Skip to main content

Mesh Smoothing Based on Riemannian Metric Non-Conformity Minimization

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

A mesh smoothing method based on Riemannian metric comparison is presented in this paper. This method minimizes a cost function constructed from a measure of metric non-conformity that compares two metrics: the metric that transforms the element into a reference element and a specified Riemannian metric, that contains the target size and shape of the elements. This combination of metrics allows to cast the proposed mesh smoothing method in a very general frame, valid for any dimension and type of element. Numerical examples show that the proposed method generates high quality meshes as measured both in terms of element characteristics and also in terms of orthogonality at the boundary and overall smoothness, when compared to other known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. S. R. Mathur and N. K. Madavan, “Solution-adaptive structured-unstructured grid method for unsteady turbomachinery analysis, Part I: Methodology,” Journal of Propulsion and Power, vol. 10, pp. 576–584, July and August 1994.

    Article  Google Scholar 

  2. 2. M. K. Patel, K. A. Pericleous, and S. Baldwin, “The development of a structured mesh grid adaption technique for resolving shock discontinuities in upwind Navier-Stokes codes,” International Journal for Numerical Methods in Fluids, vol. 20, pp. 1179–1197, 1995.

    Article  MATH  Google Scholar 

  3. 3. D. Aït-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, and M.-G. Vallet, “Anisotropic mesh adaptation: Towards user-independent, meshindependent and solver-independent CFD. Part II: Structured grids,” International Journal for Numerical Methods in Fluids, vol. 39, pp. 657–673, July 2002.

    Article  MATH  Google Scholar 

  4. 4. A. Tam, D. Aït-Ali-Yahia, M. P. Robichaud, M. Moore, V. Kozel, and W. G. Habashi, “Anisotropic mesh adaptation for 3D flows on structured and unstructured grids,” Computer Methods in Applied Mechanics and Engineering, vol. 189, pp. 1205–1230, May 2000.

    Article  MATH  Google Scholar 

  5. 5. F. Bossen, “Anisotropic mesh generation with particles,” Master's thesis, Carnegie Mellon University, Pittsburgh, PA, May 1996. CMU-CS-96-134.

    Google Scholar 

  6. 6. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation, Foundations and Applications. New York: North-Holland, 1985.

    MATH  Google Scholar 

  7. 7. P. R. Eiseman, “Alternating direction adaptive grid generation,” American Institute of Aeronautics and Astronautics Journal, p. 1937, 1983.

    Google Scholar 

  8. 8. S. P. Spekreijse, “Elliptic grid generation based on Laplace equations and algebraic transformations,” Journal of Computational Physics, vol. 118, pp. 38–61, Apr. 1995.

    Article  MATH  Google Scholar 

  9. 9. B. K. Soni, R. Koomullil, D. S. Thompson, and H. Thornburg, “Solution adaptive grid strategies based on point redistribution,” Computer Methods in Applied Mechanics and Engineering, vol. 189, pp. 1183–1204, 2000.

    Article  MATH  Google Scholar 

  10. 10. P. R. Eiseman, “Adaptive grid generation,” Computer Methods in Applied Mechanics and Engineering, vol. 64(1–3), pp. 321–376, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  11. 11. S. McRae, “r-refinement grid adaptation algorithms and issues,” Computer Methods in Applied Mechanics and Engineering, vol. 189, pp. 1161–1182, 2000.

    Article  MATH  Google Scholar 

  12. 12. L. A. Freitag and C. Ollivier-Gooch, “Tetrahedral mesh improvement using swapping and smoothing,” International Journal for Numerical Methods in Engineering, vol. 40, pp. 3979–4002, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. 13. L. A. Freitag, “On combining Laplacian and optimization-based mesh smoothing techniques,” AMD Trends in Unstructured Mesh Generation, ASME, vol. 220, pp. 37–43, 1997.

    Google Scholar 

  14. 14. A. Oddy, J. Goldak, M. McDill, and M. Bibby, “A distorsion metric for isoparametric finite elements,” Transactions of the CSME, vol. 12, no. 4, pp. 213–218, 1988.

    Google Scholar 

  15. 15. S. A. Cannan, J. R. Tristano, and M. L. Staten, “An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes,” in 7th Internation Meshing Roundtable, (Detroit, Michigan, USA), pp. 479–494, 1998.

    Google Scholar 

  16. 16. P. M. Knupp, “Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II - a framework for volume mesh optimization and the condition number of the Jacobian matrix,” International Journal for Numerical Methods in Engineering, vol. 48, pp. 1165–1185, 2000.

    Article  MATH  Google Scholar 

  17. 17. M.-G. Vallet, Génération de maillages éléments finis anisotropes et adaptatifs. PhD thesis, Université Pierre et Marie Curie, Paris VI, France, 1992.

    Google Scholar 

  18. 18. P.-L. George and H. Borouchaki, Delaunay Triangulation and Meshing. Applications to Finite Elements. Paris: Hermès, 1998.

    Google Scholar 

  19. 19. P. J. Frey and P.-L. George, Mesh Generation. Application to Finite Elements. Paris: Hermès, 2000.

    MATH  Google Scholar 

  20. 20. P. Labbé, J. Dompierre, M.-G. Vallet, F. Guibault, and J.-Y. Trépanier, “A universal measure of the conformity of a mesh with respect to an anisotropic metric field,” International Journal for Numerical Methods in Engineering, vol. 61, pp. 2675–2695, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  21. 21. C. L. Bottasso, “Anisotropic mesh adaption by metric-driven optimization,” International Journal for Numerical Methods in Engineering, vol. 60, pp. 597–639, May 2004.

    Article  MATH  MathSciNet  Google Scholar 

  22. 22. Y. Sirois, J. Dompierre, M.-G. Vallet, and F. Guibault, “Measuring the conformity of non-simplicial elements to an anisotropic metric field,” International Journal for Numerical Methods in Engineering, vol. 64, no. 14, pp. 1944–1958, 2005.

    Article  MATH  Google Scholar 

  23. 23. Y. Sirois, J. Dompierre, M.-G. Vallet, P. Labbé, and F. Guibault, “Progress on vertex relocation schemes for structured grids in a metric space,” in 8th International Conference on Numerical Grid Generation, (Honolulu, USA), pp. 389–398, June 2002.

    Google Scholar 

  24. 24. é. Seveno, Génération automatique de maillages tridimensionnels isotropes par une méthode frontale. PhD thesis, Université Pierre et Marie Curie, Paris VI, Mar. 1998.

    Google Scholar 

  25. 25. Y. Sirois, J. Dompierre, M.-G. Vallet, and F. Guibault, “Using a Riemannian metric as a control function for generalized elliptic smoothing,” in Proceedings of the 9th International Conference on Numerical Grid Generation in Computational Field Simulations, (San Jose, CA), June 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Sirois, Y., Dompierre, J., Vallet, MG., Guibault, F. (2006). Mesh Smoothing Based on Riemannian Metric Non-Conformity Minimization. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics