Skip to main content

Decision Trees and CBR for the Navigation System of a CNN-based Autonomous Robot

  • Chapter
Hybrid Intelligent Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 208))

  • 795 Accesses

Abstract

In this paper we present a navigation system based on decision trees and CBR (Case-Based reasoning) to guide an autonomous robot. The robot has only real-time visual feedback, and the image processing is performed by CNNs to take advantage of the parallel computation. We successfully tested the system on a SW simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Souza G.N., Avinash C. Kak A.C., Vision for Mobile Robot Navigation: A Survey, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, (2002) 237–267

    Article  Google Scholar 

  2. Weng J., Chen S., Visual Learning with Navigation as an Example, IEEE Intelligent Systems, (Sep/Oct 2000) 63–71

    Google Scholar 

  3. Bertozzi M., Broggi A., GOLD: A Parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection. IEEE Trans. on Image Proc., vol. 7, no. 1, (1998), 62–81

    Article  Google Scholar 

  4. Pomerleau D.: RALPH: Rapidly Adapting Lateral Position Handler. IEEE Symposium on Intelligent Vehicles, vol. 7, no. 1, (1995) 506–511

    Article  Google Scholar 

  5. Chua L.O., L. Yang, Cellular Neural Networks: Theory. IEEE Trans. Circuits and Systems, vol. 35, no. 10, (1988) 1257–1272

    Article  MATH  Google Scholar 

  6. Chua L.O., Roska T., The CNN Paradigm. IEEE Trans. Circuits and Systems —I, Fundamental Theory and Appl., vol. 40, no. 3, (1993) 147–156

    Article  MATH  Google Scholar 

  7. Vilasís-Cardona X., Luengo S., Solsona J., Apicella G., Maraschini A., Balsi M., Guiding a Mobile Robot with Cellular Neural Networks. Int. J. of Circ. Th. Appl., vol. 30, (2002) 611–624

    Article  MATH  Google Scholar 

  8. Balsi M., Vilasís-Cardona X., Robot Vision Using Cellular Neural Networks. Autonomous Robotic Systems, Physica-Verlag (2002) 431–450

    Google Scholar 

  9. Pazienza G.E., Giangrossi P., Tortella S., Balsi M., Vilasýs-Cardona X., Tracking for a CNN Guided Robot. ECCTD '05 Proc., Cork, Ireland (2005)

    Google Scholar 

  10. Roska T., Chua L.O., The CNN Universal Machine: an Analogic Array Computer. Machine Learning, vol. 1, (1986) 81–106

    Google Scholar 

  11. Liñan L., Espejo S., Domínguez-Castro R., Rodríguez-Vázquez A., ACE4K: An Analog I/O 64x64 Visual MicroProcessor Chip with 7-bit Analog Accuracy. Int. J. of Circ. Th. Appl., vol. 30, no. 2–3, (2002) 89–116

    Article  MATH  Google Scholar 

  12. Kananen A., Paasio A, Laiho M, Halonen K, CNN Applications from the Hardware Point of View: Video Sequence Segmentation. Int. J. of Circ. Th. Appl., vol. 2, (2002) 117–137

    Article  Google Scholar 

  13. Harrer H., Nossek J.A., Discrete-time Cellular Neural Networks., Int. J. of Circ. Th. Appl., vol. 20, (1992) 453–467

    Article  MATH  Google Scholar 

  14. Roska T., Kék L., Nemes L., Zarándy À., Szolgay P., CSL-CNN Software Library, Version 7.3. Hungarian Academy of Sciences, Budapest, Hungary, (1999)

    Google Scholar 

  15. Kosko B., Neural Fuzzy Systems, Prentice Hall Englewood Cliffs, NJ, (1992)

    MATH  Google Scholar 

  16. Quinlan J.R., Induction of decision trees, IEEE Trans. Circuits and Systems— II, Analog and Digital Signal Processing, vol. 40, no. 3, (1993) 163–173

    Article  Google Scholar 

  17. Aamodt A., Plaza E., Case-Based Reasoning Foundational Issues, Methodological Variations, and System Approaches, AI Communications, vol. 7(1), (1994) 39–59

    Google Scholar 

  18. Riesbeck C.K., Schank R.C., Inside Case-Based Reasoning, Lawrence Erlbaum Associates, Hillsdale, NJ, US, (1989)

    Google Scholar 

  19. Kolodner J., Case-Based Reasoning, Morgan Kaufmann Publishers, Inc., (1993)

    Google Scholar 

  20. López García J.C., Moreno-Armendáriz M.A., Riera-Baburés Jordi, Vilasís- Cardona X., Real-Time Vision by FPGA Implemented CNNs, ECCTD '05 Proc., Cork, Ireland, (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pazienza, G.E., Golobardes-Ribé, E., Vilasís-Cardona, X., Balsi, M. (2007). Decision Trees and CBR for the Navigation System of a CNN-based Autonomous Robot. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37421-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37421-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37419-0

  • Online ISBN: 978-3-540-37421-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics