

Parallel and Distributed Logic Programming
Alakananda Bhattacharya, Amit Konar, Ajit K. Mandal

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 10. Andrzej P. Wierzbicki, Yoshiteru
Nakamori
Creative Space, 2005
ISBN 3-540-28458-3

Vol. 11. Antoni Lig za
Logical Foundations for Rule-Based
Systems, 2006
ISBN 3-540-29117-2

Vol. 12. Jonathan Lawry
Modelling and Reasoning with Vague Con-
cepts, 2006
ISBN 0-387-29056-7

Vol. 13. Nadia Nedjah, Ajith Abraham,
Luiza de Macedo Mourelle (Eds.)
Genetic Systems Programming, 2006
ISBN 3-540-29849-5

Vol. 14. Spiros Sirmakessis (Ed.)

ISBN 3-540-30605-6

Vol. 15. Lei Zhi Chen, Sing Kiong Nguang,
Xiao Dong Chen
Modelling and Optimization of
Biotechnological Processes, 2006
ISBN 3-540-30634-X

Vol. 16. Yaochu Jin (Ed.)
Multi-Objective Machine Learning, 2006
ISBN 3-540-30676-5

 Vol. 17. Te-Ming Huang, Vojislav Kecman,
Ivica Kopriva
Kernel Based Algorithms for Mining Huge
Data Sets, 2006
ISBN 3-540-31681-7

Vol. 18. Chang Wook Ahn
Advances in Evolutionary Algorithms, 2006
ISBN 3-540-31758-9

Vol. 19. Ajita Ichalkaranje, Nikhil
Ichalkaranje, Lakhmi C. Jain (Eds.)
Intelligent Paradigms for Assistive and

ISBN 3-540-31762-7

Vol. 20. Wojciech Penczek, Agata Pó rola
Advances in Verification of Time Petri Nets
and Timed Automata, 2006
ISBN 3-540-32869-6

Adaptive and Personalized Semantic Web, 2006

�

Vol. 21. C ndida Ferreira

Preventive Healthcare, 2006

Modeling by an Artificial Intelligence, 2006
ISBN 3-540-32796-7

Vol. 22. N. Nedjah, E. Alba, L. de Macedo
Mourelle (Eds.)
Parallel Evolutionary Computations, 2006
ISBN 3-540-32837-8

Vol. 23. M. Last, Z. Volkovich, A. Kandel (Eds.)
Algorithmic Techniques for Data Mining, 2006
ISBN 3-540-33880-2

Vol. 24. Alakananda Bhattacharya, Amit Konar,
Ajit K. Mandal

2006

â
Gene Expression on Programming: Mathematical

Parallel and Distributed Logic Programming,

ISBN 3-540-33458-0

Vol. 8. Srikanta Patnaik, Lakhmi C. Jain,
Spyros G. Tzafestas, Germano Resconi,
Amit Konar (Eds.)
Innovations in Robot Mobility and Control,
2005
ISBN 3-540-26892-8

Vol. 9. Tsau Young Lin, Setsuo Ohsuga,
Churn-Jung Liau, Xiaohua Hu (Eds.)
Foundations and Novel Approaches in Data
Mining, 2005
ISBN 3-540-28315-3

Studies in Computational Intelligence, Volume 24

123

Alakananda Bhattacharya

Amit Konar
Ajit K. Mandal

Parallel and Distributed
Logic Programming

Machines

Towards the Design of a Framework

With 121 Figures and 10 Tables

for the Next Generation Database

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag. Violations are liable to prosecution under the
German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

 5 4 3 2 1 0 89/SPI
Typesetting by the authors and SPI Publisher Services
Cover design: deblik, Berlin

Dr. Alakananda Bhattacharya
Artificial Intelligence Laboratory
ETCE Department

Calcutta 700032
India

 Prof. Dr. Amit Konar

Jadavpur University

ETCE Department

Calcutta 700032
India

 Artificial Intelligence Laboratory

E-mail: ajit.k.mandal@vsnl.com
 ajit.k.mandal@ieee.org

Library of Congress Control Number: 2006925432

ISBN-10 3-540-33458-0 Springer Berlin Heidelberg New York

Printed on acid-free paper SPIN: 11588498

Jadavpur University

ISBN-13 978-3-540-33458-3 Springer Berlin Heidelberg New York

E-mail: b_ alaka2@hotmail.com

 Prof. Dr. Ajit K. Mandal

 Visiting Professor
Department of Math. and Computer
Science
University of Missouri, St. Louis

 8001 Natural Bridge Road, St. Louis
 Missouri 63121-4499

E-mail: konaramit@yahoo.co.in

USA

Permanently working as
Professor
Department of Electronics and

Jadavpur University

India
Calcutta 700032

Tele-communication Engineering

Preface

Foundation of logic historically dates back to the times of Aristotle, who
pioneered the concept of truth/falsehood paradigm in reasoning. Mathematical
logic of propositions and predicates, which are based on the classical models of
Aristotle, underwent a dramatic evolution during the last 50 years for its
increasing applications in automated reasoning on digital computers.

The subject of Logic Programming is concerned with automated reasoning with
facts and knowledge to answer a user’s query following the syntax and semantics
of the logic of propositions/predicates. The credit of automated reasoning by logic
programs goes to Professor Robinson for his well-known resolution theorem that
provides a general scheme to select two program clauses for deriving an inference.
Until now Robinson’s theorem is being used in PROLOG/DATALOG compilers
to automatically build a Select Linear Definite (SLD) clause based resolution tree
for answering a user’s query.

The SLD-tree based scheme for reasoning undoubtedly opened a new era in
logic programming for its simplicity in implementation in the compilers. In fact,
SLD-tree construction suffices the need for users with a limited set of program
clauses. But with increase in the number of program clauses, the execution time of
the program also increases linearly by the SLD-tree based approach. An inspection
of a large number of logic programs, however, reveals that more than one pair of
program clauses can be resolved simultaneously without violating the syntax and
the semantics of logic programming. This book employs this principle to speed up
the execution time of logic programs.

One question that naturally arises: how does one select the clauses for
concurrent resolution? Another question that crops up in this context: should one
select more than two clauses together or pairs of clauses as groups for concurrent
resolution? This book answers these questions in sufficient details. In fact, in this
book we minimize the execution time of a logic program by grouping sets of
clauses that are concurrently resolvable. So, instead of pairs, groups of clauses
with more than two members in a group are resolved at the same time. This may
give rise to further questions: how can we ensure that the selected groups only are
concurrently resolvable, and members in each group too are maximal? This in fact
is a vital question as it ensures the optimal time efficiency (minimum execution
time) of a logic program. The optimal time efficiency in our proposed system is
attained by mapping the program clauses onto a specialized structure that allows

VI Preface

each group of resolvable clauses to be mapped in close proximity, so as to
participate in the resolution process. Thus n-groups of concurrently resolvable
clauses form n clusters in the network. Classical models of Petri nets have been
extended to support the aforementioned requirements.

Like classical Petri nets, the topology of network used in the present context is
a bipartite graph having two types of nodes, called places and transitions, and
directed arcs connected from places to transitions and transitions to places
respectively. Clauses describing IF-THEN rules (knowledge) are mapped at the
transitions, with predicates in IF and THEN parts being mapped at the input and
the output places of the transitions. Facts described by atomic predicates are
mapped at the places that too share predicates of the IF or the THEN parts of a
rule. As an example, let us consider a rule: (Fly(X) ¬Bird(X).) and a fact:
(Bird(parrot)¬.). The above rule in our terminology is represented by a transition
with one input and one output place. The input and the output places correspond to
the predicates: Bird(X) and Fly(X) respectively. The fact: Bird(parrot) is also
mapped at the input place of the transition. Thus, a resolution of the rule and the
fact is possible because of their physical proximity on the Petri net architecture. It
can be proved by method of induction easily that all members in a group of
resolvable clauses are always mapped on the Petri net around a transition. Thus a
number of groups of resolvable clauses are mapped on different transitions and the
input-output places around them. Consequently, a properly designed firing rule
can ensure concurrent resolution of the groups of clauses and generation and
storage of the inferences at appropriate places. The book aimed at realizing the
above principle by determining appropriate control signals for transition firing and
resulting token saving at desired places.

It is indeed important to note that the proposed scheme of reasoning covers the
notion of AND-, OR-, Stream- and Unification-parallelisms. It is noteworthy that
there are plenty of research papers with hundreds of scientific jargons to prohibit
the unwanted bindings in AND-parallelisms, but very few of them are realistic.
Implementation of the Stream-parallelism too is difficult, as it demands design of
complex control strategies. Fortunately, because of the structural benefits of Petri
nets, AND- and Stream-parallelisms could have been realized by our proposed
scheme of concurrent resolution automatically. The most interesting point to note
is that these parallelisms are realized as a byproduct of the adopted concurrent
resolution policy, and no additional computation is needed to implement the
former.

The most important aspect of this book, probably, is the complete realization of
the proposed scheme for concurrent resolution on a massively parallel
architecture. We verified the architectural design with VHDL and the
implementations were found promising. The VHDL source code is not included in
the book for its sheer length that might have enhanced its volume three times its
current size. Finally, the book concludes on the possible application of the
proposed parallel and distributed logic programming for the next generation
database machines.

The book comprises of six chapters. Chapter 1 provides an introduction to logic
programming. It begins with a historical review on the last 50 years evolution of
symbolic paradigms in Artificial Intelligence. The chapter then outlines the logic
of propositions and predicates, the resolution principles and its application in
automated theorem proving. Gradually, the chapter progresses through a series of
reviews on logic programs, its realization with stacks, the PROLOG language, and
stability of interpretations in a logic program. The chapter also reviews four
typical parallel architectures used for conventional programs. It also includes
discussions on possible types of parallelisms in logic programs.

Chapter 2 extensively reviews the existing models of parallelisms in logic
programs, such as the RAP-WAM architecture, Parallel AND-OR logic
programming language, Kale’s AND-OR tree model, CAM based architecture for
a PROLOG machine. A performance analysis of PROLOG programs on different
machine architectures is also introduced in this chapter. It then highlights the need
of Petri nets in logic programming and ends with a discussion on the scope of the
book.

Chapter 3 provides formal definitions to Petri nets and related terminologies.
Main emphasis is given on concurrency in resolution. The chapter introduces an
extended Petri net model for logic programming and explains resolution of
program/data clauses with forward and backward firing of transitions in the Petri
net model. An algorithm for automated reasoning is then proposed and explained
with a typical Petri net. The chapter includes a performance analysis of the
proposed algorithm with special references to speed up and resource utilization
rate for both the cases of limited and unlimited resources.

Chapter 4 is devoted to the design of a massively parallel architecture that
automates the reasoning algorithm presented in chapter 3. It begins with an
introduction to the overall architecture in a nutshell.

The chapter then gradually explores the architectural details of the modules⎯
namely Transition History File, Place Token Variable Value Mapper, Matcher,
Transition Status File, First Pre-Condition Synthesizer and Firing Criteria Testing
Logic. The chapter then analyzes the performance of the hardwired engine by
computing a timing analysis with respect to the system clock.

Prior to mapping the user’s logic program to the architecture proposed in
Chapter 4, a pre-processing software is needed for parsing the user’s source codes
and mapping the program components on to the architecture. Chapter 5 provides a
discussion on the design aspects of a pre-processor. The chapter outlines the
design of a Parser to be used for our application. It then introduces the principles
of mapping program components, such as clauses, predicates, arc function
variables and tokens onto the appropriate modules of the architecture.

Chapter 6 indicates the possible direction of the book in the next generation
database machines. It begins with an introduction to Datalog language,
highlighting all its specific features in connection with logic program based data

Preface VII

VIII Preface

 models. The LDL system architecture is presented, emphasizing its characteristics
in negation by failure, stratification and bottom-up query evaluation. Principles of
designing database machines with Petri nets are also narrated in the chapter. The
scope of Petri net based models in data mining is also examined at the end of the
chapter.

January 1, 2006

Artificial Intelligence Lab. Alakananda Bhattacharya,
ETCE Department Amit Konar,
Jadavpur University and Ajit K. Mandal.

Acknowledgements

The authors would like to thank many of their friends, colleagues and co-workers
for help, cooperation and support, without which the book could not be completed
in the present form.

First and foremost the authors wish to thank Professor A. N. Basu, Vice
Chancellor, Jadavpur University for providing them the necessary support to write
the book. They are equally indebted to Professor M. K. Mitra, Dean, Faculty of
Engineering and Technology, Jadavpur University for encouraging them to write
the book. During the preparation of the manuscript, Professor C. K. Sarkar, the
present HOD and Professor A. K. Bandyopadhyay and Professor H. Saha, the past
two HODs helped the authors in various ways to successfully complete the book.

The authors would like to thank Saibal Mukhopadhyay and Rajarshi Mukherjee
for simulating and verifying the proposed architecture with VHDL. They are also
indebted to a number of undergraduate students of ETCE department, Jadavpur
University for helping them in drawing some of the figures of the book. They are
equally indebted to Saswati Saha, an M. Tech. student of ETCE department for
providing support in editing a part of the book.

The first author is indebted to her parents Mrs. Indu Bhattacharya and Mr.
Nirmal Ranjan Bhattacharya for providing her all sorts of help in building her
academic career and their moral and mental support to complete the book in the
present form. She is equally grateful to her in-laws Mrs. Kabita Roy and Mr. Sunil
Roy for all forms of supports they extended to household affairs and their patience
and care for the author’s beloved child Antariksha. The first author would also like
to thank her elder brother Mr. Anjan K. Bhattacharya, brother-in-law Mr. Debajit
Roy and her sister-in-law Mrs. Mahua Roy for their encouragement in writing this
book. She would like to pay her vote of thanks to her uncle Late N. K. Gogoi, who
always encouraged her to devote her life for a better world rather than living a
routine life only. She also thanks her cousin brother Gunturu (Sudeet Hazra) and
her friend Madhumita Bhattacharya who continued insisting for successful
completion of the book. Lastly, the author thanks her husband Abhijit for his
understanding to spend many weekends lonely. The acknowledgement will remain
incomplete if the author fails to record the help and support she received from her
onetime classmate and friend Sukhen (Dr. Sukhen Das). Lastly, the author would
like to express her joy and happiness to her dearest son Antariksha and her
nephew Anjishnu whose presence helped her wade through the turbulence of
home, office and research during the tenure of her work.

The second and the third authors would also like to thank their family members
for extending their support to write this book.

The authors gratefully acknowledge the academic support they received from
UGC sponsored projects on i) AI and Expert Systems Applied to Image
Processing and Robotics and ii) University with Potential for Excellence Program
in Cognitive science.

Artificial Intelligence Lab. Alakananda Bhattacharya,
ETCE Department, Amit Konar,
Jadavpur University. and Ajit K. Mandal.

Acknowledgement X

Contents

1.2.2 Theorm Proving in the Classical Logic

1.3 Logic Programming...7
1.3.1 Definitions..8
1.3.2 Evaluation of Queries with a Stack ...9

1.3.4 Interpretation and their Stability in a Logic Program..................11
1.4 Introduction to Parallel Architecture ..15

1.4.1 SIMD and MIMD Machines ...17
1.4.2 Data Flow Architecture...19

1.6.1 Possible Parallelisms in a Logic Program30
1.7 Scope of Parallelism in Logic Programs using Petri Nets34
1.8 Conclusion ..40

Exercise..40
References ..53

2 Parallel and Distributed Models for Logic Programming —

2.1 Introduction...57
2.2 The RAP-WAM Architecture ..59
2.3 Automated Mapping of Logic Program onto a Parallel Architecture60
2.4 Parallel AND-OR Logic Programming Language.................................60
2.5 Kale’s AND-OR Tree Model for Logic Programming65
2.6 CAM-based Architecture for a PROLOG Machine...............................69
2.7 Performance Analysis of PROLOG Programs on Different Machine
 Architectures...73
2.8 Logic Programming using Petri Nets..74

2.10 Conclusions...85
Exercises ..85
References .. 104

1 An Introduction to Logic Programming...1
1.1 Evolution of Reasoning Paradigms in Artificial Intelligence...................1

 with the Resolution Principle ...5

1.5.1 Petri Nets A Brief Review ...23 —

 A Review ..57

2.9 Scope of the Book... 83

1.3.3 PROLOG — An Overview ...10

1.5 Petri Net as a Dataflow Machine..22

1.2 The Logic of Propositions and Predicates-A Brief Review..................3

1.6 Parallelism in Logic Programs — A Review ..27

1.2.1 The Resolution Principle...5

Contents

3.1 Introduction... 107
3.2 Formal Definitions .. 109

3.2.1 Preliminary Definitions... 109

3.2.3 SLD Resolution .. 115
3.3 Concurrency in Resolution .. 120

3.3.1 Preliminary Definitions... 120

3.4 Petri Net Model for Concurrent Resolution .. 129
3.4.1 Extended Petri Net.. 130
3.4.2 Mapping a Clause onto Extended Petri Net 130
3.4.3 Mapping a fact onto Extended Petri Net 131

3.5 Concurrent Resolution on Petri Nets .. 133

3.5.3 Properties of the Algorithm... 136
3.6 Performance Analysis of Petri Net-based Models 138

3.6.1 The Speed-up ... 139
3.6.2 The Resource Utilization Rate... 140
3.6.3 Resource Unlimited Speed-up and Utilization Rate 141

3.7 Conclusions... 142
Exercises .. 142
References .. 174

4.1 Introduction... 177
4.2 The Modular Architecture of the Overall System 178
4.3 Transition History File... 180
4.4 The PTVVM ... 181

4.4.1 The First Sub-unit of the PTVVM... 181
4.4.2 The Second Sub-unit of the PTVVM....................................... 183
4.4.3 The Third Sub-unit of the PTVVM ... 184

4.5 The Matcher.. 184
4.6 The Transition Status File.. 185
4.7 The First Pre-condition Synthesizer ... 186
4.8. The Firing Criteria Testing Logic.. 187
4.9 Timing Analysis for the Proposed Architecture 200
4.10 Conclusions... 202
Excercises... 203
References .. 210

5 Parsing and Task Assignment on to the Proposed
Parallel Architecture... 211
5.1 Introduction... 211
5.2 Parsing and Syntax Analysis.. 213

XII

3.5.2 Algorithm for Concurrent Resolution 134

3.3.2 Types of Concurrent Resolution.. 123

3 The Petri Net Model — A New Approach ... 107

3.2.2 Properties of Substitution Set..113

4 Realization of a Parallel Architecture for the Petri Net Model 177

3.5.1 Enabling and Firing Condition of a Transition......................... 133

5.2.1 Parsing a Logic Program using Trees 214
5.2.2 Parsing using Deterministic Finite Automata........................... 216

5.3 Resource Labeling and Mapping.. 219
5.3.1 Labeling of System Resources .. 221
5.3.2 The Petri Net Model Construction... 221
5.3.3 Mapping of System Resources .. 222

5.4 Conclusions... 223
Exercises .. 223
Refercences .. 228

6.1 Introduction... 229
6.2 The Datalog Language... 229
6.3 Some Important Features of Datalog Language 232
6.4 Representational Benefit of Integrity Constraints

6.5 The LDL System Architecture ... 235
6.5.1 Declarative Feature of the LDL... 237
6.5.2 Bottom-up Query Evaluation in the LDL................................. 238
6.5.3 Negation by Failure Computational Feature............................. 241
6.5.4 The Stratification Feature.. 242

6.6 Designing Database Machine Architectures using Petri Net Models ... 243
6.7 Scope of Petri Net-based Model in Data Mining................................. 247
6.8 Conclusions... 251
Exercises .. 251
References .. 256

Appendix A: Simulation of the Proposed Modular Architecture 259
A.1 Introduction.. 259
A.2 VHDL Code for Different Entities in Matcher................................... 260
A.3 VHDL Code to Realize the Top Level Architecture of Matcher 265
A.4 VHDL Code of Testbench to Simulate the Matcher 268

B.2 Problem 2: A Matrix Approach for Petri Net Representation.............. 273
Exercises .. 283

Contents XIII

6 Logic Programming in Database Applications 229

 in Datalog Programs ... 234

B.1 Problem 1: The Diagnosis Problem ... 271

Index..285

About the Authors...289

Appendix B: Open-ended Problems for Dissertation Works 271

Reference ... 270

References..284

