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Preface 

Foundation of logic historically dates back to the times of Aristotle, who 
pioneered the concept of truth/falsehood paradigm in reasoning. Mathematical 
logic of propositions and predicates, which are based on the classical models of 
Aristotle, underwent a dramatic evolution during the last 50 years for its 
increasing applications in automated reasoning on digital computers.   

The subject of Logic Programming is concerned with automated reasoning with 
facts and knowledge to answer a user’s query following the syntax and semantics 
of the logic of propositions/predicates. The credit of automated reasoning by logic 
programs goes to Professor Robinson for his well-known resolution theorem that 
provides a general scheme to select two program clauses for deriving an inference. 
Until now Robinson’s theorem is being used in PROLOG/DATALOG compilers 
to automatically build a Select Linear Definite (SLD) clause based resolution tree 
for answering a user’s query. 

The SLD-tree based scheme for reasoning undoubtedly opened a new era in 
logic programming for its simplicity in implementation in the compilers. In fact, 
SLD-tree construction suffices the need for users with a limited set of program 
clauses. But with increase in the number of program clauses, the execution time of 
the program also increases linearly by the SLD-tree based approach. An inspection 
of a large number of logic programs, however, reveals that more than one pair of 
program clauses can be resolved simultaneously without violating the syntax and 
the semantics of logic programming. This book employs this principle to speed up 
the execution time of logic programs. 

One question that naturally arises: how does one select the clauses for 
concurrent resolution? Another question that crops up in this context: should one 
select more than two clauses together or pairs of clauses as groups for concurrent 
resolution? This book answers these questions in sufficient details. In fact, in this 
book we minimize the execution time of a logic program by grouping sets of 
clauses that are concurrently resolvable. So, instead of pairs, groups of clauses 
with more than two members in a group are resolved at the same time. This may 
give rise to further questions: how can we ensure that the selected groups only are 
concurrently resolvable, and members in each group too are maximal? This in fact 
is a vital question as it ensures the optimal time efficiency (minimum execution 
time) of a logic program. The optimal time efficiency in our proposed system is 
attained by mapping the program clauses onto a specialized structure that allows 
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each group of resolvable clauses to be mapped in close proximity, so as to 
participate in the resolution process. Thus n-groups of concurrently resolvable 
clauses form n clusters in the network. Classical models of Petri nets have been 
extended to support the aforementioned requirements. 

Like classical Petri nets, the topology of network used in the present context is 
a bipartite graph having two types of nodes, called places and transitions, and 
directed arcs connected from places to transitions and transitions to places 
respectively. Clauses describing IF-THEN rules (knowledge) are mapped at the 
transitions, with predicates in IF and THEN parts being mapped at the input and 
the output places of the transitions. Facts described by atomic predicates are 
mapped at the places that too share predicates of the IF or the THEN parts of a 
rule. As an example, let us consider a rule: (Fly(X) ¬Bird(X).) and a fact: 
(Bird(parrot)¬.). The above rule in our terminology is represented by a transition 
with one input and one output place. The input and the output places correspond to 
the predicates: Bird(X) and Fly(X) respectively. The fact: Bird(parrot) is also 
mapped at the input place of the transition. Thus, a resolution of the rule and the 
fact is possible because of their physical proximity on the Petri net architecture. It 
can be proved by method of induction easily that all members in a group of 
resolvable clauses are always mapped on the Petri net around a transition. Thus a 
number of groups of resolvable clauses are mapped on different transitions and the 
input-output places around them. Consequently, a properly designed firing rule 
can ensure concurrent resolution of the groups of clauses and generation and 
storage of the inferences at appropriate places. The book aimed at realizing the 
above principle by determining appropriate control signals for transition firing and 
resulting token saving at desired places. 

It is indeed important to note that the proposed scheme of reasoning covers the 
notion of AND-, OR-, Stream- and Unification-parallelisms. It is noteworthy that 
there are plenty of research papers with hundreds of scientific jargons to prohibit 
the unwanted bindings in AND-parallelisms, but very few of them are realistic. 
Implementation of the Stream-parallelism too is difficult, as it demands design of 
complex control strategies. Fortunately, because of the structural benefits of Petri 
nets, AND- and Stream-parallelisms could have been realized by our proposed 
scheme of concurrent resolution automatically. The most interesting point to note 
is that these parallelisms are realized as a byproduct of the adopted concurrent 
resolution policy, and no additional computation is needed to implement the 
former. 

The most important aspect of this book, probably, is the complete realization of 
the proposed scheme for concurrent resolution on a massively parallel 
architecture. We verified the architectural design with VHDL and the 
implementations were found promising. The VHDL source code is not included in 
the book for its sheer length that might have enhanced its volume three times its 
current size. Finally, the book concludes on the possible application of the 
proposed parallel and distributed logic programming for the next generation 
database machines. 



The book comprises of six chapters. Chapter 1 provides an introduction to logic 
programming. It begins with a historical review on the last 50 years evolution of 
symbolic paradigms in Artificial Intelligence. The chapter then outlines the logic 
of propositions and predicates, the resolution principles and its application in 
automated theorem proving. Gradually, the chapter progresses through a series of 
reviews on logic programs, its realization with stacks, the PROLOG language, and 
stability of interpretations in a logic program. The chapter also reviews four 
typical parallel architectures used for conventional programs. It also includes 
discussions on possible types of parallelisms in logic programs. 

Chapter 2 extensively reviews the existing models of parallelisms in logic 
programs, such as the RAP-WAM architecture, Parallel AND-OR logic 
programming language, Kale’s AND-OR tree model, CAM based architecture for 
a PROLOG machine. A performance analysis of PROLOG programs on different 
machine architectures is also introduced in this chapter. It then highlights the need 
of Petri nets in logic programming and ends with a discussion on the scope of the 
book. 

Chapter 3 provides formal definitions to Petri nets and related terminologies. 
Main emphasis is given on concurrency in resolution. The chapter introduces an 
extended Petri net model for logic programming and explains resolution of 
program/data clauses with forward and backward firing of transitions in the Petri 
net model. An algorithm for automated reasoning is then proposed and explained 
with a typical Petri net. The chapter includes a performance analysis of the 
proposed algorithm with special references to speed up and resource utilization 
rate for both the cases of limited and unlimited resources.  

Chapter 4 is devoted to the design of a massively parallel architecture that 
automates the reasoning algorithm presented in chapter 3. It begins with an 
introduction to the overall architecture in a nutshell.  

The chapter then gradually explores the architectural details of the modules⎯
namely Transition History File, Place Token Variable Value Mapper, Matcher, 
Transition Status File, First Pre-Condition Synthesizer and Firing Criteria Testing 
Logic. The chapter then analyzes the performance of the hardwired engine by 
computing a timing analysis with respect to the system clock. 

Prior to mapping the user’s logic program to the architecture proposed in 
Chapter 4, a pre-processing software is needed for parsing the user’s source codes 
and mapping the program components on to the architecture. Chapter 5 provides a 
discussion on the design aspects of a pre-processor. The chapter outlines the 
design of a Parser to be used for our application. It then introduces the principles 
of mapping program components, such as clauses, predicates, arc function 
variables and tokens onto the appropriate modules of the architecture. 

Chapter 6 indicates the possible direction of the book in the next generation 
database machines. It begins with an introduction to Datalog language, 
highlighting all its specific features in connection with logic program based data 
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 models. The LDL system architecture is presented, emphasizing its characteristics 
in negation by failure, stratification and bottom-up query evaluation. Principles of 
designing database machines with Petri nets are also narrated in the chapter. The 
scope of Petri net based models in data mining is also examined at the end of the 
chapter. 

January 1, 2006 

Artificial Intelligence Lab.                        Alakananda Bhattacharya, 
ETCE Department                         Amit Konar, 
Jadavpur University                            and Ajit K. Mandal.
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