
CORBA-Based Stream Control and Management
for IP-Based Production Studio Networks

Terence Song1, Dritan Kaleshi2, and Alistair Munro2

1 Wireless and Networks Research Labs, Centre for Communications Research,
University of Bristol, Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
Terence.Song@bristol.ac.uk

2 Department of Electrical and Electronic Engineering,
University of Bristol, Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
{Dritan.Kaleshi, Alistair.Munro}@bristol.ac.uk

Abstract. Traditionally, device relationships in a production studio are estab-
lished and managed by physically routing the different cables that carry the
relevant streams, together with any required synchronization references. IP-
based networks offer a common infrastructure for the distribution of broadcast
content as well as the deployment of integrated production and management so-
lutions. This paper describes the design and implementation of components
based on the OMG Audio/Video Streams Specification to facilitate the rapid in-
tegration of devices during the initial set-up phase, and the control and man-
agement of media content flow during normal operations for the purpose of
program production within an IP broadcast environment.

1 Introduction

The use of heterogeneous IP-based networks as a basis for the distribution of produc-
tion studio content presents a number of interesting challenges. The operational re-
quirements of a production studio far exceed those of more common Internet-based
streaming applications (e.g. video-conferencing, stock quotes, etc.). The production
studio is made up of heterogeneous sources, sinks, and intermediate processing de-
vices; such as microphones, speakers, mixers, recorders, players, and storage devices.
These devices form complex relationships with each other, usually under the control
of a studio manager or producer, to define the flow of media content during the course
of program production (i.e. capture, editing, storage, distribution, and presentation).
The two main issues related to the distribution of production content are: the control
and management of stream relationships, and the distribution of synchronization in-
formation. The work described in this paper relates to the first of these two issues. In
particular, we describe the design and implementation of IDL-defined components for
the control and management of flows within the audio plane of an IP broadcast studio
environment for the purpose of program production.

Traditionally, device relationships in a production studio are established and man-
aged by physically routing the different cables that carry the relevant flows and

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 1−17, 2003.
 IFIP International Federation for Information Processing 2003

streams, together with any required synchronization references. IP-based networks,
however, offer a common infrastructure for the transport and automatic routing of
media data, as well as the deployment of integrated broadcast content production and
management solutions. The heterogeneity of IP-based networks allows the stream es-
tablishment and management problem to be addressed at the application-level, instead
of the physical-level. The control and management of streams within the production
studio consists of two main parts—the definition of studio device relationships during
the initial set-up phase, and the dynamic re-configuration and modification of those
relationships and their properties (e.g. formats, device parameters, etc.) thereafter.

In order to achieve maximum extensibility, maintainability, and interoperability,
our objective has been to re-use standard technologies to the greatest extent possible.
To this end, the aims have been to evaluate the applicability of the Object Manage-
ment Group’s (OMG) Audio/Video Streams Specification [1] and to develop exten-
sions for the control and management of audio flows within an IP broadcast studio
environment. The Common Object Request Broker Architecture (CORBA) [2] dis-
tributed processing environment (DPE), which provides a scalable, extensible, and
robust environment for distributed objects to co-exist and inter-play, forms the basis
for the implementation of the control and management components. The stringent
performance requirements for streaming data often preclude the use of distributed ob-
ject computing middleware as the transport mechanism, as demonstrated in [3]. The
focus of the work described in this paper, however, is on middleware support for
stream control and management, not stream transport. Instead, the transport of time-
based media in our implementation is facilitated by the Real-Time Transport Protocol
(RTP) [4] through the Java Media Framework (JMF) [5]. Previous works based on the
OMG Audio/Video Streams Specification have focused on media streaming, with the
control and management aspect being of lesser importance. Our contribution demon-
strates its application to a production studio environment, where the control and man-
agement of complex flow and stream topologies is critically important.

The remainder of this paper is organized as follows. Section 2 begins with a defini-
tion of what makes up a stream, followed by a brief overview of the OMG Au-
dio/Video Streams Specification. In section 3, we present the production studio’s au-
dio plane and describe the definition of flow control and management components to
model its layout and contents (i.e. the devices and their relationships). Section 4 pro-
vides a description of the production studio’s set-up and normal operations using a
design patterns-based approach. The relevant issues that influenced our design and
implementation of flow control and management objects are highlighted in section 5,
followed by a brief description of our prototype implementation in section 6. The
conclusions are presented in section 7.

2 Overview of the OMG Audio/Video Streams Specification

The OMG Audio/Video Streams Specification [1] defines a standardized, flexible,
and efficient CORBA-based architecture for the control and management of streams.
Stream control and management concerns the establishment, control, management,
and release of streams (i.e. the specification defines control flow, not data flow). The

2 T. Song, D. Kaleshi, and A. Munro

architecture is independent of media streaming frameworks and is generic enough to
support arbitrarily complex streams.

2.1 Stream Model

In the Internet domain, the term stream is more commonly used to refer to the con-
tinuous transfer of a particular format of media content from a (synchronization)
source to one or more sinks. In this paper, however, the continuous transfer of media
content from a synchronization source is explicitly qualified by the term content
stream, and the terms flow and stream refer to abstractions (i.e. local representations
of distributed processes) used to facilitate the control and management of content
stream instances.

Figure 1 depicts an abstract model of the basic elements that make up a stream.
The origin and destination of a content stream is referred to as the producer and con-
sumer flow endpoint respectively. Flow endpoints are created by flow devices to sup-
port flows. A flow abstracts one or more content streams of the same type (i.e. for-
mat). More precisely, a flow represents the continuous transfer of media content of a
particular format (e.g. audio or video) in a clearly identified direction, from one or
more producer endpoints to one or more consumer endpoints. A stream is an abstrac-
tion for aggregating multiple flows in parallel, which may travel in either direction,
between stream endpoints. Similarly, a stream endpoint, which represents the termi-
nation point of a stream, logically contains one or more consumer and/or producer
flow endpoints (of which some or all may be involved in the stream). No directional-
ity is attached to a stream endpoint, since it may contain both producer and consumer
flow endpoints simultaneously. However, specialised or typed stream endpoints may
be used to assist in matching compatible flow endpoints during the stream establish-
ment process. Stream endpoints are created by multimedia devices to support streams.
A multimedia device abstracts a collection of one or more flow devices. Flow and
multimedia devices are responsible for creating and destroying their respective flow
and stream endpoints.

Fig. 1. The basic elements of a stream.

The stream abstraction defines a containment hierarchy, whereby a stream contains
one or more flows, and each flow contains one or more content streams. That is, the
containment hierarchy defines one-to-many relationships between containers and con-

Produce r flow endpoint

Stream endpoint

Stream

Multimedia device

Flow

Consume flow endpoint

3CORBA-Based Stream Control and Management

tainees, and by transitivity, a stream contains one or more content streams. It is im-
portant to note that flows can exist independently of streams. The stream-related ele-
ments simply provide the ability to aggregate their respective flow-related counter-
parts, thereby allowing the latter to be controlled and managed as a composite entity.

2.2 Stream Control and Management

The OMG Audio/Video Streams Specification [1] defines the set of component inter-
faces that abstract the basic elements that make up a stream. There are two confor-
mance levels, allowing implementations to trade-off between flexibility and effi-
ciency. The light-profile defines components that represent a stream and its associated
multimedia devices, virtual devices, and stream endpoints. Flow-related functionality
is co-located within and accessed through the encapsulating stream-related component
interfaces. The full-profile provides for greater granularity of control by also exposing
flow-related interfaces (i.e. flows, flow devices, and flow endpoints). Since flows also
support the relevant management interfaces, they can exist independently of streams.
The component interfaces can be grouped into two distinct sets—interfaces onto flow
and stream control and management objects (representing the continuous transfer of
media content), and interfaces onto flow and stream interface control objects (repre-
senting the participants involved in the media transfer). More importantly, the specifi-
cation defines how control messages are transmitted and received in a CORBA-
compliant way between these two sets of interfaces to set-up, control, manage, and re-
lease flows and streams.

Fig. 2. The point-to-point flow establishment process.

Flow and stream control and management objects play a central role in the archi-
tecture. A control and management object provides two different but interrelated lev-
els of abstraction. At the highest-level of abstraction, it represents the continuous
transfer of media content (i.e. a flow or stream). This abstraction is suitable for mod-

4 T. Song, D. Kaleshi, and A. Munro

elling potential, as well as established, device relationships. A flow or stream, how-
ever, involves multiple distributed processes that facilitate the media transfer (i.e. it is
a distributed entity). Therefore, the control and management object is also a local rep-
resentation of the flow or stream participants. To support these two abstractions, the
control and management object supports two sets of operations: operations for bind-
ing devices and endpoints, and operations for controlling and managing that binding.
Because the binding mechanism is standardized, interoperability between different
implementations is possible. The establishment of a point-to-point flow binding is il-
lustrated in Figure 2. The process consists of three main phases: endpoint creation,
configuration, and transport set-up. Upon receiving a request to connect two flow de-
vices, the flow control and management object (as a potential binding) requests each
device to create an endpoint that will support the flow. The flow control and man-
agement object then requests one of the endpoints to ensure that its peer is configured
similarly. Once the endpoints have been configured, the flow control and management
object completes the binding process by instructing the consumer to begin listening
on a particular address, which may be explicitly specified or implicitly determined,
and for the producer to connect to that same address. Once established, the flow con-
trol and management object (as an established binding) supports operations for start-
ing, stopping, and destroying the flow.

Fig. 3. A stream binding established between full-profile IDL-defined components.

Figure 3 shows the associations between components involved in a full-profile
binding between two multimedia devices (c.f. Figure 1). The stream establishment
process is similar to that for a flow, except for an additional flow endpoint matching
phase; where the compatibility of flow endpoints supported by stream endpoints is de-
termined. In a full-profile implementation, a collection of flows can be established in-
dependently and then individually added to a stream via operations supported by the
stream interface. The stream-related components simply provide a way of aggregating
flow-related components, as illustrated in Figure 3. The component interfaces can be
extended to provide custom stream handling appropriate to the application.

5CORBA-Based Stream Control and Management

Because the Audio/Video Streams Specification provides a programmatic descrip-
tion of the binding process, the fact that an IDL-defined component is a CORBA ob-
ject is often overlooked. In our modelling efforts, we found that an object service pro-
vider/requestor view provides a greater understanding of the mechanics that underlie
the architecture. Additionally, in our analysis of the control and management architec-
ture, we discovered that the roles of control and management objects, and indeed the
dynamics of the architecture, can be described simply in terms of two design pat-
terns—Mediator and Facade [6]. It is unclear whether the occurrence of these two de-
sign patterns in the architecture is by design, or a consequence of it. In any case, sec-
tions 4.1 and 4.2 will further assert the roles of control and management objects
within our IP broadcast environment using a design patterns-based approach.

2.3 Property Management

Fundamental to the operation of any control and management application is the ability
to represent, access, modify, and exchange management-related information. The Au-
dio/Video Streams Specification makes extensive use of properties to describe de-
vices, streams, flows, and their endpoints. In-line with CORBA concepts, the specifi-
cation does not build non-typed properties into interfaces. Instead, component
interfaces inherit from CORBA’s Property Service [7], which is used extensively for
managing properties. This inheritance separates the concern of property management
from those of stream control and management. Supporting a generic interface for
property management allows the management information set to be extended dynami-
cally without requiring changes to stream control and management interfaces. More
importantly, however, a standard interface allows for interoperability between the
stream components, allowing peers to be queried to establish their status and their
compatibility constraints. In addition to a standard interface, a standardised set of pa-
rameters is also defined to allow for interoperability between different implementa-
tions. These properties are managed internally by stream components and are defined
as read-only to clients. Additionally, application-specific parameters may also be as-
sociated with stream components; for example device model, serial number, owner,
location, etc.

3 Modelling the Production Studio

The production studio is made up of heterogeneous sources, sinks, and intermediate
processing devices that form complex relationships with each other dynamically or
under the control of a studio manager or producer. The talkback system, which forms
an integral part of the production studio, provides participants in the production proc-
ess with communication and audio monitoring capabilities. An IP-based network
forms the underlying infrastructure used for transporting the media streams (live or
stored audio and video, and auxiliary data) used as input to produce a program for
broadcasting and/or storage. In addition, the infrastructure supports facilities for ser-
vice discovery and brokering [8]. In this section, we describe the modelling of the
production studio’s audio plane by full-profile flow components. Although stream-

6 T. Song, D. Kaleshi, and A. Munro

related components have not been considered, the concepts discussed extend naturally
to include collective control and management of multiple flows through stream-
related interfaces (as described in section 2.1 and 2.2).

3.1 The Studio Audio Plane

A schematic of the production studio’s audio plane is shown in Figure 4. The sche-
matic shows the flow relationships established between the various devices as well as
the direction of those flows. The main source of audio is a microphone. The most
common sink of audio is a speaker. Other relevant audio devices include mixers, re-
corders, playback devices, effects processors, etc. The creation and processing of me-
dia content occurs in both digital and analogue form. The point-of-presence (PoP) of a
device is the point where the digital content it produces or consumes can be identified
and managed. It is realized that not all devices present in the studio can or will be di-
rectly controlled at their PoP. However, in our modelling efforts, we have assumed
that gateways can be used to provide suitable converting functions to enable the trans-
fer of control and management functions. The synchronization streams shown in the
figure will not be modelled as synchronization of content streams will be derived pri-
marily from RTP/RTCP algorithms [4]. This schematic forms the basis for the defini-
tion and implementation of audio flow control and management components.

Fig. 4. Studio Schematic: Audio Plane.

3.2 Audio Flow Control and Management Components

Our modelling of the production studio’s audio plane is based on full-profile compo-
nents of the Audio/Video Streams Specification. A full-profile implementation allows
for a modular approach to the development of stream components at design-time, and
greater flexibility in the composition and distribution of media content at run-time.
Indeed, our current production studio environment is modelled and built on audio

PGM o
Edit

ADC

ADC

Mixer

S
pe

ae
r

P
G

M
 S

p

Effects

RecorderPlayer

ADC
Mic

Ext

Editor

AUX
PGM Program
AUX Auxiliary
Mic Microphone
Ext. External
ADC Sampler/Converter

Mic

Mic

Mic

Synchonisation
Stream
Remote Control

7CORBA-Based Stream Control and Management

flow components, and this can subsequently be extended to include video flow com-
ponents as well as more complex stream configurations as required. At runtime, flows
(e.g. audio, video, talkback, etc.) can be structured into layers or hierarchies, and dy-
namically added to or removed from stream structures, allowing flows to be con-
trolled and managed individually, or collectively, as dictated by the production proc-
ess.

Multimedia device objects and their associated resources (i.e. virtual devices, end-
points) are anticipated to execute on the devices they represent, or on gateway or
proxy devices capable of providing a suitable execution platform (e.g. analogue-to-
digital converter devices), such that their execution is closest to the true source or sink
of media content. This means that the lifetime of virtual devices and endpoint objects
will likely depend on the multimedia device it executes on and represents. Unlike de-
vice and endpoint objects however, a flow control and management object does not
have a physical equivalent—it is a local representation of the state of distributed proc-
esses. Consequently, its existence is not physically or operationally bound to any one
particular device. The control and management object need not be created, co-located,
nor managed by the same party that invokes it. Depending on application require-
ments, control and management objects may be transient or persist beyond its service
lifetime as well as that of its devices and endpoints. They can be accessed locally or
remotely and can have local library or remote service styles of implementations. Fur-
thermore, control and management objects (i.e. their implementations) can be modi-
fied without affecting the rest of the components in the system or how they interact.
Solutions are anticipated to be application and policy specific.

The fact that flow control and management objects can be run and managed inde-
pendently of peer devices is of particular importance for production studio environ-
ments. In order to create a composite program, the production process relies on a pre-
dictable set of flows and streams with a predetermined layout or topology for routing
media content. Because control and management objects abstract flows and streams,
the production studio’s layout can be determined in advance by specifying the set of
control and management objects that model the possible connection points into the
production studio (e.g. using third-party establishment under the direction of the edi-
tor). A predetermined set of flow and stream control and management objects (possi-
bly involving intermediate interconnected components) can be used to specify a sys-
tem of fixed paths (similar to a pipeline for transporting media content) for routing
content streams within the production studio. Once instantiated and activated, the set
of flow control and management objects represent the potential bindings within the
production studio.

Figure 5 shows an object model of the production studio’s audio plane. The physi-
cal connections established between the audio devices in the production studio have
been replaced with appropriate audio flow control and management objects (c.f. Fig-
ure 4). These flow control and management objects form the principal components of
the production studio’s management application, which is responsible for keeping
track of all flow control and management objects (i.e. flows). It should be noted that
the associations shown in the figure represent object relationships, not flow relation-
ships. The flow relationships are represented by the flow control and management ob-
jects themselves. Also, the model illustrates only one of many possible scenarios in
which flow control and management objects may be created and used. Furthermore,

8 T. Song, D. Kaleshi, and A. Munro

the flow objects highlighted in the figure are elementary point-to-point and point-to-
multipoint flow components (i.e. based on unicast and multicast transports respec-
tively). More complex flow topologies (e.g. multipoint-to-multipoint) can be con-
structed from compositions of these elementary flows, allowing management clients
to perform control and management operations on the composite flow or on its con-
stituent flows. This provides for a more controlled and predictable approach to studio
planning, set-up, flow selection and handling, as well as the overall management of
the production process during normal operations. Solutions are anticipated to be ap-
plication and policy specific.

Fig. 5. An integrated object of production studio audio components.

4 Studio Dynamics

There are two main aspects to control and management within the IP broadcast studio
environment. The automatic object relationship establishment at studio set-up be-
tween devices (i.e. studio-on-demand), and the management of the studio functional-
ity during normal operations, expressed in terms of static relationships between the
devices in the studio—delivering what streams where (i.e. program production). The
flow (and stream) abstraction allows the manager to focus on content management
rather than device management. Since the production studio’s layout is established by
a set of flow control and management objects, and the same set of objects represent
both potential as well as established flows (i.e. bindings), the studio set-up and its
management thereafter involves the device or studio manager locating the relevant
flow control and management object, and invoking one of two sets of services—flow
establishment, or flow control and management. One of the fundamental requirements
of any distributed processing environment (DPE) is the ability for a component to lo-
cate other components with which it can interact. All the necessary information re-
quired to invoke a CORBA object is encapsulated in its object reference. Since object

9CORBA-Based Stream Control and Management

references are typed, clients are able to determine the services provided by a particu-
lar component, as well as the mechanisms for using those services, via the IDL typing
system [9, 10 and 11]. Because the flow components are structured as CORBA ob-
jects, there does not need to be a special way of finding control and management ob-
jects representing a particular flow. Finding the components is orthogonal to using the
services they provide. In other words, clients invoke operations on a CORBA object
the same way regardless of how they obtained its object reference. Therefore, flows
can be identified and located using generic CORBA facilities or application-specific
directory services. For example, an implementation of the Factory design pattern [6]
can be used to supply a predictable set of control and management objects with vary-
ing execution policies (e.g. lifetime, ownership, activation, etc.) and types. Such loca-
tion and execution transparency, scalability, and robustness are the established traits
of CORBA.

4.1 Studio Set-Up

Each flow control and management object supports operations that perform the neces-
sary negotiation between flow devices and endpoints to set-up the flow, which it then
represents. The role of the control and management object in the flow establishment
process can best be described by the Mediator design pattern [6]. The intent of this
pattern is to define an object (i.e. the control and management object) that encapsu-
lates how a set of objects (i.e. the devices and endpoints) interact. A mediator pro-
motes loose coupling by keeping peer objects from referring to each other explicitly,
and allows their interaction to vary independently.

During the studio set-up phase, components in the studio try to discover and iden-
tify suitable peer components and, if required, determine their compatibility and es-
tablish the necessary control or consumer relationship with the service (content or
otherwise) provider entities. The target “studio-on-demand” provided by the studio
DPE requires mechanisms to rapidly integrate sources such as cameras or micro-
phones into the production environment [8]. Devices and endpoints do not interact or
negotiate with their peers directly. That is, they do not invoke each other’s operations,
except for the initial call on a peer to create a binding using first-party flow or stream
establishment, and during the configuration phase. Instead, flow control and manage-
ment objects (acting as mediators) implement and execute the peer negotiation
mechanisms and protocols (i.e. determining peer compatibility and negotiating proto-
cols, formats, QoS, security, etc.). The binding process is initiated by invoking the
“connect-dev” operation on the control and management object with the target de-
vices or endpoints as parameters. The control and management object conspires with
peer devices and endpoints to create the binding. Interoperability between compo-
nents is facilitated by the set of rules specified in [1] that implementations of the inter-
faces must follow. Two approaches to flow establishment are possible—first-party
and third-party flow establishment. It is important to realize that first-party and third-
party flow establishment does not refer to the co-location of the control and manage-
ment object, but to the initiation of the flow establishment process. First-party flow
establishment is initiated by an autonomous peer device or endpoint, and third-party

10 T. Song, D. Kaleshi, and A. Munro

flow establishment is initiated by a client that is not one of the participating devices or
endpoints (e.g. a management application).

Since the target flow can be identified as a CORBA object, the integration of
sources and sinks simply entail the particular source or sink locating the correct flow
control and management object and invoking its “connect-dev” operation to be “auto-
matically” integrated into the existing studio set-up. The term automatic used in the
establishment process refers to the fact that no influence external to the control and
management architecture (e.g. from the studio manager) is required for peers to
establish a flow relationship. The rapid integration of sources and sinks is possible
because the flow establishment process is standardised and encapsulated by flow con-
trol and management objects. This fact is particularly significant in the case of multi-
cast flows. Potential sinks can simply identify the target flow to connect to and not the
device or address to listen on. The necessary information is conveyed to sinks by the
multicast flow’s control and management object. The IDL typing system ensures that
flows can only be established between compatible devices and endpoints.

4.2 Studio Normal Operations

Once the binding is established, the control and management object that previously
represented the potential flow now represents the established flow and supports opera-
tions for starting, stopping, and destroying that flow. The identifiable flows estab-
lished during studio set-up result in a topological layout of paths that route content
streams from sources to sinks for the purpose of program production. These flows are
managed or processed under the control of the editor during normal studio operation.
The devices and their associated endpoints participating in a flow can be registered
centrally or located via their respective control and management object. The role of
the control and management object as a flow can be fully described by yet another de-
sign pattern—the Facade design pattern [6]. The intent of this pattern is to provide a
unified interface to a set of interfaces in a subsystem. It defines a single higher-level,
simplified, and localized interface (the flow) to the more general facilities of a dis-
tributed subsystem (in this case, the flow participants). This helps to reduce the com-
plexity of the subsystem and makes it easier for clients to use (i.e. control and man-
age).

During normal operations, management clients simply locate the control and man-
agement object that represents the target flow. Once located, the control and man-
agement object allows the management client to control the transfer process, modify
its QoS profile, or destroy the binding (i.e. close the stream and tear down its trans-
port connections) when it is no longer needed. Since the flow has a distributed state,
the control and management object maintains references to all of its participating
endpoints. This allows it to exercise control over the transfer of content by issuing re-
quests to participating endpoints whenever changes are requested. As with flow estab-
lishment, the management application does not interact with devices and endpoints di-
rectly, nor manage them individually. Hidden to all its management clients, a control
and management object interacts and conspires with its participants to control and
manage the media transfer. The control and management object in its role as a facade
is therefore the primary client of peer devices and endpoints.

11CORBA-Based Stream Control and Management

5 Design Considerations

The flow abstraction is semantically closer to its content than the stream abstraction.
The stream abstraction is only relevant in the aggregation of multiple flows. It is im-
portant to distinguish between a flow relationship and its content relationships. The
use of the general term flow refers to the transport of media content of a single format
(e.g. audio, video) between producers and consumers. Although a flow is generally
considered as a single entity, it may be composed of multiple content streams. Each
producer contributing to a flow defines a content relationship between the producer
and its consumers in that flow relationship. In other words, a flow may carry content
from multiple sources, raising the issue of source synchronization and flow topology.
It is the contractual responsibility of a flow control and management object to define
and represent the content relationships between the set of producers and consumers.
This section discusses the correlation between a flow abstraction and its content
streams, and how this affected the design and implementation of our prototype.

5.1 Handling Multiple Content Streams

Each content stream instance within a flow is identified by its synchronization source.
The content stream that is transferred from a producer to its consumers consists of
media objects or presentation units (e.g. an audio sample, a video frame) that must be
presented according to the temporal relationships that existed during the capturing
process of the media objects [12]. Because the presentation units of a content stream
are temporally-related, its source—or more precisely its synchronization source—is
used to distinguish it from other synchronization sources (including those from the
same device or endpoint) so that consumers can identify, synchronize, and present the
media objects of the content stream in a timely fashion. Additionally, consumers must
identify the type of data being received, detect packet loss, and determine the order in
which the arriving packets should be presented. In the Internet, synchronization of in-
formation streams is derived primarily from RTP/RTCP algorithms [4].

As a flow may involve more than one producer, the contract between the flow con-
trol and management object and its participants are such that, consumers bound to that
flow will receive content ‘injected’ into the flow by all producers bound to that flow.
Content and flow relationships share all but two characteristics—their type and cardi-
nality1. The maximum cardinality of the relationship defined by a content stream
stipulate that a content stream always originates from one producer, but more than
one content stream may terminate at a consumer. That is, from the producer’s view-
point, a flow relationship is synonymous with a content relationship. In contrast, from
the consumer’s viewpoint a flow relationship may translate to multiple content
relationships.

The handling of multiple content streams is particularly important where multicast-
ing is used. At the protocol level, multicasting minimizes the bandwidth and complex-

1 For each role in a relationship type, the minimum and maximum cardinality specifies the
minimum and maximum number of relationships respectively, in which a role will partici-
pate.

12 T. Song, D. Kaleshi, and A. Munro

ity required to send information to multiple hosts on a network. A multicast group ad-
dress represents a flat virtual network without any capability to subset group members
logically or by physical location/distance in the underlying network. Multicasting in
the Internet relies on establishing a well-known shared network-layer address space
(so-called Class D addressing in IPv.4 and distinguished by a specific prefix in IPv.6)
in which messages, or streams of information, are routed from one source to multiple
receivers that recognize that address [8, 13]. The transport or routing of multicast
streams is not as important in the discussions here as what happens to the different
stream of packets arriving from different producers at the consumer. Content streams
transported on a single multicast address are received by every consumer listening on
that same address. There are two approaches to handling multiple content streams.
Each content stream received by the consumer may either be handled (i.e. processed
and presented) separately, or a consumer may support mixer operations directly to
create a new compound content stream. The mixing of multiple content streams how-
ever is typically performed by a dedicated mixer device. The audio mixer plays a cen-
tral role in the management of multiple audio content streams (as can be seen in Fig-
ure 4). As Figure 6 illustrates, it is an intermediate system that receives data packets
from one or more (contributing) sources, possibly changes the data format, combines
the packets in some manner and then forwards a new data packet. Since the timing
among multiple input sources will not generally be synchronized, the mixer will typi-
cally make timing adjustments among the incoming content streams and generate its
own timing for the combined content stream. Thus, all data packets originating from a
mixer will be identified as having the mixer as their synchronization source.

Fig. 6. The mixing of content streams from multiple synchronization sources.

Although no intermediate mixer device is necessary where mixer operations are
supported by consumer devices directly, the use of dedicated mixer devices may be
desirable for reasons of compatibility, performance, and controllability. Consumers
inherently support at least one content stream. However, not all consumers provide
capabilities for handling multiple content streams. Removing this responsibility from
consumers ensures that irrespective of whether the flow is composed of one content
stream or multiple content streams, the consumers remain compatible. Assigning the
responsibility for mixing multiple content streams to a dedicated mixer device means
less processing load on consumers. The data packets received can be processed and

13CORBA-Based Stream Control and Management

presented immediately, since all data packets originating from a mixer are identified
as having the mixer as their synchronization source. Additionally, the production ac-
tivities will require selective mixing of multiple content streams. A dedicated mixer
device may provide greater flexibility over the mixing and delivery of multiple con-
tent streams with respect to the production studio’s overall management. The mixer’s
capability to selectively combine input content streams can be used to provide a more
predictable and controllable means of routing multiple content streams.

5.2 Flow Topologies

The flow relationship defines a topological layout that determines what content
streams are delivered where. The support for multiple producers by flow control and
management objects means that point-to-point, point-to-multipoint, multipoint-to-
point, and multipoint-to-multipoint flow configurations are supported directly. The
number of producers involved in a flow does not only affect the handling of content
streams, but it also influences the flow’s resulting topology. The content streams es-
tablished between producers and consumers describe a maximal bipartite2 graph
where the direction of content flow is from producer nodes to consumer nodes. The
graph in effect describes the flow’s topology.

Fig. 7. Point-to-point and point-to-multipoint topologies.

As with the handling of content streams, the implementation of topologies involv-
ing only one producer (i.e. point-to-point and point-to-multipoint) is straightforward;
since the data received by consumer(s) constitutes only one content stream and as
such no mixing of content streams is required. Naturally, point-to-point and point-to-
multipoint flows can be based on simple unicast and multicast connections respec-
tively. Notice that a point-to-point topology is a special case of a point-to-multipoint
topology where there is only one consumer. As such, the point-to-multipoint flow
need not necessarily use a multicast connection. If multicasting is not available, or
would be unsuitable (e.g. when the content stream received by each consumer needs
to be controlled and managed separately), multiple unicast connections may be used
instead. In this case, the sender device creates a producer endpoint for each unicast
connection supported, as shown in Figure 7. This implementation detail is hidden
from clients.

2 A bipartite graph is an undirected graph in which the set of nodes can be partitioned into one
of two sets, where all edges go between the two sets.

Single Unicast Flow Single Multicast Flow Multiple Unicast Flow

14 T. Song, D. Kaleshi, and A. Munro

The support of point-to-point and point-to-multipoint topologies by a flow control
and management object is implicit. These topologies form the basic components from
which more complex topologies can be constructed, which include multipoint-to-
point and multipoint-to-multipoint topologies. The support of multipoint-to-point and
multipoint-to-multipoint topologies by flow control and management objects is op-
tional. A flow control and management object may refuse to support more than one
producer. Figure 8 depicts a multipoint-to-multipoint flow that uses an intermediate
mixer device to mix the content streams from multiple producers and multicasts the
composite stream to multiple consumers. Producers are connected to the mixer device
by unicast connections. Notice also that the multipoint-to-point topology is a specific
case of the multipoint-to-multipoint topology where only one consumer receives the
mixed stream.

Fig. 8. A mixer device in a multipoint-to-multipoint flow connection.

6 Prototype Implementation

In-line with our objectives in using standard technologies, our prototype imple-
mentation of the audio flow control and management components is based on the Java
Media Framework (JMF) [5]. JMF provides a unified architecture and messaging
protocol for managing the acquisition, processing and delivery of time-based media
data. In particular, it provides high-level abstractions of the data sources, sinks, media
handlers, processing components, controls, and user interfaces. The framework also
defines components for the transmission and reception of audio and video data using
RTP [4]. JMF provides facilities for performing the actual processing and transfer of
media content, but it does not define interfaces for external (i.e. third-party) control
and management of streams. By wrapping JMF components in flow control and man-
agement interfaces, the JMF streaming process becomes controllable and manageable.
The mixing of multiple content streams is implemented by gathering all the incoming
streams under one data source and creating a new outgoing stream with a new syn-
chronization source (SSRC).

Figure 9 illustrates a simple example deployment scenario of flow control and
management objects. Device and endpoint objects execute on or closest to the de-
vices. Flow control and management objects exist independently of devices. From the
manager’s viewpoint, it is irrelevant whether the device is controlled via a gateway or

15CORBA-Based Stream Control and Management

a management agent (See section 3.1). All that matters is that the interfaces defined
by the OMG Audio/Video Streams Specification are supported at its point-of-
presence. Every other implementation detail is hidden from the manager. The man-
agement station is responsible for managing all flow control and management objects
within the production studio, which are the objects used to facilitate the integration of
devices, and the management of the streaming process thereafter. For example, to es-
tablish a flow between the microphone and audio mixer (the hub where flows are
mixed), the manager obtains a reference to the target flow control and management
object (a potential flow) and calls its “connect-dev” operation passing the microphone
and audio mixer references as parameters. The flow control and management object
mediates between the device endpoints to establish the binding (Mediator interac-
tions). Once the binding is established, the flow control and management provides the
manager with the ability to control the distributed endpoints through a unified inter-
face (Facade interactions).

Fig. 9. Conceptual model of a simple example deployment scenario.

7 Conclusions

In this paper, we investigate the applicability of the Audio/Video Streams Specifi-
cation to a production studio environment. In particular, we describe the design and
implementation of components for the control and management of audio flows within
an IP broadcast environment for the purpose of program production. The production
studio’s layout is modelled as a set of flow control and management objects that iden-
tify the possible bindings into the studio environment. We emphasize the roles of a
control and management object in the OMG Audio/Video Streams Specification’s ar-
chitecture using two design patterns. As a mediator, it provides the necessary services

16 T. Song, D. Kaleshi, and A. Munro

for smoothly integrating peer devices and endpoints into the production studio during
the set-up phase. As a facade, it provides services for controlling and managing par-
ticipating endpoints during the normal program production process. The complexity
of binding, controlling, and managing the distributed endpoints of flows is hidden
from the studio manager; thus removing the need for the studio manager to interact
with devices and endpoints individually. The studio manager can focus on content
management instead of device management. The correlation between a flow control
and management object and its content, as well as the need for mixer operations and
how this affects the flow topology is also described. Because the current model is
based on full-profile components, it can be extended in future work to include addi-
tional flow types and subsequently incorporated into the existing arrangement. Our
prototype implementation is based on the Java Media Framework, which provides
support for the delivery of time-based media via the Real-Time Transport Protocol.
Being CORBA-based, the architecture allows for considerable flexibility as regards to
the implementation, distribution, and management of control and management ob-
jects, particularly in the design of ad-hoc solutions for flow and stream establishment.
Because of the highly relational nature of the application, the manager needs a man-
agement system that heightens the observability and controllability of the network, in
real-time. For this reason, we are developing a virtual world supported by a CORBA-
based graph drawing system for the visualization and control of the production studio.

References

1. Object Management Group: Audio/Video Streams Specification v1.0. OMG Domain Speci-
fications, Telecommunications, 00-01-03, January (2000)

2. Object Management Group: The Common Object Request Broker: Architecture and Specifi-
cation v2.6. 01-12-35, December (2001)

3. Mungee, S., Surendran, N., Schmidt, D. C.: The Design and Performance of a CORBA Au-
dio/Video Streaming Service. HICSS-32 International Conference on System Sciences,
minitrack on Multimedia DBMS and the WWW, Hawaii, January (1999)

4. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V., RTP: A Transport Protocol for Real-
Time Applications. Internet Engineering Task Force, RFC1889, January (1996)

5. Java Media Framework API Specification, Version 2.0, FCS. 10 March (2001)
6. Erich, G., et al.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley (1995)
7. Object Management Group: Property Service Specification v1.0. 00-06-22, April (2000)
8. Munro, A. (Editor) et al.: Studio Production Networking and the Internet – State of the Art

Report. Technical Report D1, PRONET LINK project, February (2000)
9. Orfali, R., Harkey, D.: Client/Server Programming with Java and CORBA, Second Edition.

John Wiley & Sons, Inc. (1998)
10. Hoque, R.: CORBA 3: Developing Industrial-Strength Client/Server and Web Applications.

IDG Books Worldwide Inc. (1998)
11. Siegel, J. (Ed.): CORBA 3 Fundamentals and Programming, 2nd Edition. Wiley (2000)
12. Kaleshi, D., Munro, A.: Studio Production Networking and the Internet – Synchronization

Considerations. Technical Report D7, PRONET LINK project, September (2000)
13. Ooms, D., Sales, B., Livens, W., Acharya, A., Griffoul, F., Ansari, F.: Overview of IP Mul-

ticast in a Multi-Protocol Label Switching (MPLS) Environment. Internet Engineering Task
Force, RFC 3353, August (2002)

17CORBA-Based Stream Control and Management

	1 Introduction
	2 Overview of the OMG Audio/Video Streams Specification
	2.1 Stream Model
	2.2 Stream Control and Management
	2.3 Property Management

	3 Modelling the Production Studio
	3.1 The Studio Audio Plane
	3.2 Audio Flow Control and Management Components

	4 Studio Dynamics
	4.1 Studio Set-Up
	4.2 Studio Normal Operations

	5 Design Considerations
	5.1 Handling Multiple Content Streams
	5.2 Flow Topologies

	6 Prototype Implementation
	7 Conclusions

