Skip to main content

Control Structure and Multi-Resolution Techniques for Virtual Human Representation

  • Chapter
Shape Analysis and Structuring

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

A virtual human is a typical instance of articulated physical objects: it does not have only one shape but many, corresponding to all the possible postures that the underlying articulated skeleton can reach. For realistic rendering results, a high-quality texture is usually associated to the shape and skeleton structure. Controlling and animating a virtual human model requires simultaneously many graphics and computational resources.

The first part of this chapter discusses the control articulated skeleton structure and different approaches to build skeletons [10] and bind it to the geometry. The second part addresses the production of LoDs for virtual humans, both for the 3D shape (geometry) and the articulated skeleton (motion and animation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO/IEC JTC1/SC24 FCD 19774:200x. Humanoid animation (h-anim), 2004. http://www.h-anim.org/.

  2. J. Ahn and K. Wohn. Motion level-of-detail: A simplification method on crowd scene. In Proc. Computer Animation and Social Agent, CASA’04, pages 129-137, 2004.

    Google Scholar 

  3. I. Albrecht, J. Haber, and H.-P. Seidel. Construction and animation of anatomically based human hand models. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 98-109, 2003.

    Google Scholar 

  4. B. Allen, B. Curless, and Z. Popovi ć . Articulated body deformation from range scan data. ACM Transactions on Graphics, 21(3):612-619, July 2002.

    Google Scholar 

  5. D. Anguelov, D. Koller, H.-C. Pang, P. Srinivasan, and S. Thrun. Recovering articulated object models from 3d range data. In Proceedings of the Uncertainty in Artificial Intelligence Conference (UAI2004), 2004.

    Google Scholar 

  6. D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape: Shape completion and animation of people. In Proceedings of the SIGGRAPH Conference 2005,2005.

    Google Scholar 

  7. J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis: pose selection and illustration. ACM Transactions on Graphics, 24(3):667-676, 2005.

    Article  Google Scholar 

  8. G. Attardi, M. Betro, M. Forte, R. Gori, A. Guidazzoli, S. Imboden, and F. Mallegni. 3d facial re-construction and visualization of ancient egyptian mummies using spiral CT data. In SIGGRAPH99 Abstracts and Applications, pages 223-239, 1999.

    Google Scholar 

  9. A. Aubel, R. Boulic, and D. Thalmann. Real-time display of virtual humans: Levels of detail and impostors. IEEE Transactions on Circuits and Systems for Video Technology, 2:207-217, 2000.

    Article  Google Scholar 

  10. S. Biasotti, D. Attali, J.-D.l Boissonnat, H. Edelsbrunner, G. Elber, M. Mortara, G. Sanniti di Baja, M. Spagnuolo, and M. Tanase. Skeletal structures. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.

    Google Scholar 

  11. V. Blanz and T. Vetter. Construction and animation of anatomically based human hand models. In Proc. of ACM SIGGRAPH 99, pages 187-194, 1999.

    Google Scholar 

  12. J. Bloomenthal. Skeletal methods of shape manipulation. In Bob Werner, editor, Proceedings of the International Conference on Shape Modeling and Applications (SMI-99), pages 44-49, Los Alamitos, CA, March 1-4 1999. IEEE Computer Society.

    Chapter  Google Scholar 

  13. G.-P. Bonneau, G. Elber, S. Hahmann, and B. Sauvage. Multiresolution analysis. In L. De Floriani and M. Spagnuolo, editors, Shape Analysis and Structuring. Springer, 2007.

    Google Scholar 

  14. R. Boulic, T. Capin, Z. Huang, P. Kalra, B. Linterrnann, N. Magnenat-Thalmann, L. Moccozet, T. Molet, 1. Pandzic, K. Saar, A. Schmitt, J. Shen, and D. Thalmann. The humanoid environment for interactive animation of multiple deformable human characters. Computer Graphics Forum, 14(3):337-348, August 1995.

    Google Scholar 

  15. R. Boulic, R. Mas, and D. Thalmann. Complex character positioning based on a compatible flow model of multiple supports. In IEEE Transactions on Visualization and Computer Graphics, volume 3, 1997.

    Google Scholar 

  16. R. Boulic and D. Thalmann. Combined direct and inverse kinematic control for articulated figure motion editing. Computer Graphics Forum, 2, 1992.

    Google Scholar 

  17. D. Brogan, K. Granata, and P. Sheth. Space-time constraints for biomechanical movements. In IASTED International Conference on Applied Modeling and Simulation (AMS), 2002.

    Google Scholar 

  18. D. Brogan, R. Metoyer, and J. Hodgins. Dynamically simulated characters in virtual environments. In IEEE Computer Graphics and Applications, pages 58-69, 1998.

    Google Scholar 

  19. N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing motion dynamics in key frame animation. Commun. ACM, 19(10):564-569, 1976.

    Article  Google Scholar 

  20. M. P. Cani-Gascuel and M. Desbrun. Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics, 3(1):39-50, jan - mar 1997.

    Article  Google Scholar 

  21. S. Capell, M. Burkhart, B. Curless, T. Duchamp, and Z. Popovi ć . Physically based rigging for deformable characters. In Proc. Symposium on Computer Animation, SCA’05, pages 301-310, 2005.

    Google Scholar 

  22. S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovi ć . Interactive skeleton-driven dynamic deformations. In Proc. SIGGRAPH’02, pages 41-47, 2002.

    Google Scholar 

  23. M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, and D. Thalmann. Survey: Motion control of virtual humans. IEEE Computer Graphics & Applications, 18(5):24-31, 1998.

    Article  Google Scholar 

  24. A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive multiresolution surface viewing. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 91-98. ACM Press, 1996.

    Google Scholar 

  25. J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for deformable animated characters. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques, pages 243-252. ACM Press, 1989.

    Google Scholar 

  26. D. Chen and D. Zeltzer. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. In Computer Graphics (Proceedings of SIGGRAPH 92), pages 89-98, July 1992.

    Google Scholar 

  27. J. Cohen, M. Olano, and D. Manocha. Appearance-perserving simplification. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 115-122. ACM Press, 1998.

    Google Scholar 

  28. G. Collins and A. Hilton. Modelling for character animation. Software Focus, 2(2):44-51,2001.

    Article  Google Scholar 

  29. B. Cozot, F. Multon, B. Valton, and B. Arnaldi. Animation levels of detail design for real-time virtual human. In Proc. Eurographics Workshop on Computer Animation and Simulation, EGCAS’99, pages 35-44, 1999.

    Google Scholar 

  30. S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors: A real-time geometry/impostor crowd rendering system. In Proc. ACM SIGGRAPH Symp. Interactive 3D Graphics and Games, pages 95-102, 2005.

    Google Scholar 

  31. H. Du and H. Qin. Medial axis extraction and shape manipulation of solid objects using parabolic pdes. In Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications 2004, pages 25-35, 2004.

    Google Scholar 

  32. P. Faloutsos, M. Van de Panne, and D. Terzopoulos. Composable controllers for physics-based character animation. In SIGGRAPH’01, pages 251-260, 2001.

    Google Scholar 

  33. P. Faloutsos, M. VanDePanne, and D. Terzopoulos. Dynamic freeform deformations for animation synthesis. IEEE Transactions on Visualization and Computer Graphics, 3(3):201-214, 1997.

    Article  Google Scholar 

  34. N. Gagvani and D. Silver. Animating volumetric models. Graphical models, 63(6):443-458, 2001.

    Article  Google Scholar 

  35. M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 209-216. ACM Press/Addison-Wesley Publishing Co., 1997.

    Google Scholar 

  36. M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the conference on Visualization ’98, pages 263-269. IEEE Computer Society Press, 1998.

    Google Scholar 

  37. J. Granieri, J. Crabtree, and N. Badler. Production and playback of human figure motion for visual simulation. ACM Transactions on Modeling and Computer Simulation, 5(3), 1995.

    Google Scholar 

  38. Z. Guo and K. C. Wong. Skinning with deformable chunks. Computer Graphics Forum, 24(3):373-382, 2005.

    Article  Google Scholar 

  39. J. Hamill, R. McDonnell, S. Dobbyn, and C. O’Sullivan. Perceptual evaluation of im-postor representations for virtual humans and buildings. Computer Graphics Forum, 24(3),2005.

    Google Scholar 

  40. D. Herbison-Evans. Real-time animation of human figure drawings with hidden-lines omitted. IEEE Computer Graphics & Applications, 2(9):27-33, 1982.

    Article  Google Scholar 

  41. J. Hodgins, W. Wooten, D. Brogan, and J. O’Brien. Animating human athletics. In SIGGRAPH’95, pages 71-78, 1995.

    Google Scholar 

  42. D. James and C. Twigg. Skinning mesh animations. ACM Transactions on Graphics, 24(3),2005.

    Google Scholar 

  43. K. Kahler, J. Haber, and H.-P. Seidel. Reanimating the dead: Reconstruction of expressive faces from skull data. ACM Transactions on Graphics, 22(3):554-561, 2003.

    Article  Google Scholar 

  44. P. Kalra, N. Magnenat-Thalmann, L. Moccozet, G. Sannier, A. Aubel, and D. Thalmann. Real-time animation of realistic virtual humans. In IEEE Computer Graphics and Applications, volume 18, 1998.

    Google Scholar 

  45. P. Kanongchaiyos and Y. Shinagawa. Articulated reeb graphs for interactive skeleton animation. In Proceeding Modeling Multimedia Information and System, pages 451-467, october 2000.

    Google Scholar 

  46. S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics, 22(3):954-961, July 2003.

    Article  Google Scholar 

  47. H. Kim, C. Joslin, T. Di Giacomo, S. Garchery, and N. Magnenat-Thalmann. Adaptation mechanism for three dimensional content within the mpeg-21 framework. In Computer Graphics International 2004, June 2004.

    Google Scholar 

  48. H. Kim and K. Wohn. Multiresolution model generation with geometry and texture. Proceedings of Seventh International Conference on Virtual Systems and Multimedia, pages 780-789, 2001.

    Google Scholar 

  49. S. Kiss. Computer animation for articulated 3d characters. Technical Report 45, Twente University, 2002. http://purl.org/utwente/38232.

  50. E. Kokkevis, D. Metaxas, and N. Badler. User-controlled physics-based animation for articulated figures. In Computer Animation, 1996.

    Google Scholar 

  51. K. Komatsu. Human skin model capable of natural shape variation. The Visual Computer, 3(5):265-271, 1988.

    Article  Google Scholar 

  52. L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In Proc. SIGGRAPH’02, pages 473-482, 2002.

    Google Scholar 

  53. P. Kry, D. James, and D. Pai. Eigenskin: Real time large deformation character skinning in hardware. In ACM SIGGRAPH Symposium on Computer Animation, pages 153-160, July 2002.

    Google Scholar 

  54. S. Kshirsagar, S. Garchery, G. Sannier, and N. Magnenat-Thalmann. Synthetic faces : Analysis and applications. International Journal of Imaging Systems and Technology, 13(1):65-73, June 2003.

    Article  Google Scholar 

  55. T. Kurihara and N. Miyata. Modeling deformable human hands from medical images. In Proc. of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2004.

    Google Scholar 

  56. F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In ACM Solid Modeling’99, Ann Arbor, Michigan, USA, June 1999.

    Google Scholar 

  57. J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Interactive control of avatars animated with human motion data. In Proc. SIGGRAPH’02, pages 491-500, 2002.

    Google Scholar 

  58. W. Lee, J. Gu, and N. Magnenat-Thalmann. Generating animatable 3d virtual humans from photographs. Computer Graphics Forum, 19(3), August 2000.

    Google Scholar 

  59. J. P. Lewis, M. Cordner, and N. Fong. Pose space deformations: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, pages 165-172, July 2000.

    Google Scholar 

  60. J.-M. Lien and N. M. Amato. Simultaneous shape decomposition and skeletonization using approximate convex decomposition. Technical report, Texas A&M University, 2005. http://parasol-www.cs.tamu.edu/publications/download.php?fileid=461.

  61. P. Lindstrom and G. Turk. Image-driven simplification. ACM Trans. Graph., 19(3):204-241,2000.

    Google Scholar 

  62. P. Liu, F. Wu, W. Ma, R. Liang, and M. Ouhyoung. Automatic animation skeleton construction using repulsive force field. In Pacific Graphics 2003, page 409, october 2003.

    Google Scholar 

  63. G. Loy, J. Sullivan, and S. Carlsson. Pose-based clustering in action sequences. In Proc. Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, HLK’03, page 66, 2003.

    Google Scholar 

  64. R. MacCracken and K. Joy. Free-form deformations with lattices of arbitrary topology. In Proc. SIGGRAPH’96, pages 181-188, 1996.

    Google Scholar 

  65. P. Maciel and P. Shirley. Visual navigation of large environments using textured clusters. In Proceedings of the 1995 symposium on Interactive 3D graphics, pages 95-ff. ACM Press, 1995.

    Google Scholar 

  66. N. Magnenat-Thalmann, R. Laperriere, and D. Thalmann. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface ’88, pages 26-33, June 1988.

    Google Scholar 

  67. D. Manocha and Y. Zhu. A fast algorithm and system for inverse kinematics of general serial manipulators. In IEEE Conference on Robotics and Automation, 1994.

    Google Scholar 

  68. L. Moccozet, F. Dellas, N. Magnenat-Thalmann, S. Biasotti, M. Mortara, B. Falcidieno, P. Min, and R. Veltkamp. Animatable human body model reconstruction from 3d scan data using templates. In Proc. CapTech Workshop on Modelling and Motion Capture Techniques for Virtual Environments, CAPTECH2004, 2004.

    Google Scholar 

  69. L. Moccozet and N. Magnenat-Thalmann. Dirichlet free-form deformations and their application to hand simulation. In Proc. Computer Animation, CA’97, pages 93-102, 1997.

    Google Scholar 

  70. L. Moccozet and N. Magnenat-Thalmann. Multilevel deformation model applied to hand simulation. In Proc. Virtual Systems and MultiMedia, VSMM’97, pages 119-128, 1997.

    Google Scholar 

  71. A. Mohr and M. Gleicher. Building efficient, accurate character skins from examples. ACM Transactions on Graphics, 22(3):562-568, July 2003.

    Article  Google Scholar 

  72. F. Multon, L. France, M.-P. Cani, and G. Debunne. Computer animation of human walking: a survey. The Journal of Visualization and Computer Animation, 10:39-54, 1999.

    Article  Google Scholar 

  73. S. Oh, H. Kim, N. Magnenat-Thalmann, and K. Wohn. Generating unified model for dressed virtual humans. The Visual Computer, 21(8):522-531, 2005.

    Article  Google Scholar 

  74. M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 359-368. ACM Press/Addison-Wesley Publishing Co., 2000.

    Google Scholar 

  75. S. Park and J. K. Hodgins. Capturing and animating skin deformation in human motion. ACM Trans. Graph., 25(3):881-889, 2006.

    Google Scholar 

  76. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992.

    Google Scholar 

  77. S. Redon, N. Galoppo, and M. Lin. Adaptive dynamics of articulated bodies. In Proc. SIGGRAPH’05, pages 936-945, 2005.

    Google Scholar 

  78. L. Reveret, L. Favreau, C. Depraz, and M.-P. Cani. Morphable model of quadrupeds skeletons for animating 3d animals. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005), 2005.

    Google Scholar 

  79. T. Rhee, U. Neumann, and J. P. Lewis. Human hand modeling from surface anatomy. In Proc. of the 2006 Symposium on Interactive 3D graphics and games, 2006.

    Google Scholar 

  80. C. Rose, B. Guenter, B. Bodenheimer, and M. F. Cohen. Efficient generation of motion transitions using space-time constraints. Computer Graphics, 30(Annual Conference Series):147-154, 1996.

    Google Scholar 

  81. P. Sand, L. McMillan, and J. Popovi ć . Continuous capture of skin deformation. ACM Transactions on Graphics, 22(3):578-586, July 2003.

    Article  Google Scholar 

  82. P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping progressive meshes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 409-416. ACM Press, 2001.

    Google Scholar 

  83. G. Schaufler. Per-object image warping with layered impostors. In Proceedings of the 9th Eurographics Workshop on Rendering ’98, pages 145-156, June 1998.

    Google Scholar 

  84. F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May. Anatomy-based modeling of the human musculature. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, pages 163-172, August 1997.

    Google Scholar 

  85. H. Seo, F. Cordier, and N. Magnenat-Thalmann. Synthesizing animatable body models with parameterized shape modifications. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 2003.

    Google Scholar 

  86. H. Seo and N. Magnenat-Thalmann. An automatic modeling of human bodies from sizing parameters. In ACM SIGGRAPH Symposium on Interactive 3D Graphics, pages 19-26, 2003.

    Google Scholar 

  87. F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulaiton for real-time visualization of urban scenery. In Proceedings of Eurographics ’97, pages 207-218, September 1997.

    Google Scholar 

  88. K. Singh and E. Kokkevis. Skinning characters using surface oriented free-form deformations. In Proc. Graphics Interface, GI’00, pages 35-42, 2000.

    Google Scholar 

  89. S. Kshirsagar, S. Garchery, and N. Magnenat-Thalmann. Feature point based mesh deformation applied to mpeg-4 facial animation. In Proceedings Deform’2000, Workshop on Virtual Humans by IFIP Working Group 5.10 (Computer Graphics and Virtual Worlds), pages 23-34. Kluwer Academic Publishers, November 2000.

    Google Scholar 

  90. P. P. Sloan, C. Rose, and M. Cohen. Shape by example. In ACM SIGGRAPH Symposium on Interactive 3D Graphics, 2001. 91. J. Starck, G. Collins, R. Smith, A. Hilton, and J. Illingworth. Animated statues. Journal of Machine Vision Applications, 2002.

    Google Scholar 

  91. F. Tecchia, C. Loscos, and Y. Chrysanthou. Image-based crowd rendering. IEEE Computer Graphics & Applications, 22(2):36-43, 2002.

    Article  Google Scholar 

  92. M. Teichmann and S. Teller. Assisted articulation of closed polygonal models. In Proc. 9th Eurographics Workshop on Animation and Simulation, pages 87-102, Lisbon, Portugal, August 31 - September 1 1998.

    Google Scholar 

  93. D. Terzopoulos and K. Fleischer. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. Computer Graphics, 22(4):269-278, 1988.

    Article  Google Scholar 

  94. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Computer Graphics, 21(4):205-214, 1987.

    Article  Google Scholar 

  95. D. Terzopoulos and A. Witkin. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications, 8(6):41-51, 1988.

    Article  Google Scholar 

  96. D. Thalmann, N. Magnenat-Thalmann, and P. Bergeron. Dream flight: a fictional film produced by 3d computer animation. In Proceedings Computer Graphics’82, pages 353-368, 1982.

    Google Scholar 

  97. D. Thalmann, J. Shen, and E. Chauvineau. Fast realistic human body deformations for animation and vr applications. In Computer Graphics International 1996, 1996.

    Google Scholar 

  98. D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models, 62(5):353-388, 2000.

    Article  Google Scholar 

  99. R. Turner and E. Gobbetti. Interactive construction and animation of layered elastically deformable characters. Computer Graphics Forum, 17(2):135-152, 1998.

    Article  Google Scholar 

  100. P. Volino and N. Magnenat-Thalmann. Comparing efficiency of integration methods for cloth simulation. In Computer Graphics International, CGI’01, pages 265-274, 2001.

    Google Scholar 

  101. L. Wade and R. E. Parent. Automated generation of control skeletons for use in animation. The Visual Computer, 18(2):97-110, March 2002.

    Article  Google Scholar 

  102. A. Watt and M. Watt. Advanced animation and rendering techniques. Addison-Wesley, 1992.

    Google Scholar 

  103. J. Wilhelms. Animals with anatomy. IEEE Computer Graphics and Applications, 17(3):22-30, 1997.

    Article  Google Scholar 

  104. A. Witkin and M. Kass. Space-time constraints. In SIGGRAPH’88, pages 159-168, 1988.

    Google Scholar 

  105. W. Wooten and J. Hodgins. Transitions between dynamically simulated motions: Leaping, tumbling, landing, and balancing, 1997. Animation Sketch, Siggraph’97.

    Google Scholar 

  106. F.-C. Wu, W.-C. Ma, P.-C. Liou, R.-H Laing, and M. Ouhyoung. Skeleton extraction of 3d objects with visible repulsive force. In Computer Graphics Workshop 2003, Taiwan, 2003.

    Google Scholar 

  107. S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. A simple approach to interactive freeform shape deformations. In Proc. Pacific Graphics, PG’02, pages 471-474, 2002.

    Google Scholar 

  108. S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh deformations. In Proc. ACM Solid Modeling, pages 247-253, 2003.

    Google Scholar 

  109. X. Zhao. Kinematic Control of Human Postures for Task Simulation. PhD thesis, University of Pennsylvania, 1996.

    Google Scholar 

  110. V. B. Zordan, B. Celly, B. Chiuand, and P. C. Dilorenzo. Breathe easy: Model and control of human respiration for computer animation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 29-38, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

di Giacomo, T., Kim, H., Moccozet, L., Magnenat-Thalmann, N. (2008). Control Structure and Multi-Resolution Techniques for Virtual Human Representation. In: De Floriani, L., Spagnuolo, M. (eds) Shape Analysis and Structuring. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33265-7_8

Download citation

Publish with us

Policies and ethics