language requirements. Int. J. Comput. Syst.
Sci. Eng. 20(1), 53–62 (2005)

13. van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines. Proceedings of
the Working IEEE/IFIP Conference on Software Architecture (WICSA 2001), pp 45–54

14. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to Customers Journal
of Software and Systems Modeling (Springer, Berlin Heidelberg New York 2003)

15. Jaring, M., Bosch, J.: Representing variability in software product lines: a case study. In: Software Product
Lines, ed by Chastek, G.J., 2nd International Conference, SPLC 2, San Diego, CA, USA, 19–22 August
2002. Lecture Notes in Computer Science, vol 2379, pp 15–36

16. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product Families: Principles and
Practice (Addison-Wesley, Reading, MA 1998)

17. John, I., Muthig, D.: Tailoring use cases for product line modeling, REPL’02, Essen, Germany (September
2002)

This work was partially supported by the Eureka Σ!2023 Programme, ITEA (ip00004,
Project CAFÉ). We wish to thank in particular Alessandro Maccari from NOKIA, Isabel
John from IESE, and Emiliano Nesti from University of Florence for their contributions
on the research activity summarized in this chapter. The reviews of Erwin Engelsma, Erik

Acknowledgments

445 11 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

24. Mannion, M., Camara, J.: Theorem proving for product line model verification. 5th International Workshop
on Product Family Engineering, PFE-5, Siena, 4–6 November 2003. Lecture Notes in Computer Science, vol
3014 (Springer, Berlin Heidelberg New York 2004)

25. von der Massen, S., Lichter, H.: Modeling variability by UML use case diagram. International Workshop on

(September 2002)
26. Muccini, H., van der Hoek, A.: Towards testing product line architectures. Electron. Notes Theor. Comput.

Sci. 82(6) (2003)
27. Nebut, C., Pickin, S., Le Traon, Y., Jézéquel, J.-M.: Reusable test requirements for UML-modeled product

line, REPL’02, Essen, Germany, Avaya Labs technical report, ALR-2002-033 (September 2002)
28. Ostrand, T.J., Balcer, M.J.: The category partition method for specifying and generating functional tests.

ACM Commun. 31(6), 676–686 (June 1988)
29. Schmid, K.: A comprehensive product line scoping approach and its validation. 24th International

Conference on Software Engineering, Orlando, FL, 2002
30. Stephenson, Z., Zhan, Y., Clark, J., McDermid, J.: Test data generation for product lines – a mutation testing

approach. International Workshop on Software Product Lines Testing, Boston, MA, 31 August 2004

18. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Testing variabilities in use case model. 5th International
Workshop on Product Family Engineering, Siena, November 2003

19. Kauppinen, R., Taina, J.: RITA environment for testing framework-based software product lines.
Proceedings of the 8th Symposium on Programming Languages and Software Tools (SPLST 2003), Kuopio,
Finland, June 2003 (University of Kuopio 2003) pp 58–69

20. Knauber, P., Schneider, J.: Tracing variability from implementation to test using aspect-oriented
programming. International Workshop on Software Product Lines Testing, Boston, MA, 31 August 2004

(July/August 2002)
22. MacGregor, J.D.: Testing a software product line. Technical report, CMU/SEI-2001-TR-022
23. MacGregor, J.D., Sodhani, P., Madhavapeddi, S.: Testing variability in a software product line. International

Workshop on Software Product Lines Testing, Boston, MA, 31 August 2004

É 21. van der Linden, F.: Software product families in Europe: the ESAPS & CAF projects. IEEE Software

Requirements Engineering for Product Line (REPL’02), Avaya Labs Technical Report, ALR-2002-033

,

