Skip to main content

Unconstrained Paving and Plastering: Progress Update

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

Unconstrained Paving and Plastering [1] were introduced as new methods of generating all-quadrilateral and all-hexahedral finite element meshes. Their introduction was after preliminary conceptual studies. This paper presents an update on Unconstrained Paving and Plastering after significant implementation and conceptual development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. M.L. Staten, S.J. Owen, T.D. Blacker, “Unconstrained Paving & Plastering: A New Idea for All Hexahedral Mesh Generation,” Proc. 14th Int. Meshing Roundtable, 399–416, 2005.

    Google Scholar 

  2. 2. A.O. Cifuentes, A. Kalbag, “A Performance Study of Tetrahedral and Hexahedral Elements in 3-D Finite Element Structural Analysis,” Finite Elements in Analysis and Design, Vol. 12, pp. 313–318, 1992.

    Article  Google Scholar 

  3. 3. E. Benzley, E. Perry, K. Merkley, B. Clark, “A Comparison of All-Hexahedral and All-Tetrahedral Finite Element Meshes for Elastic and Elasto-Plastic Analysis,” Proc. 4th Int. Meshing Roundtable, 179–191, 1995.

    Google Scholar 

  4. 4. ABAQUS Analysis User's Manual, Version 6.5, Section 14.1.1, Hibbit, Karlsson & Sorrensen: USA, 2005.

    Google Scholar 

  5. 5. T.D. Blacker, M.B. Stephenson, “Paving: A New Approach to Automated Quadrilateral Mesh Generation,” Int. Journal for Numerical Methods in Eng., 32, 811–847, 1991.

    Article  MATH  Google Scholar 

  6. 6. S.A. Canann, “Plastering: A New Approach to Automated 3-D Hexahedral Mesh Generation,” American Institute of Aeronautics and Astronics, 1992.

    Google Scholar 

  7. 7. J. Hipp, R. Lober, “Plastering: All-Hexahedral Mesh Generation Through Connectivity Resolution,” Proc. 3rd Int. Meshing Roundtable, 1994.

    Google Scholar 

  8. 8. T. D. Blacker, R. J. Meyers, “Seams and Wedges in Plastering: A 3D Hexahedral Mesh Generation Algorithm,” Eng. With Computers, 2, 83–93, 1993.

    Article  Google Scholar 

  9. 9. T. J. Taugtes, T. Blacker, S. Mitchell, “The Whisker-Weaving Algorithm: A Connectivity Based Method for Constructing All-Hexahedral Finite Element Meshes,” Int. Journal for Numerical Methods in Eng., 39, 3327–3349, 1996.

    Article  Google Scholar 

  10. 10. N. T. Folwell, S. A. Mitchell, “Reliable Whisker Weaving via Curve Contraction,” Proc. 7th Int. Meshing Roundtable, 365–378, 1998.

    Google Scholar 

  11. 11. P. Murdoch, S. Benzley, “Spatial Twist Continuum,” Proc. 4th Int. Meshing Roundtable, 243–251, 1995.

    Google Scholar 

  12. 12. J. R. Tristano, S. J. Owen, S. A. Canann, “Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition,” Proc. 7th Int. Meshing Roundtable, 429–445, 1998.

    Google Scholar 

  13. 13. T. S. Li, R. M. McKeag, C. G. Armstrong, “Hexahedral Meshing Using Midpoint Subdivision and Integer Programming,” Computer Methods in Applied Mechanics and Engineering, Vol. 124, Issue 1–2, 171–193, 1995.

    Article  Google Scholar 

  14. 14. D. White, L. Mingwu, S. Benzley, “Automated Hexahedral Mesh Generation by Virtual Decomposition,” Proc. 4th Int. Meshing Roundtable, 165–176, 1995.

    Google Scholar 

  15. 15. S. A. Mitchell, T. J. Tautges, “Pillowing Doublets: Refining a Mesh to Ensure That Faces Share at Most One Edge,” Proc. 4th Int. Meshing Roundtable, 231–240, 1995.

    Google Scholar 

  16. 16. M. L. Staten, S. A. Canann, S. J. Owen, “BMSweep: Locating Interior Nodes During Sweeping,” Proc. 7th Int. Meshing Roundtable, 7–18, 1998.

    Google Scholar 

  17. 17. T. D. Blacker, “The Cooper Tool,” Proc.5th Int. Meshing Roundtable, 13–29, 1996.

    Google Scholar 

  18. 18. Mingwu, Lai, “Automatic Hexahedral Mesh Generation by Generalized Multiple Source to Multiple Target Sweep,” Ph.D. Dissertation, Brigham Young University, Provo, Utah, USA, 1998.

    Google Scholar 

  19. 19. P.L. George, H. Borouchaki, “Delaunay Triangulations and Meshing: Application to Finite Elements,” (c)Editions HERMES, Paris, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Staten, M.L., Kerr, R.A., Owen, S.J., Blacker, T.D. (2006). Unconstrained Paving and Plastering: Progress Update. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics