Skip to main content

Lucian Ilie

Combinatorial Complexity Measures for Strings

  • Chapter
Recent Advances in Formal Languages and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 25))

  • 473 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Amigo, J. Szczepanski, E. Wajnryb and M. V. Sanchez-Vives, Estimating the entropy rate of spike trains via Lempel-Ziv complexity, Neural Computation 16(4) (2004) 717-736.

    Article  MATH  Google Scholar 

  2. S.V. Avgustinovich, D.G. Fon-Der-Flaass and A. E. Frid, Arithmetical complexity of infinite words, in: Masami Ito and Teruo Imaoka, eds., Words, Languages and Combinatorics III (ICWLC 2000), World Scientific Publishing, Singapore, 2003,51-62.

    Chapter  Google Scholar 

  3. J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin 1(2) (1994) 133-143.

    MATH  MathSciNet  Google Scholar 

  4. J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge Univ. Press, Cambridge, 2003.

    MATH  Google Scholar 

  5. C.H. Bennett, Information, Dissipation, and the Definition of Organization, Emerging Syntheses in Science (David Pines, ed.), Santa Fe Institute, 1985, 297-313, Addison-Wesley, Reading, Mass., 1987.

    Google Scholar 

  6. C.H. Bennett, Logical Depth and Physical Complexity, The Universal Turing Machine-a Half-Century Survey (R. Herken, ed.), Oxford University Press 1988, 227-257.

    Google Scholar 

  7. J. Berstel, Axel Thue’s Papers on Repetitions in Words: a Translation, Number 20 in Publications du Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec à Montréal, February 1995.

    Google Scholar 

  8. J. Berstel and P. Séébold, Sturmian Words, in [52], 45-110.

    Google Scholar 

  9. F.-J. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoret. Comput. Sci. 23 (1983) 69-82.

    Article  MATH  MathSciNet  Google Scholar 

  10. N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. Proc. 49 (1946) 758-764.

    MathSciNet  Google Scholar 

  11. J. Cassaigne and A.E. Frid, On arithmetical complexity of Sturmian words, Proc. of the 5th International Conference on Combinatorics on Words (WORDS’05) (S. Brlek, C. Reutenauer, eds.), LaCIM 36, Montreal, 2005, 197-207.

    Google Scholar 

  12. G. Chaitin, On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966) 547-569.

    MATH  MathSciNet  Google Scholar 

  13. G. Chaitin, Algorithmic Information Theory, IBM J. Res. Develop. 21 (1977) 350-359.

    Article  MATH  MathSciNet  Google Scholar 

  14. X. Chen, S. Kwong and M. Li, A compression algorithm for DNA sequences, IEEE Engineering in Medicine and Biology Magazine 20(4) (2001) 61-66.

    Article  Google Scholar 

  15. C. Choffrut and J. Karhumäki, Combinatorics on Words, Handbook of Formal Languages, Vol. I (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, Heidelberg, 1997, 329-438.

    Google Scholar 

  16. A. Cobham, Uniform Tag Sequences, Math. Systems Th. 6 (1972) 164-192.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Constantinescu and L. Ilie, The Lempel-Ziv complexity of fixed points of morphisms, submitted, Aug. 2005.

    Google Scholar 

  18. M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett. 12(5) (1981) 244-250.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Crochemore, Linear searching for a square in a word, NATO Advanced Research Workshop on Combinatorial Algorithms on Words (A. Apostolico, Z. Galil, eds.), 1984, Springer-Verlag, Berlin, New York, 1985, 66-72.

    Google Scholar 

  20. M. Crochemore and W. Rytter, Text Algorithms, Oxford Univ. Press, 1994.

    Google Scholar 

  21. F. Dejean, Sur un théorème de Thue, J. Combin. Theory. Ser. A 13 (1972) 90-99.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Ehrenfeucht, K.P. Lee and G. Rozenberg, Subword complexities of various classes of deterministic developmental languages without interaction, Theoret. Comput. Sci. 1 (1975) 59-75.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of square-free D0L-languages, Theoret. Comput. Sci. 16 (1981) 25-32.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of D0L-languages with a constant distribution, Theoret. Comput. Sci. 13 (1981) 108-113.

    MATH  MathSciNet  Google Scholar 

  25. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of homomorphic images of languages, RAIRO Informatique Théorique 16 (1982) 303-316.

    MATH  MathSciNet  Google Scholar 

  26. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of locally catenative D0L-languages, Information Processing Letters 16 (1982) 7-9.

    Article  MathSciNet  Google Scholar 

  27. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of m-free D0Llanguages, Information Processing Letters 17 (1983) 121-124.

    Article  MATH  MathSciNet  Google Scholar 

  28. R.C. Entringer, D.E. Jackson, and J.A. Schatz, On nonrepetitive sequences, J. Combin. Theory. Ser. A 16 (1974) 159-164.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Farach, M.O. Noordewier, S.A. Savari, L.A. Shepp, A.D. Wyner and J. Ziv, On the entropy of DNA: algorithms and measurements based on memory and rapid convergence, Proc. of SODA’95, 1995, 48-57.

    Google Scholar 

  30. A. Flaxman, A. Harrow, and G. Sorkin, Strings with maximally many distinct subsequences and substrings, Electron. J. Combin. 11(1) (2004) #R8.

    Google Scholar 

  31. D.G. Fon-Der-Flaass and A.E. Frid, On periodicity and low complexity of infinite permutations, EuroComb’05, 267-272.

    Google Scholar 

  32. A.S. Fraenkel and J. Simpson, How many squares can a string contain?, J. Combin. Theory, Ser. A, 82 (1998) 112-120.

    Article  MATH  MathSciNet  Google Scholar 

  33. F. Frayman, V. Kanevsky, and W. Kirchherr, The combinatorial complexity of a finite string, Proc. of Mathematical Foundations of Computer Science 1994 (Košice, 1994), Lecture Notes in Comput. Sci. 841, Springer, Berlin, 1994, 364-372,

    Google Scholar 

  34. A.E. Frid, On possible growths of arithmetical complexity, Theoretical Informatics and Applications (RAIRO), to appear.

    Google Scholar 

  35. V.D. Gusev, V.A. Kulichkov, and O.M. Chupakhina, The Lempel-Ziv complexity and local structure analysis of genomes, Biosystems 30(1-3) (1993) 183-200.

    Article  Google Scholar 

  36. D. Gusfield, Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  37. L. Ilie, A simple proof that a word of length n has at most 2n distinct squares, J. Combin. Theory, Ser. A 112(1) (2005) 163-164.

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Ilie, A note on the number of distinct squares in a word, Proc. of the 5th International Conference on Combinatorics on Words (WORDS’05) (S. Brlek, C. Reutenauer, eds.), LaCIM 36, Montreal, 2005, 289-294.

    Google Scholar 

  39. L. Ilie, P. Ochem, and J. Shallit, A generalization of repetition threshold, Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science (MFCS) (J. Fiala et al., eds.), Lecture Notes in Comput. Sci. 3153, Springer, Berlin, 2004, 818-826.

    Google Scholar 

  40. L. Ilie, P. Ochem, and J. Shallit, A generalization of repetition threshold, Theoret. Comput. Sci., to appear, 2005

    Google Scholar 

  41. L. Ilie, S. Yu and K. Zhang, Word complexity and repetitions in words, Internat. J. Found. Comput. Sci. 15(1) (2004) 41-55.

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Iliopoulos, D. Moore, and W.F. Smyth, A characterization of the squares in a Fibonacci string, Theoret. Comput. Sci. 172(1-2) (1997) 281-291.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Ivanyi, On the d-complexity of words, Ann. Univ. Sci. Budapest. Sect. Comput. 8 (1987) 69-90.

    MathSciNet  Google Scholar 

  44. A.N. Kolmogorov, Three approaches to the quantitative definition of information, Probl. Inform. Transmission 1 (1965) 1-7.

    Google Scholar 

  45. R. Kolpakov and G. Kucherov, Maximal repetitions in words or how to find all squares in linear time, Rapport Interne LORIA 98-R-227, Laboratoire Lorrain de Recherche en Informatique et ses Applications, 1998 (available from URL: http://www.loria.fr/kucherov/res activ.html).

  46. R. Kolpakov and G. Kucherov, On the sum of exponents of maximal repetitions in a word, LORIA, 1999, Rapport Interne, 99-R-034, Laboratoire Lorrain de Recherche en Informatique et ses Applications, 1999 (available from URL: http://www.loria.fr/kucherov/res activ.html).

  47. R. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time, Proc. of the 40th Annual Symposium on Foundations of Computer Science, IEEE Computer Soc., Los Alamitos, CA, 1999, 596-604.

    Google Scholar 

  48. R. Kolpakov and G. Kucherov, Periodic Structures in Words, in [53], 399-442.

    Google Scholar 

  49. A. Lempel and J. Ziv, On the Complexity of Finite Sequences , IEEE Trans. Inform. Theory 92(1) (1976) 75-81.

    Article  MathSciNet  Google Scholar 

  50. M. Li and P. Vitani, An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed., New York: Springer-Verlag, 1997.

    MATH  Google Scholar 

  51. M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983 (2nd ed., Cambridge Univ. Press, 1997).

    MATH  Google Scholar 

  52. M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press. 2002.

    Google Scholar 

  53. M. Lothaire, Applied Combinatorics on Words, Cambridge Univ. Press, 2005.

    Google Scholar 

  54. M.G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math. 25(1-2) (1989) 145-153.

    Article  MATH  MathSciNet  Google Scholar 

  55. M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 61 (1940) 1-42.

    Article  MathSciNet  Google Scholar 

  56. J. Moulin-Ollagnier, Proof of Dejean’s conjecture for alphabets with 5,6,7,8,9,10 and 11 letters, Theoret. Comput. Sci. 95 (1992) 187-205.

    Article  MATH  MathSciNet  Google Scholar 

  57. S. Mund and Ziv-Lempel complexity for periodic sequences and its cryptographic application, Advances in Cryptology-EUROCRYPT ’91, Lecture Notes in Comput. Sci. 547, Springer-Verlag, 1991, 114-126.

    Google Scholar 

  58. H. Niederreiter, Some computable complexity measures for binary sequences, Sequences and Their Applications (C. Ding, T. Helleseth, and H. Niederreiter, eds.), Springer-Verlag, London, 1999, 67-78.

    Google Scholar 

  59. H. Niederreiter, Linear complexity and related complexity measures for sequences, Progress in Cryptology INDOCRYPT 2003 (T. Johansson and S. Maitra, eds.), Lecture Notes in Comput. Sci. 2904, Springer-Verlag, Berlin, 2003,1-17.

    Google Scholar 

  60. H. Niederreiter and M. Vielhaber, Tree Complexity and a Doubly Exponential Gap between Structured and Random Sequences, J. Complexity 12 (1996) 187-198.

    Article  MATH  MathSciNet  Google Scholar 

  61. J.-J. Pansiot, Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, Proc. of STACS’84, Lecture Notes in Comput. Sci. 166, Springer, Berlin, 1984, 230-240.

    Google Scholar 

  62. J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés, Proc. of ICALP’84, Lecture Notes in Comput. Sci. 172, Springer, Berlin, 1984, 380-389.

    Google Scholar 

  63. J.-J. Pansiot, A propos d’une conjecture de F. Dejean sur les répétitions dans les mots, Disc. Appl. Math. 7 (1984) 297-311.

    Article  MATH  MathSciNet  Google Scholar 

  64. G. Rozenberg, On subwords of formal languages, Proc. of Fundamentals of computation theory, Lecture Notes in Comput. Sci. 117, Springer, Berlin-New York, 1981,328-333.

    Google Scholar 

  65. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic Press, 1980.

    Google Scholar 

  66. W. Rytter, Application of Lempel-Ziv factorization to the approximation of grammar-based compression, Theoret. Comput. Sci. 302(1-3) (2003) 211-222.

    Article  MATH  MathSciNet  Google Scholar 

  67. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series, Springer, New York, 1978.

    MATH  Google Scholar 

  68. J. Shallit, On the maximum number of distinct factors of a binary string, Graphs Combin. 9(2) (1993) 197-200.

    Article  MATH  MathSciNet  Google Scholar 

  69. R.J. Solomonoff, A preliminary report on a general theory of inductive inference, Technical Report ZTB-138, Zator Company, Cambridge, MA, November 1960.

    Google Scholar 

  70. R.J. Solomonoff, A formal theory of inductive inference, Parts I and II, Information and Control 7 (1964) 1-22 and 224-254.

    MATH  MathSciNet  Google Scholar 

  71. J. Szczepanski, M. Amigo, E. Wajnryb, and M.V. Sanchez-Vives, Application of Lempel-Ziv complexity to the analysis of neural discharges, Network: Computation in Neural Systems 14(2) (2003) 335-350.

    Article  Google Scholar 

  72. J. Szczepanski, J.M. Amigo, E. Wajnryb, and M. V. Sanchez-Vives, Characterizing spike trains with Lempel-Ziv complexity, Neurocomputing 58-60 (2004) 79-84.

    Article  MathSciNet  Google Scholar 

  73. A. Thue, Ãœber unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906) 1-22. (Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, 139-158.)

    Google Scholar 

  74. A. Thue, Ãœber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. (Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977,413-478.)

    Google Scholar 

  75. O. Troyanskaya, O. Arbell, Y. Koren, G. Landau, and A. Bolshoy, Sequence complexity profiles of prokaryotic genomic sequences: A fast algorithm for calculating linguistic complexity, Bioinformatics 18 (2002) 679-688.

    Article  Google Scholar 

  76. J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory 23(3) (1977) 337-343.

    Article  MATH  MathSciNet  Google Scholar 

  77. J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Trans. Inform. Theory 24(5) (1978) 530-536.

    Article  MATH  MathSciNet  Google Scholar 

  78. W. F. Smyth, Computing Patterns in Strings, Pearson Addison Wesley, 2003.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Lucian Ilie. In: Esik, Z., Martín-Vide, C., Mitrana, V. (eds) Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33461-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33461-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33460-6

  • Online ISBN: 978-3-540-33461-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics