Skip to main content

New Evolutionary Methodologies for Integrated Safety System Design and Maintenance Optimization

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 39))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews JD (1994) Optimal safety system design using fault tree analysis. In Proc. Instn. Mech. Engrs. Vol. 208, pp. 123-131.

    Google Scholar 

  2. Andrews JD, Bartlett LM (1998) Efficient Basic Event Orderings for Binary Decision Diagrams, IEEE Proceedings Annual Reliability and Maintainability Symposium, pp. 61-68.

    Google Scholar 

  3. Andrews JD, Pattison RL (1997) Optimal Safety-system performance. In Pro-ceedings of the 1997 Reliability and Maintainability Symposium, Philadelphia, Pennsylvania, January, pp. 76-83.

    Google Scholar 

  4. Andrews JD, Pattison RL (1999) Genetic Algorithms in optimal safety system design, Proceedings Instn. Mech. Engrs., vol. 213, Part E, pp. 187-197.

    Google Scholar 

  5. Back T (1996) Evolutionary Algorithms in Theory and Practice. Oxford uni-versity Press, New York.

    Google Scholar 

  6. Back T, Naujoks B (1998) Innovative methodologies in evolution strategies. INGENET Project Report D 2.2, Center for Applied Systems Analysis, Informatik Centrum Dortmund, June.

    Google Scholar 

  7. Barros A, Berenguer C, Grall A (2003) Optimization of Replacement Times Using Imperfect Monitoring Information. IEEE Trans on Reliab, Vol. 52-4.

    Google Scholar 

  8. Bartlett LM, Andrews JD (2001) An ordering heuristic to develop the binary decision diagram based on structural importance. Reliab Engng & Syst Safety, Vol. 72, issue 1, 2001, pp. 31-38.

    Article  Google Scholar 

  9. Bouissou M (1996) An ordering Heuristic for building Binary Decisión Dia-grams from Fault Trees. Proceedings RAMS 96, Las Vegas, January.

    Google Scholar 

  10. Brezavscek A, Hudoklin A (2003) Joint Optimization of Block-Replacement and Periodic-Review Spare-Provisioning Policy. IEEE Trans on Reliab, Vol. 52, No. 1.

    Google Scholar 

  11. Bris R, Chatelet E, Yalaoui F (2003). New method to minimize the preventive maintenance cost of series-parallel systems. Reliab Engng and Syst Safety 82:247-255.

    Article  Google Scholar 

  12. Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams, ACM Computing Surveys 24(3):293-318

    Article  Google Scholar 

  13. Busacca PG, Marseguerra M, Zio E (2001) Multiobjective optimization by genetic algorithms: application to safety systems, Reliab Engng & Syst Safety, Vol. 72, issue 1, pp. 59-74

    Article  Google Scholar 

  14. Chen D, Trivedi KS (2005) Optimization for condition-base maintenance with semi-Markov decision process. Reliab Engng & Syst Safety Vol. 90:25-29.

    Article  Google Scholar 

  15. Chen H, Zhou J (1991) Reliability Optimization in Generalized Stochastic-Flow Networks. IEEE Trans on Reliab, 40-1.

    Google Scholar 

  16. Coello Coello CA, Van Veldhuizen D, Lamont G (2002) Evolutionary Algo- rithms for solving multi-objective problems. Kluwer Academic Publishers -GENA Series

    Google Scholar 

  17. Coit DW, Jin T, Wattanapongsakorn N (2004) System Optimization With Component Reliability Estimation Uncertainty: A Multi-Criteria Approach. IEEE Trans on Reliab, Vol. 53-3, September.

    Google Scholar 

  18. Coolen FPA, Dekker R (1995) Analysis of a 2-phase Model for Optimization of Condition-Monitoring Intervals. IEEE Trans on Reliab, 44-3.

    Google Scholar 

  19. Coudert O, Madre JC (1993) Fault Tree analysis: 1020 Prime Implicants and beyond, IEEE Proceedings Annual Reliability and Maintainability Symposium, pp. 240-245.

    Google Scholar 

  20. Cui L, Kuo W, Loh HT and Xie M (2004) Optimal Allocation of Minimal & Perfect Repairs Under Resource Constraints. IEEE Trans on Reliab, Vol. 53-2, June.

    Google Scholar 

  21. Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multiob- jective genetic algorithm: NSGA-II”, IEEE Trans on Evol Comput 6 (2), pp. 182-197.

    Article  Google Scholar 

  22. Dhingra AK (1992) Optimal Apportionment of Reliability & Redundancy in Series Systems Under multiple Objectives. IEEE Trans on Reliab, Vol. 41, no. 4, December.

    Google Scholar 

  23. Dugan JB, Bavuso SJ, Boyd MA (1992). Dynamic Fault-Tree models for fault-tolerant computer systems, IEEE Trans on Reliab 41(3):363-377.

    Article  MATH  Google Scholar 

  24. Dugan JB, Lyu MR (1994) Reliability and Sensitivity analysis of hardware and software fault tolerant systems. In Proceedings of the Fourth IFIP Work-ing Conference on Dependable Computing for Critical Applications, January.

    Google Scholar 

  25. Dugan JB, Venkataraman B, Gulati R (1997). A software package for the analysis of dynamics fault tree models, IEEE Proceedings Annual Reliability and Maintainability Symposium, pp. 64-70.

    Google Scholar 

  26. Elegbede AOC, Chu C, Adjallah KH, Yalaoui F (2003) Reliability Allocation Through Cost Minimization. IEEE Trans on Reliab, Vol. 52-4.

    Google Scholar 

  27. Fiori de Castro H, Cavalca KL (2005) Maintenance resources optimization applied to a manufacturing system. Reliab Engng & Syst Safety. In press.

    Google Scholar 

  28. Fry AJ (2003) Integrity-Based Self-Validation Test Scheduling”. IEEE Trans on Reliab, Vol. 52-2.

    Google Scholar 

  29. Galván BJ (2000) Evolución Flexible. Informe CEA-04-001. Centro de inves-tigación de Aplicaciones Numéricas en Ingeniería. CEANI. Universidad de Las Palmas de Gran Canaria. Islas Canarias, España.

    Google Scholar 

  30. Galván BJ (1999) Contributions to Fault Tree Quantitative Evaluation., PhD Thesis, Physics Dep., Las Palmas de Gran Canaria University (Canary Is-lands-Spain)(In Spanish).

    Google Scholar 

  31. Gen M, Cheng R (1997) Genetic Algorithms & Engineering Design. Wiley Interscience, John Wiley & Sons, USA.

    Google Scholar 

  32. Gersht A, Kheradpir S, Shulman A (1996). “Dynamic Bandwidth-Allocation and Path-Restoration in SONET Self-Healing Networks”. IEEE Trans on Re-liab, 45-2.

    Google Scholar 

  33. Goel HD, Grievink J, Herder PM, Weijnen MPC (2002) Integrating reliability optimization into chemical process synthesis. Reliab Engng & Syst Safety, 78:247-258.

    Article  Google Scholar 

  34. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Ma-chine Learning. Reading, MA: Addison-Wesley.

    Google Scholar 

  35. González L, García D, Galván BJ (1995) Sobre el análisis computacional de funciones Booleanas estocásticas de muchas variables. EACA95-Actas del primer encuentro de Álgebra computacional y Aplicaciones – Santander (Spain), Sept, pp. 45-55.

    Google Scholar 

  36. González L, García D, Galván BJ (2004) An Intrinsic Order Criterion to Evaluate Large, Complex Fault Trees, IEEE Trans on Reliab, Vol 53 (3) Sep-tember, pp. 297-305

    Google Scholar 

  37. Greiner D, Galván B, Winter G (2003) Safety Systems Optimum Design using Multicriteria Evolutionary Algorithms. In: Evolutionary Multicriterion Opti-mization, Lecture Notes in Computer Science 2632 pp. 722-736. Springer Verlag.

    Google Scholar 

  38. Greiner D, Winter G, Galván B (2002) Multiobjective Optimization in Safety Systems: A Comparative between NSGA-II and SPEA2. In: Proceedings of the IV Congress on Reliability: Dependability. Spain.

    Google Scholar 

  39. Haasl DF (1965) Advanced concepts on Fault Tree Analysis. The Boeing company System Safety Symposium, USA.

    Google Scholar 

  40. Holland JH (1975) Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  41. Kuo W, Prasad VR (2000) An Annotated of System-Reliability Optimization. IEEE Trans on Reliab, Vol. 49, No. 2, pp. 176-187.

    Article  Google Scholar 

  42. Lapa CMF, Pereira CMNA, Paes de Barros M (2005) A model for preventive maintenance planning by genetic algorithms based in cost and reliability. Re-liab Engng & Syst Safety. In press.

    Google Scholar 

  43. Lapa CMF, Pereira CMNA, Frutuoso e Melo PF (2003) Surveillance test pol-icy optimization through genetic algorithms using non-periodic intervention frequencies and considering seasonal constraints”. Reliab Engng & Syst Safety 81:103-109.

    Article  Google Scholar 

  44. Lee WS, Grosh DL, Tillman FA, Lie CH (1985) Fault Tree Analysis, Meth-ods and Applications - A review. IEEE Trans on Reliabi, R-34(3), pp. 194-203.

    Article  Google Scholar 

  45. Lhorente B, Lugtigheid D, Knights PF, Santana A (2004) A model for optimal armature maintenance in electric haul truck wheel motors: a case study. Re-liab Engng & Syst Safety 84:209-218.

    Article  Google Scholar 

  46. Liang YC, Smith AE (2004) An Ant Colony Optimization Algorithm for the redundancy Allocation Problem (RAP) IEEE Trans on Reliab, Vol. 53-3 Sep-tember.

    Google Scholar 

  47. Martorell S, Carlos S, Villanueva JF, Sánchez AI, Galván B, Salazar D, Čepin M (In Press) Special Issue: “Use of Multiple Objective Evolutionary Algo-rithms in Optimizing Surveillance Requirements”. Reliab Engng & Syst Safety.

    Google Scholar 

  48. Martorell S, Muñoz A, Serradell V (1996) Age-dependent models for evaluat-ing risks and costs of surveillance and maintenance of components. IEEE Trans on Reliab, Vol. 45, No. 3, pp. 433-442.

    Article  Google Scholar 

  49. Martorell S, Sánchez A, Carlos S, Serradell V (2002) Comparing effective-ness and efficiency in technical specifications and maintenance optimization. Reliab Engng Syst Safety 77:281-289.

    Article  Google Scholar 

  50. Martorell S, Sánchez A, Carlos S, Serradell V (2000) Constrained optimiza-tion of test intervals using steady-state genetic algorithm. Reliab Engng & Syst Safety, Vol. 67, 2000, pp. 215-232.

    Article  Google Scholar 

  51. Myerson RB (1999) “Nash Equilibrium and the History of Economic theory”. Journal of Economic Literature, 36:1067-1082.

    Google Scholar 

  52. Nourelfath M, Dutuit Y (2004) A combined approach to solve the redundancy optimization problem for multi-state systems under repair policies. Reliab En-gng & Syst Safety 86:205-213.

    Article  Google Scholar 

  53. NUREG (1975), Reactor Safety Study-An Assessment of Accident Risks in U.S.Commercial Nuclear Power Plants, WASH-1400, U.S. Nuclear Regulatory Commission NUREG-75/014, Washington, D.C.

    Google Scholar 

  54. Pattisson RL, Andrews JD (1999) Genetic algorithms in optimal safety system design. In Proc. Instn. Mech. Engrs. Vol. 213, Part E, pp. 187-197.

    Article  Google Scholar 

  55. Prasad VR, Kuo W (2000) Reliability Optimization of Coherent Systems. IEEE Trans on Reliab, 49-3.

    Google Scholar 

  56. Quagliarella D, Vicini A (1999) A genetic algorithm with adaptable parame-ters. IEEE Systems, Man and Cibernetics, pp. III-598-III-602.

    Google Scholar 

  57. Ravi V, Murty BSN, Reddy PJ (1997) Nonequilibrium Simulated Annealing-Algorithm Applied to reliability Optimization of Complex systems. IEEE Trans on Reliab, Vol. 46-2.

    Google Scholar 

  58. Rubinstein RY, Levitin G, Lisnianski A, Ben-Haim H (1997) Redundancy Optimization of static Series-Parallel Reliability Models Under Uncertainty. IEEE Trans on Reliab, Vol. 46, No. 4, December.

    Google Scholar 

  59. Samrout M, Yalaoui F, Chatelet E, Chebbo N (2005) New methods to mini-mize the preventive maintenance cost of series-parallel systems using ant col-ony optimization. Reliab Engng & Syst Safety 89:346-354.

    Article  Google Scholar 

  60. Schneeweiss WG (1989) Boolean Functions with Engineering Applications and Computer Programs. Springer-Verlag.

    Google Scholar 

  61. Sefrioui M, Periaux J, “Nash Genetic Algorithms: examples and applica-tions”, Proceedings of the 2000 Congress on Evolutionary Computation, CEC-2000, Vol. 1, pp. 509-516.

    Google Scholar 

  62. Soni S, Narasimhan S, LeBlanc LJ (2004) Telecommunication Access Net- work Design UIT Reliability Constraints. IEEE Trans on Reliab, Vol. 53-4.

    Google Scholar 

  63. Vesely WE, Goldberg FF, Roberts NH, Haals DF (1981) Fault Tree Hand-book. Systems and Reliability research office of Nuclear Regulatory Re-search, U.S. Nuclear Regulatory Commission, Washington D.C., January.

    Google Scholar 

  64. Winter G, Gonzalez B, Galvan B, Benitez E, “Numerical Simulation of Tran-sonic Flows by a Double Loop Flexible Evolution”, Parallel Computacional Fluid Dynamics 2005, Washington, U.S.A.

    Google Scholar 

  65. Wattanapongsakorn N, Levitan S (2004) Reliability Optimization Models for Embedded Systems With Multiple Applications. IEEE Trans on Reliab, Vol. 53-3, September.

    Google Scholar 

  66. Winter G, Galván B, Alonso S, González B, Jiménez JI, Greiner D (2005) A Flexible Evolutionary Agent: cooperation and Competition among real-coded evolutionary operators, Soft Computing Journal, Vol. 9 No. 4:299-323

    Article  MATH  Google Scholar 

  67. Winter G, Galvan B, Alonso S and González B (2002) Evolving From Ge-netic Algorithms to Flexible Evolution Agents. In the Late-Breaking Papers Book of the Genetic and Evolutionary Computation Conference, Erik Cantú-Paz (Lawrence Livermore National Laboratory) Editor, New York. GECCO 2002, pp. 466-473.

    Google Scholar 

  68. Winter G, Galván B, Alonso S, Mendez M (2005) New Trends In Evolution-ary Optimization And Its Impact On Dependability Problems. Evolutionary and Deterministic Methods for Design, Optimization and Control with Appli-cations to Industrial and Societal Problems, EUROGEN 2005, R. Schilling, W.Haase, J. Periaux, H. Baier, G. Bugeda (Eds).

    Google Scholar 

  69. Yalaoui A, Chu C, Chatelet E, (2005) Reliability allocation problem in a se-ries-parallel system. Reliab Engng & Syst Safety 90:55-61.

    Article  Google Scholar 

  70. Zitzler E, Laumanns M, Thiele L “SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization”, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, (EUROGEN 2001), September 2001, Athens, Greece.

    Google Scholar 

  71. Ziztler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Swiss Federal Institute of Technology (ETH) Zu-rich, TIK-Schriftenreihe Nr. 30, Diss ETH No. 13398. Germany: Shaker Ver-lag, ISBN 3-8265-6831-1, December.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galván, B., Winter, G., Greiner, D., Salazar, D., Méndez, M. (2007). New Evolutionary Methodologies for Integrated Safety System Design and Maintenance Optimization. In: Levitin, G. (eds) Computational Intelligence in Reliability Engineering. Studies in Computational Intelligence, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37368-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37368-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37367-4

  • Online ISBN: 978-3-540-37368-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics