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Summary. This paper presents an outdoor mobile robot capable of high-speed
navigation in outdoor environments. Here we consider the problem of a robot that
has to follow a designated path at high speeds over undulating terrain. It must also
be perceptive and agile enough to avoid small obstacles. Collision avoidance is a key
problem and it is necessary to use sensing modalities that are able to operate robustly
in a wide variety of conditions. We report on the sensing and control necessary for
this application and the results obtained to date.
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1 Introduction

While the use of mobile robots in indoor environments is becoming common,
the outdoors still present challenges beyond the state of the art. This is be-
cause the environment (weather, terrain, lighting conditions) can pose serious
issues in perception and control. Additionally, while indoor environments can
be instrumented to provide positioning, this is generally not possible outdoors
at large scale. Even GPS signals are degraded in the presence of vegetation,
built structures and terrain features. In the most general version of the prob-
lem, a robot is given coarsely specified via points and must find its way to
the goal using its own sensors and any priori information over natural terrain.
Such scenarios, relevant in planetary exploration and military reconnaissance
are the most challenging because of the many hazards – side slopes, negative
obstacles and obstacles hidden under vegetation – that must be detected. A
variant of this problem is for a robot to follow a path that is nominally clear
of obstacles but not guaranteed to be so. Such a case is necessary for outdoor
patrolling applications where a mobile robot must travel over potentially great
distances without relying on structure such as beacons and lane markings. In
addition to avoiding obstacles, it is important that the vehicle stay on the
designated route as much as possible.
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Perception is typically the bottleneck in outdoor navigation, especially at
speeds higher than a few meters/sec. This is primarily because perception of
small obstacles (as small at 15 cm high) at or beyond the stopping distance
ahead of the robot is typically only possible using laser ranging. Laser ranging
produces detailed shape of the terrain but is limited in sampling and scanning
speed.

Here we report on the perception and guidance that we have developed for
an outdoor patrolling robot (Figure 1) that uses two low-cost laser scanners
to develop an understanding of the world around it. In specific, we report on
methods of obstacle detection and collision avoidance for this robot while it
travels at speeds at up to 5 m/s.

Fig. 1. Grizzly is a navigation test-bed built upon a commercially available All
Terrain Vehicle (ATV). It uses two laser scanners to perceive the shape of the world.
The vehicle is equipped with differential GPS and a six-axis inertial measurement
unit that provides accurate attitude.

2 Related Work

There has been a great deal of attention paid to parts of the problem of au-
tonomous operation in semi-structured environments such as in ports [6], un-
derground mines [9], and highways [3]. In some of these cases, the environment
can be controlled enough that obstacle detection can be simplified to ensuring
that the machines are capable of stopping for people or vehicle sized obstacles.
Autonomous machines operating in natural environments, however, must be
able to detect several different types of obstacles including side slopes and
negative obstacles. This is accomplished by using sensors that can determine
the shape of the world around them. Stereo vision [11], color segmentation
[1], radar [8] and laser range finders [5] have all been used for obstacle detec-
tion. Unfortunately, passive vision suffers from lighting, color constancy, and
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dynamic range effects that cause false positives and false negatives. Radar is
good for large obstacles, but localization is an issue due to wide beam widths.
Single axis laser scanners only provide information in one direction, and can
be confounded by unmeasured pitching motion and mis-registration. Two axis
scanners are also used, which provide more information, but are very costly.

Several systems have demonstrated off road navigation. The Demo III
XUV drives off-road and reaches speeds up to 10 meters per second. The
speeds are high, but the testing environments are rolling meadows with few
obstacles. Obstacles are given a clearance which is wider than the clearance
afforded by extreme routes. When clearance is not available, the algorithm
plans slower speeds [5]. Sandstorm, a robot developed for desert racing, has
driven extreme routes at speeds up to 22 meters per second, but makes an
assumption that it is traveling on slowly varying roads. If an obstacle is en-
countered in the center of a road, the path cannot change rapidly enough to
prevent collision [4].

Our work is related to several previous research themes. The first con-
nection is to the research in autonomous mobile robots for exploration in
planetary environments [10][11] that uses traversability analysis to find ob-
stacles that a vehicle could encounter. The second connection is to a method
of scanning the environment by sweeping a single-axis laser scanner [2] that
allows detection of obstacles even when the vehicle is translating and pitch-
ing. A third connection is to a method of collision avoidance that is based on
models of human navigation in between discrete obstacles [7].

3 Approach

Here we discuss the two main parts of our approach – obstacle detection and
collision avoidance.

3.1 Obstacle Detection

For high speed navigation, the sensors required depend on the vehicle’s speed,
stopping distance and minimum obstacle size. At higher speeds, where stop-
ping distances are greater, the obstacles must be detected at a greater dis-
tance. In order to detect smaller obstacles, the measurement density of the
sensor must be correspondingly greater. Our goal is to enable the vehicle to
travel at speeds of up to 5 m/s while detecting obstacles as small as 20cm ×
20cm. In other work with lower speed vehicles moving at 2 m/s [2], we find
that a single sweeping laser is sufficient for detecting obstacles. The sweeping
laser system consists of a single Sick laser turned so it is scanning a vertical
plane. A motor mechanically sweeps the vertical plane back and forth, thus
building a 3-D map of the terrain in front of the vehicle. However, for the
higher speed obstacle detection in this application, we find that the sweeping
laser alone cannot provide a sufficient density of laser measurements to detect
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small obstacles at higher speeds. Accordingly, a second fixed laser is deemed
necessary (Figure 2).

Fig. 2. Configuration of lasers scanners on the vehicle. The fixed laser concentrates
its scans 10m in front of the vehicle, giving an early detection system. The sweeping
laser concentrates its data closer to the vehicle, giving the ability to track obstacles
that are closer to the vehicle.

The addition of a second fixed laser provides several advantages over the
single sweeping laser. Primarily, the fixed laser is pointed 10m in front of the
vehicle and increases the density of laser data at points far from the front
of the vehicle. Now smaller obstacles are detected at a distance sufficient for
safe avoidance. The sweeping laser system concentrates its data closer to the
vehicle, so obstacles nearer the vehicle are tracked. A second advantage of the
two laser system is that they collect orthogonal sets of data. The sweeping
laser is best suited for detecting pitch type obstacles, while the fixed laser is
best suited for detecting roll type obstacles. The two laser systems complement
each other by performing best for these two different types of obstacles.

The addition of a second laser by itself is not enough to guarantee detecting
obstacles in all cases. When following curved paths, we find it is not enough
to simply sweep the laser in a fixed range. It is necessary to bias the sweeping
laser so it points into turns. Figure 4 shows a representation of the number
of laser hits that would be received by a 15cm × 15cm obstacle located a
distance greater than the vehicle’s stopping distance from the front of the
vehicle. Areas of red indicate a high number (>60) of hits, and areas of blue
indicate a lower number (10-20). The first picture shows the number of hits
when the laser is swept between a fixed 20 degree range centered about the
front of the vehicle.

It is clear from the figure that there is sufficient laser data to detect ob-
stacles along the straight section. However, along the turn the number of hits
decreases dramatically. The lower density of laser data increases the chances
that an obstacle will not be detected while the vehicle is turning. Figure 4(b)
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shows the number of hits when the sweeping laser is biased to point into the
turn. Compared to the unbiased case, the number of laser hits on the obstacle
greatly increases in the area where the vehicle is turning.

With data from two lasers, we use two obstacle detection algorithms: a
traversability analysis and a line scan gradient analysis. In the traversability
analysis, data from both lasers is used to produce a point cloud of the terrain
in front of the vehicle. Vehicle-sized planar patches are fit to the point cloud
data, and the fitted data gives three measures useful in identifying obstacles:
plane orientation (roll, pitch), roughness (the residual of the fit) and the height
of data points above the plane. These measured values are used to classify
areas as untraversable or clear. While the traversability analysis is a simple
way of detecting obstacles, it can produce false positives due to inaccurate
calibration of the two lasers and/or incorrect synchronization with positioning.
To supplement the traversability analysis, the slope of segments of individual
line scans from the sweeping laser is also calculated as in [2]. If the slope of a
scan segment is above a given threshold, it is tagged as a gradient obstacle.
Because the gradient analysis uses piecewise segments of an individual line
scan, it is not susceptible to misregistration as the traversability analysis can
be.

Fig. 3. Overhead view of laser data from from the two scanners. Data over a window
of time are registered to a common reference frame and obstacles are found by
analyzing traversability and gradient of the individual line scans.

To classify an object as a true obstacle, both the gradient and traversabil-
ity analyses must agree. The combination of the two obstacle detection algo-
rithms compensates for the weaknesses of the two individual algorithms and
dramatically reduces the false obstacle detection rate. Because the gradient
analysis looks at only an individual line scan from the sweeping laser, it cannot
take advantage of integrating multiple scans over time like the traversability
analysis can. However, by only using single line scans, the gradient analysis is
relatively immune to mis-registration problems that plague the traversability
analysis.



6 Stephan Roth, Bradley Hamner, Sanjiv Singh, and Myung Hwangbo

(a) (b)

Fig. 4. Grid representation of laser hits by both the fixed and sweeping lasers on
a 15cm × 15cm obstacle when sweeping with and without biased laser at 4m/s. (a)
shows a representation of the number of hits without biasing the laser when going
around turns. (b) shows the number of hits when biasing the laser. Areas of blue
indicate a low number of laser hits (10-20). Red areas indicate a high number of hits
(>60). Biasing the laser when going around turns increases the laser hit density.

3.2 Collision Avoidance

The goal of our collision avoidance system is to follow a path and avoid ob-
stacles along the way. When an obstacle is detected in front of the vehicle,
the vehicle should swerve to avoid it and return to the path in a reasonable
fashion. If there are multiple obstacles on the path, the vehicle must navigate
between them. Sometimes an obstacle may block the entire path. In this case,
the vehicle must stop before colliding with it. An ideal collision avoidance
algorithm would accept a map of hazards and determine steering and speed
to navigate in between these. Since this algorithm must run many times a
second, ideally it would have low computational complexity.

Fajen and Warren report a reactive method of collision avoidance based
on experiments to determine how humans avoid obstacles [7]. The method
uses the positions of a goal point and obstacle points relative to the current
vehicle position to derive an instantaneous steering angle. We developed a
path-following obstacle avoidance algorithm that extends this method. Since
the vehicle simply avoids obstacles without planning a full path, we call the
algorithm Dodger.

Consider the vehicle and a desired goal point. If the goal is at a large angle
to the current vehicle heading, as in Figure 5(a), then the vehicle must steer
sharply. Smaller angular differences, as in Figure 5(b), mean that the vehicle
does not have to steer as hard. Similarly, for greater distances to the goal, as
in Figure 5(c), slight steering is sufficient. Based on these principles, Fajen
and Warren develop a goal attraction function,
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fa(ψg, dg) = ψg(e−cgdg + cs)

where dg is the translational distance to the goal, ψg is the angular distance
to the goal, cg is a goal distance decay constant, and cs is a scale constant to
assure the goal attraction is never zero.

(a) (b) (c)

Fig. 5. Three scenarios involving driving to a goal, indicated by the green circles.
The vehicle must steer proportionally to the distance and angle to the goal.

Repulsion from obstacles uses similar logic. When an obstacle is at a large
angular distance, as in Figure 6(a), the vehicle does not need to turn sharply
to avoid it. When the obstacle is far from the vehicle, as in Figure 6(b), a
small steering angle is sufficient. The vehicle must steer sharply only when
the obstacle is close and in front of the vehicle, as in Figure 6(c). These
principles can be combined into a single obstacle repulsion function,

fr(ψo, do) = ψo(e−co1 |ψo|)(e−co2do)

where do is the translational distance to the obstacle, ψo is the angle to
the obstacle, co2 is a distance decay constant, and co1 is an angular decay
constant.

(a) (b) (c)

Fig. 6. Three scenarios involving avoiding obstacles, represented by the red circles.
The vehicle must steer proportionally to the distance and angle to obstacles.

This function is applied to every obstacle, and the result is summed to-
gether. Note that this treats obstacles as individual points. To represent real
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obstacles, we discretize them into collections of points spaced ten centimeters
apart (Figure 7).

Fig. 7. We represent obstacles as collections of points spaced ten centimeters apart.
The obstacle repulsion function is applied to each black obstacle point individually.

The goal attraction and obstacle repulsion are combined to get the control
equation:

φ̇∗ = −kgfa(ψg, dg) + ko

∑

o∈O

fr(ψo, do)

where kg and ko are relative weighting constants and φ̇∗ is the commanded
steering velocity.

We have extended the original formulation by Fajen and Warren in several
ways. First, the original obstacle repulsion function is multiplied by the angle
to the obstacle. This means that if the vehicle is headed straight towards an
obstacle, the angular repulsion term is zero. The theory is that the vehicle will
turn slightly away from the obstacle at first (crossing in front if necessary),
the angle will increase, and eventually the vehicle will fully turn away from
the obstacle. However, at high speeds, there may not be enough time for that
to happen. We modify the function to have high repulsion at small angles,
and accept the consequences of getting into local minima more easily. The
new obstacle repulsion function becomes

fr(ψo, do) = sign(ψo)(e−co1 |ψo|)(e−co2do)

Another problem occurs in areas of dense obstacles, such as the path il-
lustrated in Figure 8(a). Here, there are obstacles everywhere in front of the
vehicle. The leftward repulsion of the obstacles on the right side of the path
may be greater than the rightward repulsion of the single obstacle on the
path. Were it not for our speed control (see below), the vehicle would collide
with the obstacle on the path. The problem is that the base system does not
use all of the available information. The obstacles are directly in front of the
vehicle, and therefore look threatening, but the path curves away from them.
Similarly, the single obstacle may be at a large angular distance, but it is di-
rectly between the vehicle and the goal point. We introduce a new term to the
obstacle repulsion function,which considers whether the obstacle is blocking
the goal,
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dist(v, g, o) =
|(gx − vx)(vy − oy)− (vx − ox)(gy − vy)|

‖g − v‖
fr(ψo, do, dvgo) = sign(ψo)(e−co1 |ψo|)(e−co2do)(1+co3(dmax−max(dmax, dvgo)2))

where dvgo is the perpendicular distance from the obstacle to the vector
between the vehicle and the goal calculated by dist(v, g, o), and dmax is some
maximum distance from that vector. The obstacles to the right are far away
from the goal vector, so their repulsion is the same as before. However, now
the single obstacle has greater repulsion, assuring that the vehicle will not
drive towards it (Figure 8(b)).

(a) (b)

Fig. 8. The dark line is the desired path. The lighter line represents the vehicle’s
future path when using the Dodger algorithm. The dot on the desired path is the
goal point used by Dodger. In (a), without using the goal vector term, the obstacles
on the right side of the desired path collectively have a much larger repulsion than
the single obstacle that is actually on the path. That problem is corrected in (b),
where the goal vector term greatly increases the repulsion by the single obstacle.

Following a path using Dodger is done by first finding the point on the
path closest to the vehicle. The goal point is set to a point some distance down
the path. When an obstacle appears in front of the vehicle, this distance is
increased so as to allow the vehicle to maneuver around the obstacle. Fajen
and Warren’s experiments showed that humans consistently kept the same
speeds as they traveled. However, when obstacles appear, we would like the
vehicle to slow down, to allow for greater possible steering angles, and thus
greater maneuverability. This is a simple proportional function based on the
largest obstacle repulsion. If the largest obstacle score is high enough, that is,
if there is an obstacle directly in front of the vehicle, then we stop the vehicle
before a collision.

Speed control is also done by predicting the course that Dodger would
take in the future. Using Dodger’s output steering angle and speed, we run a
forward integration of the vehicle model interleaved with the steering control,
to predict where the vehicle will be a short amount of time later. We build a
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Fig. 9. In these situations, Dodger safely guides the vehicle around the detected
obstacles.

path from these predictions over four seconds (shown as the light line extend-
ing forward from the vehicle in the figures). This predicted path accounts for
curvature limits based on the vehicle’s speed. Then we check along the path
for collisions. If there is a collision along the path, then we can slow the vehicle
immediately, rather than waiting until it gets closer to the obstacle. Again,
the slow-down allows the vehicle more maneuverability and a greater chance
of the collision being avoided. Dodger works well for avoiding single obstacles,
some situations with multiple obstacles, including slaloms, on straight-aways,
and around corners (shown in Figure 9).

However, there are specific situations in which Dodger does not find a
path around the obstacle, and the vehicle is forced to stop. When the obstacle
is wide, there are points on both sides of the vehicle which counteract each
other, so the vehicle never gets all the way around the obstacle (Figure 10(a)).
Also, when there is an obstacle around a corner, Dodger prefers to go outside
the turn around the obstacle, rather than inside. This is because the obstacle
points on the inside of the turn are closer to the goal vector, and therefore have
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more repulsion. This causes a problem when the obstacle covers the outside
of the corner (Figure 10(b)).

(a) (b)

Fig. 10. In (a), due to the curved shape and width of the obstacle, some of the
rightward repulsion is cancelled out by a leftward repulsion. Then Dodger does not
find a way all the way around the obstacle, and stops before a collision. In (b), there
is enough room to avoid this obstacle to the left. However, the obstacle points closer
to the goal vector exhibit a larger rightward repulsion. The obstacle is too wide for
the vehicle to avoid around the outside, so Dodger stops the vehicle before collision.

Using the predicted path, the system can detect situations in which Dodger
fails to direct the vehicle around the obstacle. When the predicted path stops
in front of an obstacle, the system invokes a planning algorithm, like D*, to
get a new goal point which will help Dodger around the obstacles. First, the
planning algorithm constructs a small map of the area in the vicinity of the
vehicle (Figure 11(a)). The goal location passed to D* is Dodger’s goal point.
Next, the planning algorithm constructs an optimal path around the obstacles
to that goal location. The system then starts at the goal point and walks
backwards along the optimal path, stopping when there are no obstacles on a
straight line to the vehicle. This unblocked position is selected as a new goal for
Dodger, and the Dodger algorithm is run again. The new goal point is closer
than the old one, and is off to one side of the problem obstacles, so it has more
influence than the original goal point. When Dodger is run again, the new goal
point pulls the vehicle to one side of the obstacles. In essence, the planning
algorithm chooses a side for Dodger to avoid on. The system continues this
hybrid method until Dodger, using its normal goal point, gives a predicted
path that safely avoids the obstacles (11(c)). The D* augmentation to Dodger
is especially useful in complex obstacle configurations, as shown in Figure 12.
Running Dodger with the planning algorithm takes more computation time,
so to be safe, we also slow the vehicle down when the planning algorithm is
running.

In both of the above cases, we can detect the impending collision and stop
the vehicle in time. However, there are some cases in which Dodger would
exhibit undesirable behavior while not actually colliding with an obstacle. For
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(a) (b) (c)

Fig. 11. In (a), the system predicts a collision and invokes D*. The map covers only
a small area between the vehicle and the original goal point. Obstacles are added to
the map, and points within the vehicle’s minimum turning radius are also marked as
untraversable. The optimal path from D* goes around the obstacle, and the furthest
visible point along the D* path is set as the new goal point. Dodger is run again
using this goal. In (b), the new D* goal point has pulled the vehicle a little to the
left, but not far enough yet, since the system still predicts collision. D* continues
to be invoked. In (c), the vehicle is far enough to the left that the system no longer
predicts a collision if the regular goal point is used with Dodger, so D* is no longer
necessary.

(a) (b) (c)

Fig. 12. The D* augmentation to Dodger can also lead the vehicle through complex
configurations of obstacles. In (a), Dodger finds no way around the wall of obstacles,
so D* is invoked. In (b), the goal obtained from the D* path pulls the vehicle to the
left. In (c), Dodger alone can navigate the vehicle past the remaining obstacles.

example, Figure 13(a) shows a case where obstacles on both sides of the path
are actually to the left of the vehicle and repel the vehicle off the desired path
around the obstacles, even though the desired path is clear. To prevent the
vehicle from unnecessarily diverging from the desired path, we use a ”ribbon”
method. We construct a ribbon of fixed distances down the path and to either
side. If there are no obstacles on this ribbon and the vehicle is currently within
the ribbon, then we zero any obstacle repulsion. The result is a steering angle
entirely based on the goal attraction, and the vehicle successfully tracks the
path (Figure 13(b)).
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(a) (b)

Fig. 13. In (a), the obstacles on both sides of the path repel the vehicle rightward.
As a result, the vehicle leaves the path, even though there is no obstacle on the path.
In (b), the ribbon method is being used. The dark lines on either side of the path
denote the ribbon. There are no obstacles within the ribbon, so the total obstacle
repulsion is set to zero, and the vehicle follows the path.

4 Results

The system presented here is able to perform high speed off road navigation
at speeds up to 5m/s. The tightly coupled GPS + IMU localization system
provides reliable position estimates in areas with limited GPS availability. The
combination of two laser systems, one fixed and the other sweeping, enables
us to detect obstacles as small as 30cm high and 30cm wide. The obstacle
avoidance algorithm allows us to avoid these obstacles even while traveling at
5m/s. The system described here has successfully performed over 100 km of
autonomous travel.

5 Conclusions

We have developed a method of obstacle detection and collision avoidance that
is composed of low cost components and has low complexity but is capable
of state of the art performance. The advantage of being able to actuate the
laser scanning is that it provides for an even distribution of laser range data
as the path turns.

So far we have used shape to separate obstacles from clear regions. The
next step is to allow for recognition of materials so that vegetation can be
appropriately recognized.
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