
Lightweight Wrappers for Interfacing with
Binary Code in CCured

Matthew Harren and George C. Necula

University of California, Berkeley,
Computer Science Division,

Berkeley, CA, USA 94720-1776
{matth, necula}@cs.berkeley.edu
(510) 642-8290 fax: (510) 642-5775

Abstract. The wide use of separate compilation and precompiled li-
braries among programmers poses a challenge to source-code based se-
curity and analysis tools such as CCured. These tools must understand
enough of the behavior of precompiled libraries that they can prevent
any unsafe use of the library. The situation is even more complicated for
instrumentation tools that change the layout of data to accommodate
array bounds or other metadata that is necessary for safety checking.

This paper describes the solution we use with CCured: a system of
context-sensitive wrapper functions. These wrappers check that library
functions are invoked on valid arguments, and also maintain the extra
runtime invariants imposed by CCured. We describe the design of these
wrappers and our experiences using them, including the case where com-
plex data structures are passed to or from the library.

1 Introduction

Static program analysis tools, including those that detect or prevent security
problems, usually rely on the availability of source code for the programs that
they analyze. For interprocedural analyses, however, the practice of linking to
precompiled libraries is a large hurdle. Tools that cannot analyze binary code
need a way to model the behavior of these library routines.

There are a number of reasons why an analysis tool must deal with precom-
piled code. The most obvious reason is that the source code for a library may
be proprietary. Even for open source libraries, however, many programmers will
by default install only the binaries and header files; asking users to install the
source code for each library is an undesirable burden. If software security analysis
tools are to become more widely used, ease-of-use is an important consideration.
Finally, modeling only the essential behavior of a library component allows nat-
ural support for dynamic linking. Users may choose alternate implementations
of that component without having to reanalyze the program, provided the new
implementation has the same preconditions and postconditions.

This paper presents a system that enables CCured [1], a source-based secu-
rity tool, to interact with library code. Throughout this paper, we use “library

K. Futatsugi et al. (Eds.): ISSS 2003, LNCS 3233, pp. 209–225, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

210 M. Harren and G.C. Necula

code” to refer to any binary code compiled without CCured to which we want
to link CCured code. Because CCured uses run-time instrumentation in addi-
tion to compile-time analyses, the wrappers must support the maintenance and
updating of CCured’s runtime metadata, in addition to modeling the pertinent
aspects of the library’s behavior for the static analysis. One of the primary goals
of CCured is ease of use on legacy code, and a convenient mechanism for wrap-
pers is important when we use CCured on large legacy systems.

We begin with a brief overview of the CCured system and the difficulties in
using precompiled libraries with CCured. Section 3 describes the wrapper func-
tions we use to solve this problem. We discuss in Section 4 how these wrappers
make use of the context-sensitivity feature of CCured.

Section 5 extends these wrappers to more complicated data structures. We
provide examples of our wrappers in Section 6, and discuss related work in
Section 7.

2 CCured

CCured is an interprocedural, flow-insensitive analysis and transformation tool
that guarantees type and memory safety in C programs. By classifying pointers
into “kinds” based on their usage, CCured is able to insert the necessary runtime
checks to ensure memory safety. These runtime checks require that metadata be
stored with many pointers to provide, for example, the bounds of the array being
manipulated, or the dynamic type of an object.

In this paper, we will consider only the three CCured pointer kinds shown in
Figure 1.

– A SAFE pointer is an ordinary, one-word C pointer that cannot be used with
pointer arithmetic. SAFE pointers, if not null, point to valid memory locations
of the appropriate type.

– A SEQ (sequence) pointer has a three-word representation: the pointer plus
the bounds on the home area for this array. The pointer may be incremented
or decremented, but the bounds do not change unless the pointer is over-
written entirely. SEQ pointers use the following invariant: if the pointer is
within the bounds it specifies, then dereferencing it will yield an object of
the correct type.

– An FSEQ (forward sequence) pointer is an optimization for a common case of
sequence pointers: when no lower-bound check is needed (because the pointer
is never decremented), we need only a two-word representation. FSEQ pointers
maintain the invariant that if the pointer value is less than the specified upper
bound, then dereferencing it will yield an object of the correct type.

We prefer SAFE pointers to FSEQ, and FSEQ to SEQ, for performance reasons:
SAFE pointers use less memory and require fewer checks at each access. Note
that a SEQ pointer can be easily coerced to an FSEQ, and an FSEQ to a SAFE, by
dropping unneeded metadata and performing the runtime checks.

Lightweight Wrappers for Interfacing with Binary Code in CCured 211

Fig. 1. SAFE, SEQ and FSEQ pointers, respectively, to the shaded memory locations

2.1 An Example

In the following code fragment,

1 char* a = (char*)malloc(mysize);
2 char* b = a;
3 b[5] = ’.’;
4 char* c = b;
5 char* d = c + 5;

CCured infers that variable b must carry an upper bound so that the array
access on line 3 can be checked for safety at runtime. This requirement is tran-
sitively applied to variable a due to the assignment at line 2, since b must get
its upper-bound from a. Similarly, variable c requires an upper bound because
of the arithmetic on line 5, and this constraint also flows to b and a. We choose
the best assignment of kinds that satisfies these constraints, and make variables
a,b and c FSEQ. Variable d needs no bounds checks, so we make it SAFE.

Inferring these constraints requires a whole-program analysis. If lines 2 and 3
above are enclosed in a separate function “setFifth” (as shown below) we will
need to pass the constraint that b requires an upper bound across the function
boundary.

1 char* a = (char*)malloc(mysize);
2

3 char* c = setFifth(a);
4

5 char* d = c + 5;
...

6 char* setFifth(char* b) {
7 b[5] = ’.’;
8 return b;
9 }

Suppose setFifth is a precompiled library function, and its code is not visible
to CCured. CCured will not know that it has to ensure that the argument b can
be used in a memory operation. One solution is to write a wrapper function that
understands the semantics of setFifth and will check that its argument has the

212 M. Harren and G.C. Necula

right length. Because the library uses C-style pointers, the wrapper also needs
to pass a one-word pointer to setFifth, and convert the return value back to a
CCured pointer, as shown below:

1 char* a = (char*)malloc(mysize);
2

3 char* c = setFifth wrapper(a);
4

5 char* d = c+5;
...

6 char* setFifth(char* b); //Defined in a library.
7

8 char* setFifth wrapper(char* b) {
9 if (LENGTH OF(b) <= 5) { Error, abort the program ... }

10 //Call the real function:
11 char* retval = setFifth(CONVERT TO C(b));
12 return CONVERT FROM C(retVal);
13 }

However, this wrapper would need to be written in a kind-polymorphic way
— the pointer kinds that a function uses may change depending how the function
is used. For example, if line 5 in the example above were changed to

5 char* d = c - 10;

then variable c would need a lower bound. This requirement would force the
return type of setFifth wrapper to be a SEQ pointer, which in turn would force
the argument to the wrapper to be SEQ so that we have a lower bound on b
available for the operation labeled CONVERT FROM C. We would like to do
this polymorphically, so that one such use of setFifth wrapper does not force
all uses of setFifth wrapper to pass a SEQ value for b.

Our solution to the problem of library code in CCured is a system that makes
writing these wrappers easy, and avoids the need to write separate wrappers for
different pointer kinds. The wrappers we describe in this paper will:

1. Describe what constraints, such as buffer lengths, the external function re-
quires on its inputs, and

2. Perform appropriate runtime actions to check these constraints, to convert
CCured pointers to C, and to convert C pointers to CCured.

Although CCured cannot guarantee that the library functions are memory
safe, the wrappers can guarantee that the function’s preconditions are met, which
will go a long way towards ensuring correct behavior.

3 Simple Wrappers for CCured

We present a mechanism for specifying wrapper functions that accomplishes
both of the above points. At compile time, we generate constraints about what

Lightweight Wrappers for Interfacing with Binary Code in CCured 213

metadata should be carried with each pointer, and at runtime the specification
is treated as a function that manipulates metadata, performs checks, and calls
the underlying library code.

The wrappers are written as ordinary C code using a number of helper func-
tions listed in Table 1. We can divide these helpers into two main groups:

– Those That Operate on Wide Pointers. (Group A in Table 1) Helper
functions such as ptrof (“pointer of”) and ensure length read the meta-
data maintained in CCured’s wide pointers and perform necessary checks.
These functions also extract the data from a wide pointer for passing to the
library.

– Those That Operate on Standard Pointers. (Group B in Table 1)
Helper functions such as mkptr (“make pointer”) build wide pointers that
CCured can use from the standard pointers returned by a library call.

Except for check string, which relies on a complete scan of the buffer, the
operations shown here are constant-time functions requiring only a few simple
instructions.

We use the type “void *” in Table 1 to denote helper functions that can be
used on pointers of any type, but CCured’s typechecking of helper functions is
not as lax as these function signatures might imply. In fact, CCured will guar-
antee at compile-time that the arguments and return values at each call to a
helper function have the same type. This prevents programmers from acciden-
tally changing the apparent type of a pointer when passing it through a helper
function, and it also allows CCured to maintain necessary invariants regarding
the pointer base types that we do not discuss in this paper.

Figure 2 shows a wrapper specification for crypt, a function that returns a
cryptographic hash of the key argument and the first two characters of the salt
argument. The “#pragma ccuredwrapper” command tells CCured to replace
all references to crypt in a program with crypt wrapper, which has the same
interface. Note that this replacement occurs also in the places where the address
of the function is taken. This new layer of indirection provides a convenient
encapsulation for the constraints and run-time actions needed when calling this
external function.

This wrapper checks that the first argument to the function is a null-
terminated string, and that the second argument is a sequence of at least two
characters. Then we strip the metadata from the CCured pointers and call the
library function using standard arguments. Finally, we trust the library function
to return a null-terminated string (or a null pointer). So we invoke the helper
function mkptr string; when thinResult is nonnull, this routine constructs
a CCured pointer with a home area that starts at “thinResult” and ends at
“thinResult + strlen(thinResult) + 1.” If there is a bug in the library that
causes it to return a pointer to a buffer that has no null character, the wrapper
will read past the end of that buffer just as the original program would have.
CCured offers no protection against bugs in external functions.

214 M. Harren and G.C. Necula

Table 1. Some of the helper functions provided by CCured for use in wrappers. Here,
“void * SAFE” refers to a standard (one-word) pointer that is compatible with external
functions, while all other uses of “void *” refer to an arbitrary CCured pointer

Group A. These functions are for use on CCured pointers:

• void * SAFE ptrof(void *ptr);
Type inference: no constraints.

At run time: returns ptr’s underlying standard pointer.

Asserts: ptr is either null or within bounds.
• int check string(char *ptr);

Type inference: ptr must carry an upper bound (i.e. it must be FSEQ or SEQ,
not SAFE).

At run time: checks that ptr points to a valid string, and returns the length
of the string.

Asserts: ptr is nonnull, within bounds, and points to a buffer that has
a terminating nul character.

• void ensure length(void *ptr, unsigned int n);
Type inference: ptr must carry an upper bound.

At run time: verifies that ptr is at least n bytes long.

Asserts: ptr is nonnull, within bounds, and has at least n bytes between
the pointer and the end of the home area.

Group B. These functions are for use on standard pointers (i.e. those returned by the
library) and do not perform any checking:

• void * mkptr(void * SAFE p, void *phome);
Type inference: phome must have the same kind (SAFE, FSEQ, etc.) as the return

type.
At run time: returns a (possibly fat) pointer to p with the same metadata as

phome.
• void * mkptr size(void * SAFE p, int size);

Type inference: no constraints

At run time: returns a (possibly fat) pointer to p with the end of the home
area equal to p + size.

• char * mkptr string(char * SAFE p);
Type inference: no constraints

At run time: returns a (possibly fat) pointer to p with the end of
the home area equal to p + strlen(p) + 1. Equivalent to
mkptr size(p, strlen(p) + 1).

3.1 Curing with Wrappers

We have implemented wrappers for about 120 commonly-used functions from the
C Standard Library. CCured inserts these wrappers into the relevant header files
so that calls to these functions are handled correctly with no further intervention
required. For example, whenever a program imports the “crypt.h” header it
will automatically import crypt wrapper as well. Programmers who work with

Lightweight Wrappers for Interfacing with Binary Code in CCured 215

char *crypt(char const *key, char const *salt);
...

#pragma ccuredwrapper("crypt_wrapper", for("crypt"))
__inline static
char *crypt_wrapper(char const *key, char const *salt)
{
__check_string(key);
__ensure_length(salt, 2);
char* thinResult = crypt(__ptrof(key), __ptrof(salt));
return __mkptr_string(thinResult);

}

Fig. 2. A wrapper for crypt, a function that computes a hash of its arguments.
The wrapper verifies interface assumptions using the check string routine, removes
CCured-specific metadata with ptrof, calls the underlying function, and packages up
the result using mkptr string. Note that crypt wrapper has the same signature as
crypt

their own libraries can insert the wrappers anywhere in the program — as long
as CCured sees the #pragma it will substitute the wrapper globally.

Most of these wrappers have a very small footprint, so we declare them as
“inline” to specify that the body of the wrapper should be inlined at the call
site. One case where the wrapper cannot be inlined is with function pointers —
instead of taking the address of the original function, we will take the address
of the wrapper function.

When CCured processes wrapper code, it will add all of the usual safety
checks and instrumentation, in addition to the checks that the programmer ex-
plicitly requested with the helper functions. From CCured’s perspective, the only
difference between a wrapper function and a normal function is that when it sees
a call to a library function in a wrapper, it will allow the code to call the under-
lying library. In a regular function, a call to an external library will be replaced
by a call to the appropriate wrapper.

4 Context Sensitivity

CCured’s kind inference mechanism is flow and context insensitive. All call sites
of a function will be treated as assignments of actual arguments to the same
formal argument. This insensitivity means that the pointer kind associated with
a formal argument is the most conservative required by any call site. For example,
if there is a call to setFifth that requires a SEQ return value, then variable b
in setFifth will be inferred to be SEQ, and every call site of the function will
be required to pass a SEQ argument. This can cause undesirable SEQ pointers
to spread throughout a program. This problem can become even worse when
a function is called with incompatible types at different call sites. CCured is
forced in this case to use a more expensive dynamically-typed pointer which
we do not discuss here. In fact such problems would almost certainly occur for

216 M. Harren and G.C. Necula

helper functions such as ptrof that are intended to be used on any pointer
type whatsoever.

To prevent this problem, CCured offers programmer-controlled context sensi-
tivity. If the programmer declares a function to be context sensitive, CCured will
treat each invocation of the function (or place where the address of the function
is taken) independently.

Our wrappers use this context sensitivity for both the helper functions and
the wrapper specifications themselves. This means that helper functions can
operate on different pointer kinds when used in different contexts. We may infer
that the argument and return type for mkptr are SAFE in one location and SEQ
in another. (Later, after the inference of kinds is complete, we replace the helper
functions with code that actually performs the requested operation.) Similarly,
the wrappers themselves can change depending on the call site.

CCured handles context-sensitive functions by creating a fresh copy of the
function body for each call site, and then using its normal inference. When this
is finished, CCured can coalesce any duplicate bodies back together, so that
if some copies of setFifth use SEQ pointers and another group uses FSEQ, we
need only two copies of setFifth in the final code — one for each kind. But
coalescing can only go so far in preventing code bloat, so we usually disable
context sensitivity for ordinary functions. We find that context sensitivity is
more useful for wrappers than ordinary code because library functions (and
hence their wrappers) tend to be used in multiple, unrelated parts of a program,
making cross-contamination of constraints likely. Moreover, wrappers tend to
be so small that they are often declared as “inline” already. By instantiating
them at each call site early in the analysis, we can get the benefits of context
sensitivity without further increasing the size of the code.

5 Deep-Copying Wrappers

The wrappers described so far work only when the library function accesses a
single layer of pointers. Helpers such as ptrof and mkptr can manipulate
metadata on the top layer, but are not enough when the library needs to access
pointers to pointers. Because CCured changes the representation of pointers,
data structures that include pointers are almost always incompatible with library
code.

For most such data structures, we need a stronger wrapper mechanism. We
therefore introduce deep-copying wrappers, which create a copy of the complex
data structure in order to remove or add metadata. Deep-copying wrappers are
regular wrapper that use some additional specification of how a data structure
should be copied. When passing data to a library, we create a copy of the struc-
ture with no metadata; when retrieving data from a library we create a copy that
has metadata to match its structure. (CCured’s garbage collector insures that
the newly-allocated copies are not leaked.) In exchange for breaking aliasing and
adding a small performance cost, we have a means to exchange data between
the two systems.

Lightweight Wrappers for Interfacing with Binary Code in CCured 217

As an example, consider the following structure that is used for hostname
lookups. For brevity, we show only three representative fields of the structure.

struct hostent {
char * h_name; /* official name of host */
char ** h_aliases; /* alias list */
short h_addrtype; /* host address type */

};

The library function gethostbyname, and related functions that perform do-
main name queries, return a pointer to a structure of this type. h name points to
a string containing the domain name and h aliases points to a null-terminated
array of string pointers representing other domain names for the computer.

CCured recognizes three pointer types for this structure, one for each use
of “*”. Each of these three pointer nodes may be given a different kind by the
CCured inference depending on how they are used in the program. If all three
pointers are inferred to be SAFE, then an ordinary wrapper will work fine. How-
ever, this outcome unlikely unless the h name and h aliases fields are never
used, since reading any more than the first element requires array bounds in-
formation. If an ordinary wrapper were used when any of the pointers had a
kind other than SAFE, a compilation error would occur to prevent the changed
representation of struct hostent from causing bugs in the program.

We will consider the common case where each of these pointers becomes SEQ,
reflecting the need for bounds to check the array accesses. This will change the
shape of struct hostent in two ways, as shown in Figure 3:

1. The size of the struct itself will increase by four words, and the offsets of
the fields will change, when the two top-level pointers are changed to wide
pointers.

2. The inner pointers of h aliases will also become wide pointers. This means
that elements in the h aliases array are now three words wide, so the array
cannot be safely accessed by code that expects the array elements to be one
word wide.

Either of these changes will pose a problem to our simple wrappers. Our
solution is to define two versions of struct hostent: one that uses standard
pointers, and one that uses wide. At runtime, we copy the data between the two
representations.

5.1 Defining a Compatible Representation

Deep-copying wrappers use the COMPAT annotation to declare a type that should
have no wide pointers. Figure 4 shows a wrapper that uses COMPAT.

When CCured sees this annotation, it creates two versions of the struct, which
can be seen in Figure 5. The first, which keeps the name of the original struct
(hostent in this case) has the default behavior for a type in CCured, and may be
transformed to use wide pointers. The second definition will be given a new name

218 M. Harren and G.C. Necula

h_addrtypeh_aliasesh_name

p b e b ep

p p pb b be e e

Fig. 3. Representation of struct hostent after the CCured transformation. Array-
bounds metadata (gray) is interspersed with data (white)

#pragma ccuredwrapper("gethostbyname_wrapper", for("gethostbyname"));
__inline static
struct hostent* gethostbyname_wrapper(const char * name) {
__check_string(name);
struct hostent COMPAT * hcompat = gethostbyname(__ptrof(name));

__DECL_NEW_FROM_COMPAT(hres, hostent, hcompat);
return hres;

}

Fig. 4. A wrapper for gethostbyname, which performs a DNS lookup for the specified
domain name. This wrapper validates its input, calls the underlying library function,
and receives as a result a structure that uses standard pointers. DECL NEW FROM COMPAT

allocates a new struct hostent called hres and populates it with the data in hcompat.
(If hcompat is null, then hres will be too.) Section 5.2 describes how CCured generates
the metadata needed by DECL NEW FROM COMPAT

(hostent COMPAT in this case) and used wherever the programmer has specified
the COMPAT declaration. The COMPAT version uses the same representation
as C and never includes wide pointers, so this is the format that the library
uses.

5.2 Generating Deep Wrappers

Now we need a mechanism to copy data between the wide and COMPAT struc-
tures. CCured generates a “deep copy” function to copy between the two repre-
sentations when the wrapper author specifies, for each field of each struct, how
such copying should be done. Depending on how the program interacts with the
library, we may need to copy data from wide structs to standard, vice versa, or
both.

For example, consider the standard-to-wide direction used for gethostbyname.
Figure 6 shows the annotation that we give to CCured for this case.

– The h addrtype field does not involve pointers, so CCured knows to copy
this value directly without any annotation needed from the programmer.

Lightweight Wrappers for Interfacing with Binary Code in CCured 219

struct hostent { struct hostent_COMPAT {
char * SEQ h_name; char * h_name;
char * SEQ * SEQ h_aliases; char ** h_aliases;
short h_addrtype; short h_addrtype;

}; };

Fig. 5. Possible definitions of struct hostent after CCured’s transformations. char
* SEQ is a wide pointer to an array of characters, and char * SEQ * SEQ is a wide
pointer to an array of char * SEQs

– We use the annotation on line 3 to say that the h name field is a string. The
generated deep copy function uses mkptr string to create a wide pointer
to this buffer.

– We add the annotation on line 4 to say that h aliases is a null-terminated
array of strings. This is a fairly common data structure in C, and CCured in-
cludes code that will copy this specific case. For more complicated
arrays, we would put C code in this function to do any copying or checking
needed.

Similarly, CCured allows programmers to specify conversions for each field
in a wide-to-standard deep copy. However, the wide-to-standard direction tends
to be simpler, because we do not need the programmer to tell us how to create
metadata. It is much easier to delete metadata than it is to invent it.

6 Experiences

The libc wrappers that are packaged with the CCured distribution are impor-
tant for CCured’s ease of use. Programmers who want to move new programs to
CCured do not have to worry about modeling these library routines.

We can compare a hand-written wrapper with one generated automatically
using our heuristics, but there is no truly sound way to verify the correctness of
a wrapper. The programmer who writes a wrapper or checks the output of the
generation tool may make a mistake; the documentation of the library may be
incorrect; or a particular implementation of a library routine may be unsound.
However, we have found that our system of wrappers works well in practice.
The wrapper functions are simple and easy to read, and they have succeeded in

1 inline static
2 DEEPCOPY FROM COMPAT PROTO(hostent) {
3 DEEPCOPY FROM COMPAT STRING FIELD(h name);
4 DEEPCOPY FROM COMPAT STRINGARRAY FIELD(h aliases);
5 }

Fig. 6. A specification that tells CCured how to do a deep copy of struct hostent.
This specification must accompany the wrapper in Figure 4

220 M. Harren and G.C. Necula

finding several real-world bugs that involved improper invocations of a library
routine.

In this section, we give examples of wrappers that are provided with CCured.
Most of the wrappers we use are as simple as the examples we have shown so
far, but we also give in this section some of our more complex wrappers, such as
those for open and qsort.

1 #pragma ccuredwrapper("strchr wrapper", for("strchr"))
2 inline static
3 char* strchr wrapper(char* str, int chr)
4 {
5 check string (str);
6 char* result = strchr(ptrof(str), chr);
7 return mkptr(result, str);
8 }

Fig. 7. A wrapper for strchr, a function that returns the first occurrence of character
chr in string str

Figure 7 shows a wrapper for the strchr function. As before, we use a pragma
command to specify that calls to strchr in the program should be replaced
with calls to this wrapper. The check string helper function on line 5 checks
that str is a null-terminated C string using a linear scan of the buffer. ptrof
strips the metadata from this pointer so that it can be passed to the underlying
function. The result of strchr is a pointer to a character in the str buffer, so
we use the mkptr helper to create a new wide pointer by combining the return
value of the library function with the metadata from str. Note that this helper
function propagates constraints from the return value to the str argument, so
CCured will ensure that the argument str has any metadata needed to construct
the return value.

Figure 8 wraps the open function. open returns a handle for the file whose
path is specified by the first argument. The second argument is a bit vector
of options. If the O CREAT option of oflag is set, then there is a required third
argument: an integer specifying the permissions with which the new file should
be created. Our wrapper for open matches the variable-argument interface of the
library function, with the annotation on line 2 telling CCured that any additional
arguments will be ints.

Our wrapper for open must do three things: check that the filename is a valid
string, using check string; strip its metadata with ptrof as usual; and check
that the third parameter is present if it is required. We do this last check using
the standard C macros for implementing variable-argument functions, as shown
in lines 11–13 of the figure. However, when this wrapper is processed by CCured,
the vararg macros will be replaced by typesafe code. The new version of va arg
checks that each argument was actually present at the call site before attempting
to access it. This runtime check uncovered a bug in the OpenSSH daemon where
the third parameter was missing from a certain call to open. C normally provides

Lightweight Wrappers for Interfacing with Binary Code in CCured 221

1 #pragma ccuredwrapper("open wrapper", for("open"));
2 #pragma ccuredvararg("open wrapper", sizeof(int))
3 inline static
4 int open wrapper (char *file, int oflag, ...) {
5 check string (file);
6 if(oflag & O CREAT){
7 //The O CREAT flag is set, so the mode is required.
8 int mode;
9 va list argptr;

10

11 va start(argptr, oflag);
12 mode = va arg(argptr, int);
13 va end(argptr);
14

15 return open(ptrof(file), oflag, mode);
16 } else {
17 return open(ptrof(file), oflag);
18 }
19 }

Fig. 8. A wrapper for open

no mechanism for determining how many parameters are passed to a function,
so the implementation of open simply reads the next word on the stack, and in
this case was creating the file with garbage permissions.

For variable-argument functions that use a printf-like interface, we provide a
special mechanism for checking the correctness of the argument list against the
format string. This checking is done statically when possible, or at runtime if
the format string is not a constant. The “%n” argument specifier is prohibited
for security reasons [2], but all other features of printf are supported.

In Figure 9, we give a wrapper for the standard library’s quicksort routine
qsort. This function takes as input an array of values, and a pointer to a com-
parison function that will compare any two of the elements in the array. The
library will make many calls to the comparison function for each array that it
sorts.

This callback function makes wrapping qsort problematic. Since the com-
parison is user-defined, it will be processed by CCured and may need to use wide
pointers, which it cannot get from the library. To fix this, we use a different sort
of wrapper. The function “ qsort compare wrapper” takes standard arguments
from a library and constructs fat pointers to pass to a CCured-processed func-
tion — the reverse of the usual process. In order to do this, we store a copy of the
array pointer in global memory. Now we can use mkptr inside the comparison
wrapper to generate wide pointers.

The use of global variables to simulate a closure is a significant limitation
of this wrapper, as it prevents the wrapper from having a polymorphic type.
The qsort wrapper and qsort compare wrapper functions can be made con-
text sensitive, but there is no analogous mechanism for context sensitive global

222 M. Harren and G.C. Necula

1 static void * qsort base;
2 static int (* qsort compare)(void*, void*);
3

4 static
5 int qsort compare wrapper(void * SAFE left, void * SAFE right)
6 {
7 // map the ‘left’ and ‘right’ lean pointers to the
8 // fat pointers we need
9 void* fatleft = mkptr (left, qsort base);

10 void* fatright = mkptr (right, qsort base);
11

12 // and call the user-supplied sorting function, which
13 // expects fat pointers
14 return qsort compare(fatleft, fatright);
15 }
16

17 #pragma ccuredwrapper("qsort wrapper", for("qsort"));
18 inline static
19 void qsort wrapper(void* base,
20 size t nmemb,
21 size t size,
22 int (*compare)(void *left, void *right))
23 {
24 cleartags (base, nmemb * size);
25

26 // save the pertinent values
27 qsort base = base;
28 qsort compare = compare;
29

30 qsort(ptrof (base), nmemb, size, qsort compare wrapper);
31

32 qsort base = 0;
33 }

Fig. 9. A wrapper for qsort. While qsort is executing, two global variables store the
metadata of the array being accessed and a reference to the user-defined comparison
function, respectively. We pass “ qsort compare wrapper” to the library’s qsort as
the comparison function; when this intermediate function is called we use the global
variables to reconstruct fat pointers for the relevant arguments and call the user’s
comparison function

variables. After all, code can be replicated without changing its behavior, but
not so a variable. This wrapper will work so long as qsort is only used on arrays
of one type and one kind, but any attempt to use it on multiple pointer types
will result in a “bad cast” since CCured will notice that you assign arrays of
different types to qsort base.

One solution would be to add a mechanism to CCured that would support
true closures. However, we would prefer not to introduce that much complexity

Lightweight Wrappers for Interfacing with Binary Code in CCured 223

into the language solely for use by callback functions. Our current distribution
offers programmers a choice of two wrappers for qsort: this one, which may be
used whenever the program only sorts lists of a single type; and a version without
the wrapper for the comparison function, which can be used if the programmer
carefully structures his comparison function so that it takes SAFE pointers as
arguments.

7 Related Work

Several other systems have used wrapper functions to check that library functions
are used properly. For example, Vo et al. [3] use wrapper functions written in
a custom specification language to test for safe use of libraries, particularly
with respect to error return codes. Ignoring errors returned by library functions
is a common source of software problems. Their wrappers can automatically
retry library functions that fail due to transient problems such as insufficient
resources.

Libsafe [4] is a set of wrapper functions for the standard C library that
attempts to prevent stack smashing attacks. When a stack buffer is passed to a
library function, the libsafe wrapper can use the frame pointer to detect whether
the library is at risk of overwriting a return pointer. This does not protect heap
locations, however, and still allows other locations in the same stack frame to be
overwritten by a buffer overflow. Either of these could allow an attacker to gain
control of a system.

Fetzer and Xiao [5] present HEALERS, a system of automatically gener-
ated library wrappers that check error return codes and certain preconditions.
The tool can infer the preconditions for a function by testing it on a range of
inputs. However, the set of checks that HEALERS can perform is limited by
the unsound nature of C. In an earlier paper [6], these authors describe some
ways in which bounds data can be found for heap objects when checking library
preconditions. Together with the libsafe strategy for checking stacks, this sys-
tem can prevent many buffer overflow attacks on the stack and in the heap. But
these heap checks are more costly than ours, and the system provides no way to
perform typechecking of variable argument functions. Nonetheless, HEALERS
could overcome these limitations if it were used in the context of a runtime
system such as CCured.

Suenaga et al. [7] present an interface definition language for a situation
similar to ours. Fail-Safe C is a typesafe C compiler that increases the size of both
pointers an integers to two words. Rather than writing wrappers as C functions,
Fail-Safe C programmers annotate the declarations of library routines with the
necessary constraints, and the compiler generates the wrapper. This has the nice
property that wrapper specifications in Fail-Safe C can be more concise than in
CCured, and they avoid some “boilerplate” aspects of CCured’s specifications
such as the #pragma. However, CCured’s wrappers give wrapper authors the full
power and flexibility of the programming language. This flexibility allows us to
wrap functions like open and qsort, which Fail-Safe C cannot, even though we

224 M. Harren and G.C. Necula

had not considered variable-argument functions or callback functions while we
were initially designing our system.

Our deep-copying wrappers are unsatisfactory in some situations because the
act of copying the data structures may break aliasing that is expected between
the program and the library. An alternative to this copying is to store the meta-
data separately from the regular data, so that the regular data is in a format
that is already compatible with the library. Recently, we have devised a solution
that does exactly that [1]. Although it is possible that this split representation
may cause slight performance degradation, it has performed well in practice.
Even with a split representation, however, it is still necessary to have a wrapper
that checks pre- and post-conditions.

A second alternative to the simple deep copy we propose is a call-by-copy-
restore implementation, such as in [8]. Our current implementation provides
call-by-copy semantics, which may break aliasing. With call-by-copy-restore se-
mantics, we would copy the data to a compatible representation, call the library,
and then copy modified data back to the original locations, where appropriate.
This is more expensive than our näive copying, but so long as the library does
not retain a pointer to the data that is passed to it, these function calls would
behave the same way as the original library calls do.

8 Conclusions

CCured provides an easy-to-use mechanism for integration with precompiled li-
braries. This mechanism is needed because CCured only operates on source code,
and most programs rely on libraries whose source code is not readily available.
Our solution supports both compile-time constraints and run-time instrumenta-
tion, and handles complex structures.

This system has helped us use CCured with a large number of real-world
programs. Currently, we rely on wrappers to provide bug-checking and run-time
support for over 120 functions. We use deep-copying wrappers for over a dozen
functions, including glob, getpwnam, gethostbyname, and related functions. We
believe that using C syntax for wrappers makes them easy to write and under-
stand, and gives them sufficient power to check a wide range of constraints.

We have found several memory bugs in existing programs using these wrap-
pers. Our system takes advantage of CCured’s memory safety to perform more
precise checks of certain preconditions than would normally be possible in a li-
brary. Among other things, we can check buffer lengths, null-terminated strings,
and the arguments passed to variable-argument functions, including printf-like
functions.

With this system, it is quick and easy to write wrappers and hook them
into the system. Deep wrappers require little debugging, while other wrappers
often require none at all. In practice, we have found some bugs in wrappers after
they are first used – both bugs that allow memory errors to slip through and
those that cause false positives. However these are not common, and the cost of

Lightweight Wrappers for Interfacing with Binary Code in CCured 225

developing stable wrappers can be amortized over the many programs that use
a library.

Acknowledgments

We would like to thank the other members of the CCured team — Jeremy Con-
dit, Scott McPeak, and Westley Weimer — for their help with the development
and testing of the system.

References

1. Condit, J., Harren, M., McPeak, S., Necula, G.C., Weimer, W.: CCured in the real
world. In: Proceedings of the ACM SIGPLAN 2003 conference on Programming
Language Design and Implementation, ACM Press (2003) 232–244

2. Newsham, T.: Format string attacks (2000) http://www.lava.net/˜newsham/
format-string-attacks.pdf.

3. Vo, K.P., Wang, Y.M., Chung, P.E., Huang, Y.: Xept: a software instrumentation
method for exception handling. (1997) 60–69

4. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack smash-
ing attacks. In: Proceedings of the USENIX Annual Technical Conference. (2000)

5. Fetzer, C., Xiao, Z.: An automated approach to increasing the robustness of C
libraries. In: Proceedings of the 2002 International Conference on Dependable Sys-
tems and Networks, IEEE Computer Society (2002) 155–166

6. Fetzer, C., Xiao, Z.: Detecting heap smashing attacks through fault containment
wrappers. In: Proceedings of the 20th IEEE Symposium on Reliable Distributed
Systems. (2001)

7. Suenaga, K., Oiwa, Y., Sumii, E., Yonezawa, A.: The Interface Definition Language
for Fail-Safe C. In: Proceedings of the 2003 International Symposium on Software
Security. Lecture Notes in Computer Science, Springer (2004)

8. Tilevich, E., Smaragdakis, Y.: NRMI: Natural and efficient middleware. In: Pro-
ceedings of the 23rd International Conference on Distributed Computing Systems,
IEEE Computer Society (2003) 252

	Introduction
	CCured
	An Example

	Simple Wrappers for CCured
	Curing with Wrappers

	Context Sensitivity
	Deep-Copying Wrappers
	Defining a Compatible Representation
	Generating Deep Wrappers

	Experiences
	Related Work
	Conclusions

