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Summary. Modern geometric constraint solvers use combinatorial graph algo-
rithms to recursively decompose the system of polynomial constraint equations into
generically rigid subsystems and then solve the overall system by solving subsys-
tems, from the leave nodes up, to be able to access any and all solutions. Since
the overall algebraic complexity of the solution task is dominated by the size of the
largest subsystem, such graph algorithms attempt to minimize the fan-in at each
recombination stage.

Recently, we found that, especially for 3D geometric constraint systems, a further
graph-theoretic optimization of each rigid subsystem is both possible, and often
necessary to solve wellconstrained systems: a minimum spanning tree characterizes
what partial eliminations should be performed before a generic algebraic or numeric
solver is called. The weights and therefore the elimination hierarchy defined by
this minimum spanning tree computation depend crucially on the representation
of the constraints. This paper presents a simple representation that turns many
previously untractable systems into easy exercises. We trace a solution family for
varying constraint data.

1 Introduction and Motivation

Specifying geometry via constraints is an elegant and succinct approach to
defining geometric composites in applications such as computer aided design,
robotics, molecular modeling and teaching geometry (see e.g. [3, 22, 21]). How-
ever, being able to navigate to and access all valid configurations satisfying
the constraints is a difficult, ongoing challenge, especially in the practically
relevant 3p case. This paper develops an automated strategy for resolving
generically rigid configurations by developing an interesting connection be-
tween the algebraic complexity of the underlying polynomial system and the
topology of its set of its subsystems.

A geometric constraint system relates a finite set of geometric objects by a
finite set of constraints. Constraints are represented as algebraic equations and
inequalities whose variables are the coordinates of the participating geometric
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objects. For example, a distance constraint of d between two points (x1,y1)
and (z2,y2) in 2D is written as (z2 — 21)% + (y2 — y1)? = d?. The solution or
realization of a geometric constraint system is the (set of) real zero(es) of the
algebraic system, each representing a valid choice of position, orientation and
any other parameters of the geometric elements in the Euclidean plane, on
the sphere, or in Euclidean 3D space. Wellconstrained systems have a finite
but potentially very large number of zero-dimensional solutions. Undercon-
strained systems have infinitely many solutions and overconstrained systems
have no solution unless they are consistently overconstrained. Wellconstrained
or consistently overconstrained systems are called rigid.

Modern geometric constraint solvers recursively decompose, solve and re-
combine the polynomial geometric constraint system according to an opti-
mized partial ordering, called DR-plan. As graph algorithms, they address
generically rigid systems, i.e. systems that are rigid except possibly for poly-
nomial dependencies arising from specific geometric inputs. A subgraph in a
DR-plan corresponding to generically rigid subsystems is called cluster (see
Section 2 for the formal definition). Resolving a cluster C' = U}_,C; means
computing position and orientation of all C; in the common coordinate system
of C so that all constraints are satisfied.

Fig. 1. An underconstrained 3D example and its dof constraint graph. Each object
(housing A, screw B, clipped prism C and prism D) has 6 dofs. Incidence of B, C, D
with A removes 5 dofs each. Then each of the pairs AB, AC, AD is underconstrained
with one extra degree of freedom and the remaining two pairs BC and CD are
connected by distance constraints that remove 1 dof each, leaving it with a density
of -7.

This paper develops an automated strategy for resolving generically rigid
clusters by further developing an interesting connection between the algebraic
complexity of a cluster’s polynomial system and the topology of its set of child
clusters. It shows how a careful formulation of the problems can reduce the
algebraic complexity so that many previously untractable systems turn into
easy exercises.

Section 2 defines key terms, such as constraint graph, degree of freedom
analysis and generic rigidity. And it outlines a general graph-based algorithm
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for partial elimination within one cluster. Section 3 defines the representation
and the weights that drive the partial elimination. Section 4 discusses the
solution of the remaining, active system and Section 5 illustrates the findings
by tracing the solutions of a 3D geometric constraint system for a varying
parameter.

2 Graph Structures for Elimination

The decomposition and ordering of elimination of the constraint system is op-
timized using three graphs: the constraint graph, the DR-plan and the overlap
graph. The constraint graph represents the overall system of constraints, the
DR-plan is a directed acyclic graph that represents the decomposition (and
later recombination) of the constraint system into clusters. The overlap graph
is the focus of this paper. It guides the partial resolution of the cluster con-
straints until only a small active system of active constraints remains to be
solved by a general purpose solver.

Rather than focussing directly on elimination within a cluster (addressed in
the subsection on overlap graphs, last in this section), this section sketches the
larger picture inclusing the DR-plan to show that, once we can solve clusters,
we can solve the whole constraint system. Moreover, there are some subtle
issues concerning well-posed constraint systems that need to be discussed for
completeness.

Constraint Graph, density, cluster and rigidity: A geometric con-
straint graph G = (V, E,w) corresponding to geometric constraint system is
a weighted graph with n vertices V' representing geometric objects and m
edges E representing constraints. The weight w(v) of a vertex v counts the
degrees of freedom (dofs) of the object represented by v and the weight w(e)
of an edge e counts the dofs removed by the constraint represented by e. Fig-
ure 1 illustrates a small 3D constraint system and its dof constraint graph. A
subgraph A C G that satisfies

d(A) := Zw(e) - Z w(v) > —doy

ecA vEA

is called dense and d(A) is called density of A. Here dy is a constant, typically
(D'QH), i.e. the dofs of a rigid body in b dimensions. For 2D Euclidean geometry,
we expect dy = 3 and for 3p geometry dy = 6. For a rigid body fixed with
respect to a global coordinate system, dy = 0.

The following purely combinatorial notions for computing a good decom-
position are based on density.

A dof-rigid cluster, short cluster, is a constraint graph all of whose sub-
graphs, including itself, either have density at most —dy (wellconstrained)
or can be replaced by well-constrained subgraphs so that G remains dense

(well-overconstrained).
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Fig. 2. Fan-in minimizing DR-plan (right) of a constraint graph (left) ; all vertex
weights are 2, all edge weights 1.

A dense graph is minimal if it has no dense proper subgraph. Minimal
dense subgraphs are clusters, but a dense graph that is not minimal can be
underconstrained, i.e. not a cluster: the apparently correct density can be the
result from summation with another subgraph of density greater than —d.

A constraint system is generically rigid if it is rigid (does not flex or has
only finitely many non-congruent, isolated solutions) for all nondegenerate
choices of coefficients of the system. A generically rigid system yields a cluster,
but the converse is not always the case. In 3D, there are wellconstrained,
generically non-rigid clusters due to the presence of generic ‘hidden’ constraint
dependencies such as the ‘banana’ and ‘hinge’ configurations [6, 16, 17, 15].
These can result in overconstraints that are not detectable by a dof count.

Since to date, no tractable, combinatorial method of determining generic
rigidity has been proven (see conjectures in [6, 15, 30]), we restrict the scope
of our approach to the large (and possibly complete) class of constraint graphs
whose rigidity is fully verified by the DR-plan [30] (2003 version) based on
[12, 15, 29, 28]. This verification imposes a solving priority on the DR-plan
and some dependences between clusters that do not contain one another but
covers all known constraint graph dependencies. Therefore, in the following,
we may assume that all hidden or explicit overconstraints have been removed.

DR-plan, covering sets, trivial subgraphs, completeness: The DR-
plan of a constraint graph G is a directed acyclic graph whose nodes represent
clusters in GG, and whose edges represent containment. The leaves or sinks of
the DR-plan are all the primitive clusters of G and the roots or sources are
all the maximal clusters of G. For rigid graphs, the DR-plans have a single
source but there could be many DR-plans for G. The DR-planner is a graph
algorithm that generates the decomposition-recombination plan by working
bottom up: at stage ¢, the DR-plan picks a wellconstrained cluster C; in the
current constraint graph G;, and uses an abstract, unevaluated simplification
of C; to create a transformed constraint graph G;4;. Since the complexity of
finding real zeroes of sparse polynomial systems is exponential in the number
of variables, the size of the largest subsystem in a DR-plan dominates the
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complexity of constraint solving, and DR-planners use a combinatorial degree
of freedom (dof) analysis to minimize the number of child clusters [4, 11], or,
equivalently, the fan-in, to isolate clusters (Figure 2).

Trivial subgraphs are subgraphs that correspond (after resolving incidence
constraints) to a single 2p or 3D point or to a line segment in 30. Whenever
two rigid clusters overlap on a non-trivial subgraph, the cluster induced by
their union is rigid. A covering set S of a cluster C' is a set of child clusters
C; # C whose union covers all the vertices of C'. A covering set S is a complete
set of maximal clusters if one of the following two conditions holds. Either it
consists of only two clusters whose intersection is a non-trivial subgraph, or it
covers all edges in C' and every C; is maximal, i.e. the only proper cluster of C'
that contains C; is one that intersects every other cluster in S on a non-trivial
subgraph. Note that S is not unique and we will use later on that there can
be several covering sets of maximal clusters within S.

Even for a wellconstrained cluster C, it is still a nontrivial task to pick a
guaranteed stable, independent system of polynomial equations corresponding
to C. Moreover, shared objects between clusters may appear to have inconsis-
tent coordinates due to numerical roundoff (see [19] for a description of and
solution to this problem, which is not our focus here.)

Overlap Graph, spanning tree and active constraints. Figures 3
and 4 illustrate the concepts to be discussed. The overlap graph of a subset
S of child clusters of a cluster C' is an undirected graph. Its vertices are the
clusters in S and there is an edge (4, j) with weight w(k) if child clusters C;, C;
overlap in a trivial subgraph with & distinct points; w(k) counts the dofs after
one cluster is expressed in the coordinate system of the other, e.g. k = 1 for
a rotation about a common edge between C; and Cj.

Any spanning tree T' of the overlap graph of the clusters in S induces a
system of equations for resolving C'. Since C'is assumed to be wellconstrained,
the number of variables and equations equals the total edge weight of the
the spanning tree. Most sparse polynomial system solvers such as [10, 31]
(geometric constraint systems are sparse) take time exponential in the number
of variables. Hence the overwhelming factor in the algebraic complexity of the
system is the number of variables which is counted by the sum of weights.
Considering all covering sets S of C, we therefore select all spanning trees
that minimize this sum.

The ordering expressed in each spanning tree defines a partial elimina-
tion of constraints. The remaining constraints (non-tree edges in \S) are called
active and form the active system of equations that must be solved. Active
constraints represent, for example distance and point-matching of cluster pairs
in S. While the main goal is to reduce the number of variables, the polyno-
mial degree and separation of variables of the active system is a secondary
consideration since the time complexity is polynomial in these parameters.
The choice of a root of S strongly influences degree and separation as we will
see in the next section.
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Fig. 3. (left) Constraint graph of problem quad: given are 8 vertices (indicated as
) and 18 distance constraints (edges). The graph structure is that of a square-base
pyramid (see also Figure 5, inset) with the apex split into four vertices and the
triangular faces folded down. The vertices are not labeled since they have different
labels (and different local coordinates) in different clusters C;. Incidence of these
different instances of a vertex has to be explicity enforced. The edges are not labeled
with distances, since geometry does not influence the construction of the overlap
graph. In Section 5, specific edge lengths are assigned. (right) The corresponding
weighted overlap graph (all remaining edges of the complete graph are of weight 6
and are omitted).

Fig. 4. Five spanning trees (solid edges) of covering sets of quad (same layout as
in Figure 3(right) ; label i stands for C;). The sum of weights are from left to right
4,8,9,6 and 4. These numbers match the number of dashed distance constraints (=
1 constraint) between clusters and dotted overlaps that are not tree edges (sharing
of nodes = 3 constraints). When optimally rooted (with root Cs), the sum of the
depths of the first, leftmost tree is 4, and for the rightmost, it is 6. Therefore the
first tree is preferred for the partial elimination.

3 Partial Elimination

Based on the characterization in Section 2, we can optimize the partial elim-
ination of a cluster C' by the following algorithm

(1) Determine S¢, the set of all minimum weight spanning trees for all covering
sets S of C' (first and last tree in Figure 4) and
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(2) minimize the sum of the depths of all nodes for all choices of rooted trees
in Sc.

In general, due to the large number of possible covering sets, the above algo-
rithm requires solving an NP-complete problem. Moreover, keeping track of
the spanning trees with the low complexity requires complex data structures
[20]. Fortunately, in practical applications, the number of child clusters is no
more than ten and even an exhaustive search through all covering sets S is
an efficient option.

This section now explains the partial elimination implied by the spanning
tree and characterizes the degree of the resulting active equations. Once we
solve the active system, recombining clusters according to the DR-plan trans-
lates solutions of the clusters into solutions of the overall constraint system.
The goal of partial elimination is to express, at each level of the spanning
tree, all child cluster in the common coordinate system of the current parent
cluster. For a, an instance of a point in the cluster C;, we write

Ta,C; . . .
Xq,0; 1= [YaCi | € R3 the coordinates of a in C;’s local coordinate system
Za,C;
Za,C;,C;
&g
Xa,C;,0; 1= [Varci.0i] € R? the coordinates of a in C;’s coordinate system.
Za,C;,C;
.Cj.C;

When, as is usually the case, two clusters do not join to form a composite rigid
cluster but can moved with respect to one another, the coordinates x, ¢, ¢,
are parametrized in these dofs and the dofs will appear as variables in the
active system. These dofs depend, for example, on rotation angles. Once the
active system is solved, the parametrized coordinates are resolved to a final
position x,,c. We express the transformation experienced by a child node, in
terms of the following transformations:

T, translation that maps a to the origin. (7, ! maps the origin to a.)

R, rotation that maps b — a to the z-axis.

My, the matrix [b, ¢, b x ¢] € R3*3 whose columns span a coordinate

system in R3.

T undetermined translation (three dofs).

R undetermined rotation about the z-axis (1 dof).

Q undetermined unit quaternion (orientation, 3 dofs).
If C; and C; overlap in k points, mapping each point, say x, ¢, to xa,c;,c;, as
required by the overlap leaves degrees of freedom in terms of the undetermined
maps T, R and @ as follows.

k .|over1ap points |map

3 (a, b, C) — (a’, b/, C/) Ta_llMb’—a/,c/—a/Mb__la7c_aTa
2 (a,b) — (a’, V) T.'R,'  RRy_,T,

1 (a) — (a) T,'QT,

0 none QT

Here (a,b) — (a’,b") means that x,,¢;,c;, = Xa,c; and Xp,¢;,c; = Xp,0;, 1.€. @
and b are mapped to their two counterparts a’ and ', respectively. If there is
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no overlap, i.e. k = 0, then the orientation @) and translation T" are completely
free.

We assume for now that the overlap points are in general position. Ac-
cording to Section 2, the weight of each edge in the overlap graph corresponds
to the dofs of the overlap of the pair of clusters connected by the edge. Since
we need zero parameters to describe the position and orientation of a cluster
with respect to another if the two share three points (rigid joint), one if they
share an edge, three if they share a point and six if they share no point,

The challenge is now to formulate the active constraints as low degree poly-
nomial constraints whose dofs match the weight w(k). Choosing the rotation
angles as dofs matches the weight but does not lead to polynomial equations.
With

100
R:=[0c—s], s+ ¢ =1, and
0s ¢
1—2¢3 — 243 2(q142 + q0a3) 2(q143 — qog2) 3.
Q= |2(q1q2 — q0a3) 1 — 20} — 263 2q2q5 + qoq) |, D> a7 =1,

2(q1q3 + 9092) 2(g293 — qoq1) 1 — 2¢7 — 2¢3 i=0

we do obtain quadratic polynomial equations in the dofs ¢,s and ¢;, ¢ =
0,1,2,3. However, the weights are too high: we have two variables for k = 2
and four variables for k = 1 instead of one and three. A simple, but very effec-
tive insight is that we can parametrize the variables c, s, ¢; by stereographic
projection:

3
C:ZI;I% 5= 2to qo:ﬁ q.::szlgg_
1+12 142 1+ 2 VT ey 42 T

This yields

overlap |dofs|(rational) degree in the t;
points k|w(k)| of the transformation

3 0 0
2 1 2
1 3 4
0 6 4(1for T)

The partial elimination now proceeds as follows. We traverse the selected, min-
imal, rooted spanning tree in depth first order. At each node, we express the
child nodes (and all their children which are already expressed in the child’s
coordinate system) in the parent’s coordinate system. The constraints ob-
tained after this partial elimination, are called active. Since we introduce new
variables with each step of the partial elimination, the coordinate degree of the
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numerator and of the denominator of the constraint systems is 2 throughout
the elimination. (The coordinate degree is an n-tuple listing the degrees for
each variable, e.g. (2,2) for #2y2.) In our examples, the active system consists
of point-matching constraints and distance constraints. After clearing the de-
nominator, the coordinate degree of a point-matching constraint is 2 and that
of a distance constraint is 4.

Note that the total degree increases with the depth of the spanning tree.
Moreover, since all descendant clusters are transformed with the child cluster,
the equations are more separated and sparse if the spanning tree is shallow;
and that means less work.

4 Solving the Active System

We are interested in real solutions to the constraint system and currently use a
recursive subdivision solver for tensor-product Bézier polynomials [14] which
allows us to focus on a finite domain and real solutions. In fact, we encoun-
tered the noteworthy problem when we attempted to solve the equations of
the example quad (see Figure 3) with an algebraic solvers, the online version
of Synaps [1]. Since algebraic solvers typically consider both real and complex
solutions, we did not receive an answer to quad, whose generically rigid con-
straints are rigid over the reals (isolated roots) but algebraically dependent
over the complex numbers, yielding a 1-parameter family of complex solutions.
(We did eventually get our results confirmed by Synaps after substituting one
correct real value for one of the parameters).

When using a subdivision-based solver on the standard Bézier domain
[0..1]V, there is a price to pay for the stereographic parameterization. For
numerical stability, we restrict the parametrization to ¢; € [—1..1] and create
another active constraint system for 1/¢; € [—1..1]. Change of variables then
maps each finite domain to the Bézier domain [0..1]. This yields up to 2V
separate constraint systems when there are N variables. However, since every
subdivision step generates in principle an exponential number of subproblems
(to be efficiently pruned), the cost of starting with an exponential number
of systems is negligible and preferable to a higher number of variables and
equations. For the particular solver, we also needed to filter out duplicate
roots obtained on the multiply covered boundaries of the subdivision domains.

5 Solutions to families of constraint problems

As our main example, we consider the constraint system shown in Figure
3. The eight nodes of quad can be viewed as a Stewart mechanism with a
quadrilateral fixed base and a quadrilateral work platform. (Below, we will
expand and shrink the work platform according to a parameter r, while in
typical engineering applications the work platform is moved by adjusting the
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edge lengths between the two platforms.) Evidently, choosing the minimal
covering set (with four clusters, Figure 4, center) does not yield the best
partial elimination since the sum of dofs is 9. The minimal dof sum is 4, and
the leftmost tree, with root Cjy is preferred to the rightmost tree, because
its depth is 1. That is, the algorithm automatically generates the reduced,
active system that we might have derived, without proof of minimality, by
intutive selection: fix cluster C5 as the quadrilateral base platform of the
Stewart mechanism and parametrize the four points of the moving platform
of the Stewart mechanism each by one parameter. There are four overlap
constraints, between Cs and Cj,j = 1,2,3,4, that imply and hence allow to
automatically discard, the overlaps between C; and C},j :=¢ mod 4+41. The
coordinates of the root cluster C5 are

1 —1 -1 1
xios = (1 %o =11 ] X =[11] xae =[1

a 2-unit square. The local coordinates of each of the cluster C;, i = 1,2,3,4
are

—1 1 0
xvoe= ] xee =11 xs00= (1)
The four distance constraints are
lIx3,c, —X3,0,] = j:=14 mod4+1.

Figure 5 illustrates all possible configurations for different choices of r
(with r = 0 being the minimum and r = 21/10 the maximal distance possible
for real solutions). The time needed to solve is in the range of seconds.

While the active system corresponding to a similar five-sided platform is
not solvable by Maple, Maple solve returns an answer to the active con-
straints of quad: three l-parameter families of solutions and one singleton.
Painstaking examination confirms correctness of the output of the subdivi-
sion solver: there are only isolated, O-dimensional real solutions.
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