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Summary. In this paper, we present recent results with using range from radio
for mobile robot localization. In previous work we have shown how range readings
from radio tags placed in the environment can be used to localize a robot. We have
extended previous work to consider robustness. Specifically, we are interested in
the case where range readings are very noisy and available intermittently. Also, we
consider the case where the location of the radio tags is not known at all ahead of
time and must be solved for simultaneously along with the position of the moving
robot. We present results from a mobile robot that is equipped with GPS for ground
truth, operating over several km.
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1 Introduction

Many tasks for which robots are well suited require a high level of precision in
localization for the application to be successful. One solution to the problem
of localization in which environmental structure can’t be relied upon for use in
localization is to obtain absolute position via GPS. This approach is limited,
however, to environments in which a clear line of sight to GPS satellites orbit-
ing the earth, is available. Robots navigating inside buildings or underground
cannot receive GPS data, and in outdoor environments nearby structures and
even foliage can affect the quality of localization. Another common localiza-
tion technique is dead reckoning, in which the robot’s position is estimated
based on measurements of distance travelled and orientation taken from wheel
encoders and gyros. Since the dead reckoning position estimate degrades over
time, a robot must correct position error using landmarks detected by on-
board sensors. A problem that frequently arises in these cases is that of data
association: sensed data must be associated with the correct landmark, even
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though multiple landmarks may have similar features. Additionally, in many
settings it is not possible to guarantee line of sight to the landmarks.

The method of sensing we have been using involves low-cost, low-power,
radio frequency tags placed in the environment. Originally intended as a
means to track assets and people in an environment equipped with special RF
transponders, we invert the paradigm by fixing the tags in the environment
and moving a transponder with a robot. As the robot moves, the transponder
periodically sends out a query, and any tags within range respond by sending
a reply. The robot can then estimate the distance to each responding tag by
determining the time lapsed between sending the query and receiving the re-
sponse. The advantage of such a method is that it does not require line of sight
between tags and the mobile robot, making it useful in many environmental
conditions that fail optical methods. Note that, since each tag transmits a
unique ID number, distance readings are automatically associated with the
appropriate tags, so the data association problem is solved trivially.

We would like to send a mobile robot into an environment containing these
tags and have it navigate successfully while maintaining a reliable estimate of
its location at all times. In this paper, we examine issues of robustness that
result from noisy and infrequent range data. We also examine the issues of
SLAM in this environment by presenting results from experiments in which
the robot starts moving in the environment without apriori knowledge of the
location of the tags.

2 Related Work

Most landmark-based localization systems use sensors that measure relative
bearing or in some cases both range and bearing to distinct features in the
environment. In the case that the location of these landmarks is unknown,
the problem is more difficult and is generally known as Simulataneous Lo-
calization and Mapping (SLAM). Here we report on localization results with
a modality in which only range to landmarks (RF tags) is measured. Some
other researchers have used range to estimate position. In most cases, instead
of using range, signal strength from a known transmitter is used to produce
a “pseudorange” that is then used for triangulation. For instance, the Cricket
System [9] uses fixed ultrasound emitters and embedded receivers in the object
being located. Radio frequency signals are used to synchronize time measure-
ments and to reject multipath readings. The localization technique is based
on triangulation relative to the beacons. The RADAR system [1] uses 802.11b
wireless networking for localization. This system uses the signal strength of
each packet to localize a laptop. RADAR uses nearest neighbor heuristics to
achieve localization accuracy of about 3 meters. The SpotOn system [4], uses
radio signal attenuation to estimate distance between tags. The system local-
izes wireless devices relative to one another, rather than to fixed base stations,
allowing for ad-hoc localization. Note that GPS also works by triangulating
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ranges to multiple satellites. In some cases, GPS localization is augmented
with inertial measurement and/or dead reckoning. In almost all such systems,
GPS triangulation generally develops an estimate of position as well as un-
certainty that is merged with a position estimate from dead reckoning. Other
methods choose to train on patterns of signal strength to localize. For ex-
ample, Ladd et al propose a Bayesian formulation to localize based on signal
strength patterns from fixed receivers [8].

In contrast, we use a single filter to combine range measurements with
dead reckoning and inertial measurements. While the range measurements are
noisy and exhibit biases, we find that treatment by an extended Kalman filter
(necessary because the underlying system is non-linear) after preprocessing
to remove outliers and to remove systematic biases, suffices as long as the
estimate doesn’t get too far from the true state. This might happen if the
initial condition is too far from the true state or if the filter diverges due
to missing range data over an extended period of time.The Kalman filter
has the advantage that the representation of the distribution is compact; a
Gaussian distribution can be represented by a mean and a covariance matrix.
The robot’s pose estimation is maintained as a Gaussian distribution and
sensor data from dead reckoning and landmark observations is fused to obtain
a new position distribution.

Recent extensions of Kalman filtering allow for non-Gaussian, multimodal
probability distributions through multiple hypothesis tracking. The result is
a more versatile estimation technique that still preserves many of the compu-
tational advantages of the Kalman filter. Monte Carlo localization, or particle
filtering, provides a method of representing multimodal distributions for po-
sition estimation [2], [11], with the advantage that the computational require-
ments can be scaled. The main advantage of these methods is their ability to
comverge from a poor initial condition. We show how a particle filter is able to
recover from large offset errors that are large enough that the Kalman Filter
fails. Also, we extend previous work [5], [7] in SLAM by treating the case in
which the robot starts with no information about the location of the tags in
the environment.

3 Approach

Our current emphasis is robustness. We would like to explicitly treat the case
of noisy and missing range data in addition to requiring the robot to discover
the location of the landmarks on its own. We assume only that the robot has
some information about the accuracy of the range measurements as reported
previously [7]. Here we use range data that is significantly less frequent and
more noisy. For example, the range measurements can have a variance of upto
6 m and range measurements can be as spread out by as much as 15 seconds.

Below we discuss the use of particle filter as a method of being able to
recover from large estimation errors. While the particle filter has weaker per-
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formance than the Kalman filter when all is well, it shines when there is a
significant break in the range data or when there is a large initial offset. We
show the ability of the robot to locate the radio tags in the case that their
locations are not known ahead of time.

4 Localization

4.1 Localization with Kalman Filter
Formulation.

We have formulated a Kalman Filter that estimates position given measure-
ments of odometry and heading change (from a gyro), and range measure-
ments. Odometry and gyro measurements are used in the state propagation
or the prediction step, while the range measurements are incorporated in the
correction step.

Process Model. If the robot state at time k is g, = [xx, Y, 0%, B, k], where
Tk, Yk, Ok are the robot’s position and orientation and Ok, n, are the gyro
output scale-factor error and bias at time k. The dynamics of the wheeled
robot used in this experiment are well-modeled by the following set of non-
linear equations:

zg + ADy, cos(0y)
Yk + DDy, sin(6y,)
Qer1 = |0 + (14 Be) DO + 11 | + vk = f(Qr, ur) + Vi, (1)
B
Nk

where v}, is a noise vector, AD;, is the odometric distance traveled, and A8y
is the orientation change. These dead reckoning measurements constitute the
control input vector ux = [ADy, Afx]T. When a new control input vector
u(k) = [ADy, Abx]T is received, the robot’s state is updated according to
the process model equation. Then we apply a standard Kalman filter, [7], to
propagate the covariance matrix with the extension from our previous work
to incorporate the gyro bias terms within the filter.

Measurement Model. The range measurement at time k is modeled by:

e =/ (@k — 25)% + (Yk — Uo)?

' (2)
y(k) = | ADy| + w(k) = h(grt1) + w (k)
AOy,

where, 1 is the range measurement received at time k and (xy, yp) is the
location of the beacon from which a measurement was received. When a mea-
surement is obtained, using the measurement model, we compute the expected
range 7 to the beacon. Then the state can be updated using standard Kalman
filtering equations.
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Results.

In order to evaluate the performance of the filter we turn to the two commonly
used error metrics, the Cross-Track Error (XTE) and the Along-Track Error
(ATE). The XTE accounts for the position error that is orthogonal to the
robot’s path (i.e. orthogonal to the true robot’s orientation), while the ATE
accounts for the tangential component of the position error. As part of our
error analysis of the path estimates, we observe the average of the absolute
values of the XTE and ATE for each point in the path, as well as the maximum
and standard deviation of these errors.

In the experiment illustrated here, the true initial robot position from GPS
was used as the initial estimate. Furthermore, the location of each tag was
known. Figure 1 shows the estimated path using the Kalman filter, along with
the GPS ground truth (with 2 cm accuracy) for comparison.

Path Estimate from Kalman Filter Localization
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Fig. 1. The path estimate from localization (red), ground truth (blue) and beacon
locations (*) are shown. The filter uses odometry and a gyro with range measure-
ments from the RF beacons to localize itself. The path begins at (0,0) and ends at
(33,0), travelling a total of 3.7 km and completing 11 identical loops, with the final
loop (0.343 km) shown above. (Note the axes are flipped). Numerical results are
given in Table 1.

Table 1. Cross-Track and Along-Track Errors for Kalman filter Localization esti-
mate for the entire data set using the Kalman Filter with gyro bias compensation.

XTE ATE

Mean Abs. | 0.3439 m | 0.3309 m
Max. 1.7634 m | 1.7350 m

Std. Dev.n | 0.3032 m | 0.2893 m
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Failure.

Sensor Silence. An issue that requires attention while dealing with the
Kalman filter is that of extensive sensor silence. When the system encoun-
ters a long period during which no range measurements are received from the
beacons, it becomes heavily dependant on the odometry and its estimate di-
verges. Upon recovering from this period of sensor silence, the Kalman filter
is misled into settling at a diverged solution. The Figure 2 shows the failure
state of the Kalman filter when presented with a period of sensor silence. In
this experiment, all range measurements received prior to a certain time were
ignored so that the position estimate is derived through odometry alone. As
can be seen in the figure, when the range data starts once again, the Kalman
filter fails to converge to an accurate estimate.

Path Estimate from Kalman Filter Localization
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Fig. 2. The path estimate during the extended period of ”simulated” sensor silence
(cyan), Kalman filter’s recovery from the diverged solution (red), ground truth (blue)
and beacon locations are shown. (Note the axes are flipped). The filter is not able to

properly recover from the diverged solution resultant of the initial period of sensor
silence.

Although this is characteristic of all Kalman filters in general, this problem
is especially critical while dealing with range-only sensors. Due to the extra
level of ambiguity associated with each range measurement it becomes far
easier for the estimate to converge at an incorrect solution.

4.2 Localization with Particle Filter

As we see above, the Kalman filter can fail when the assumptions of linearity
can not be justified. In this case, it is useful to look at methods like Particle
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Filters that can converge without an initial estimate. Particle Filters are a way
of implementing multiple hypothesis tracking. Initially, the system starts with
a uniform distribution of particles which then cluster based on measurements.
As with the Kalman filter, we use the dead reckoning as a means of prediction
(by drifting all particles by the amount measured by the odometry and gyro
before a diffusion step to account for increased uncertainty). Correction comes
from resampling based on probability associated with each particle. Position
estimates are obtained from the centroid of the particle positions.

Formulation

The particle filter evaluated in this work estimates only position on the plane,
not vehicle orientation. Each “particle” is a point in the state space (in this
case the x, y plane) and represents a particular solution. The particle resam-
pling method used is as described by Isard and Blake [3]. Drift is applied
to all particles based on the displacement estimated by dead reckoning from
the state at the previous measurment. Diffusion is achieved by applying a
Gaussian distibuted displacement with a standard deviation of B m/s which
scales according to intersample interval. Given a range measurement r from
the beacon at location X, = (xp, y) the probability for the i’th particle is
P(r, X Xv)zil eerP (3)
y A3 by g O’\/ﬂ 0
which has a maximum in a circle of radius r about the beacon with a radial
cross-section that is Gaussian. The minimum probability, Py, helps reduce
problems with particle extinction. o is related to the variance in the received
range measurements.

It was found to be important to gate range measurements through a nor-
malized error and a range measurement band, [7]. In the event of a measure-
ment outside the range gate an open-loop update is performed, the particles
are displaced by the dead reckoning displacement without resampling or dif-
fusion.

The location of the vehicle is taken as the probability weighted mean of
all particles. There is no attempt made to cluster the particles so if there
are, for example, two distinct particle clusters the mean would lie between
them. Initially this estimate has a significantly different value to the vehicle’s
position but converges rapidly. Here we use 1000 particles, o = 0.37, and
B =10.03.

Results

In the experiment illustrated here, the initial condition for the particles is
based on no prior information, the particles are distributed uniformly over a
large bounding rectangle that encloses all the beacons. The location of each
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tag was known apriori. Figure 3(a) contains the plot of the particle filter
estimated path, along with the GPS ground truth.

It should be noted that the particle filter is a stochastic estimation tool and
results vary from run to run using the same data. However it is consistently
reliable in estimating the vehicle’s location with no prior information.

Path Estimate from Particle Filter Localization
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Fig. 3. (a) The path estimate from localization using a Particle Filter (red), ground
truth (blue) and beacon locations (*) are shown. The filter uses the odometry and
a gyro with absolute measurements from the RF beacons to produce this path esti-
mate. The Particle Filter is not given any information regarding the initial location
of the robot, hence it begins its estimate with a particle cloud uniformly distributed-
with a mean at (-3.6 m, -2.5 m). The final loop (0.343 km) of the data set is shown
here, where the Particle Filter converges to a solution. Numerical results are given in
Table 2. (b) The path estimate during the extended period of ”simulated” sensor si-
lence (cyan), Particle filter’s recovery from the diverged solution (red), ground truth
(blue) and beacon locations are shown. The filter easily recovers from the diverged
solution, exhibiting the true nature of the particle filter.

The next experiment addresses the problem of extensive sensor silence
discussed in Section 4.1. When the Particle filter is presented with the same
scenario that was given to the Kalman filter earlier we acquire the Figure
3(b). This figure reveals the ability of the Particle filter to recover from an
initially diverged estimate. It can be observed that although in most cases the
particle filter produces a locally non-stable solution (due to resampling of the
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Table 2. Cross-Track and Along-Track Errors for Particle filter Localization esti-
mate for the entire data set.

XTE ATE

Mean Abs. | 0.4053 m | 0.3623 m
Max. 1.6178 m | 1.8096 m

Std. Dev. | 0.2936 m | 0.2908 m

particles), its ablity to recover from a diverged solution makes it an effective
localization algorithm.

5 SLAM - Simultaneous Localization and Mapping

Here we deal with the case where the location of the radio tags is not known
ahead of time. We consider an online (Kalman Filter) formulation that esti-
mates the tag locations at the same time as estimating the robot position.

5.1 Formulation of Kalman Filter SLAM

The Kalman filter approach described in Section 4.1 can be reformulated for
the SLAM problem.

Process Model: In order to extend the formulation from the localization case
to perform SLAM, we need only to include position estimates of each beacon
in the state vector. So,

T
] (4)
where n is the number of initialized RF beacons at time k. The process used
to initialize the beacons is described later in this section.

@k = [Tk Yk Ok To1 Yo1 - Ton Yon

Measurement Model: To perform SLAM with a range measurement beacon b,
located at (zp, yp), we modify the Jacobian H(k) (the measurement matrix) to
include partials corresponding to each beacon within the current state vector.
So,

H0) = pbimgloms = [ 4 e 2 o B 2 2] )

Oz Oy 00 Ozy1 Oysr " Oxp Oyp’ " OTin OYin
where,
Oh _ Oh __ . .
oyl 6(%;: =0, for t(z #£ b, ;mdl <i<n.
Oh _ —(zp—xp
Oy V(@e—2)2+(ye—p)? (6)
Oh —(Yr—y»)

9z \flan—20)+(yk—w)?
Ounly the terms in H(k) directly related to the current range measurement
(i.e., the partials with respect to the robot pose and the position of the bea-
con giving the current measurement) are non-zero. To complete the SLAM
fomulation, P (the covariance matrix) is expanded to the correct dimention-
ality (i.e., 2n+3 square) when each new beacon is initialized.
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Beacon Initialization: For perfect measurements, determining position from
range information is a matter of simple geometry. Unfortunately, perfect mea-
surements are difficult to achieve in the real world. The measurements are con-
taminated by noise, and three range measurements rarely intersect exactly.
Furthermore, estimating the beacon location while estimating the robot’s lo-
cation introduces the further uncertainty associated with the robot location.

The approach that we employ, similar to the method proposed by Olson
et al [10], considers pairs of measurements. A pair of measurements is not
sufficient to constrain a beacon’s location to a point, since each pair can
provide up to two possible solutions. Each measurement pair “votes” for its
two solutions (and all its neighbors) within a two dimensional probability
grid to provide estimates of the beacon location. Ideally, solutions that are
near each other in the world, share the same cell within the grid. In order to
accomplish this requirement, the grid size is chosen such that it matches the
total uncertainty in the solution: range measurement uncertainty plus Kalman
filter estimate uncertainty. After all the votes have been cast, the cell with
the greatest number of votes contains (with high probability) the true beacon
location.

5.2 Results from Kalman Filter SLAM

In this experiment, the true initial robot position from GPS was used as an
initial estimate. There was also no initial information, about the beacons,
provided to the Kalman filter. Each beacon is initialized in an online method,
as described in Section 5.1. Performing SLAM with Kalman filter produces
a solution that is globally misaligned, primarily due to the dead reckoning
that had accumulated prior to the initilization of a few beacons. Since, until
the robot localizes a few beacons, it must rely on dead reckoning alone for
navigation. Although this might cause the Kalman filter estimate to settle
into an incorrect global solution, the relative structure of the path is still
maintained.

In order to properly evaluate the performance of SLAM with Kalman filter,
we must study the errors associated with the estimated path, after removing
any global translational/rotation offsets that had accumulated prior to the
initialization of a few beacons. Figure 4 shows the final 10% of the Kalman
filter path estimate after a simple affine transform is performed based on the
final positions of the beacons and their true positions. The plot also includes
the corresponding ground truth path, affine transformed versions of the final
beacon positions and the true beacon locations. Table 3 provides the XTE
and ATE for the path shown in Figure 4.

Several experiments were performed, in order to study the convergence
rate of SLAM with Kalman filter. The plot in Figure 5 displays the XTE and
its 1 sigma bounds for varying amounts of the data used to perform SLAM
(i.e., it shows the result of performing Localization after performing SLAM
on different amounts of the data to initialize the beacons).
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Tranformed Path from Kalman Filter SLAM
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Fig. 4. The path estimate from SLAM using a Kalman Filter (green), the corre-
sponding ground truth (blue), true beacon locations (black *) and Kalman Filter
estimated beacon locations (green dimond) are shown. (Note the axes are flipped).
A simple affine transform is performed on the final estimate beacon locations from
the Kalman Filter in order to re-align the misaligned global solution. The path
shown corresponds to the final loop (0.343 km) of the full data set after the affine
transform. Numerical results are given in Table 3.

Table 3. Cross-Track and Along-Track Errors for the final loop (0.343 km) of the
Data Set after the Affine Transform.

XTE ATE

Mean Abs. | 0.5564 m | 0.6342 m
Max. 1.3160 m | 1.3841 m

Std. Dev. | 0.3010 m | 0.2908 m

XTE for the last 10 percent of the dataset (After Affine Transform)
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Fig. 5. Kalman Filter Covergence Graph. Varying amount of data is used to perform
SLAM, after which the locations of the initialized beacons are fixed and simple
Kalman filter localization is perform on the remaining data. The plot above shows
the average absolute XTE and its 1 sigma bounds for various subsets of the data
used for SLAM.
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6 Summary

This paper has reported on extensions for increasing robustness in localization
using range from radio. We have examined the use of a particle filter for
recovering from large offsets in position that are possible in case of missing
or highly noisy data from radio beacons. We have also examined the case
of estimating the locations of the beacons when their location is not known
ahead of time. Since practical use would dictate a first stage in which the
locations of the beacons are mapped and then a second stage in which these
locations are used, we have presented an online method to locate the beacons.
The tags are localized well enough so that the localization error is equal to
the error in the case where the tag locations are known exactly in advance.
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