Providing Enhanced Differentiated Services for
Real-Time Traffic in the Internet

Tamrat Bayle!, Reiji Aibara?, and Kouji Nishimura?

! Department of Information Engineering,
Graduate School of Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

tamrat@hiroshima-u.ac. jp
2 Information Media Center, Hiroshima University,
1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8511, Japan
{ray, kouji}@hiroshima-u.ac.jp

Abstract. The Differentiated Services (DiffServ) architecture offers a
scalable alternative to provide Quality of Service (QoS) guarantees for
performance-sensitive applications in the Internet. Within the DiffServ
framework, efficient traffic scheduling mechanism is a key component to
ensure such QoS guarantees. In this paper, scheduling algorithm called
Enhanced Weighted Fair Queueing (EWFQ) is proposed that enables
fair bandwidth sharing while supporting tight bounds on end-to-end
delay for real-time traffic such as voice over IP (VoIP) in DiffServ
networks. EWFQ allows to create service classes and assign propor-
tional weights to such classes efficiently according to their resource
requirements. The results from the simulation studies show that the
mechanism is able to ensure both the required end-to-end delay bounds
and bandwidth fairness based on the specified service weights. Besides,
our scheme has lower implementation complexity, along with scala-
bility to accommodate the growing traffic flows in the Internet backbone.

Keywords: Internet QoS, DiffServ, Scheduling Algorithm, VoIP

1 Introduction

The current Internet architecture provides only best effort service. Such best
effort service is adequate for traditional Internet applications like e-mail, web
browsing or file transfers. However, the new emerging real-time applications,
such as voice over IP (VoIP), and multimedia conferencing, are sensitive to
delay and delay variation, and require bandwidth guarantees. Consequently, the
need to equip the Internet infrastructure with mechanisms to enable Quality of
Service (QoS) is critical.

The research efforts by the Internet Engineering Task Force (IETF) to enable
end-to-end QoS over IP networks have led to the design of two different archi-
tectures: the Integrated Services (IntServ) architecture [I] and more recently,
the Differentiated Services (DiffServ) architecture [2], which although different,

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 272-285] 2003.
© IFIP International Federation for Information Processing 2003

Providing Enhanced Differentiated Services for Real-Time Traffic 273

support services that go beyond the best effort service. Furthermore, due to the
scalability limitations of the IntServ model for deployment in network backbones,
the DiffServ architecture defines a scalable framework for providing QoS in the
Internet. The DiffServ approach addresses the scaling concerns by reducing all
traffic flows only into a small number of traffic aggregations, each with a dif-
ferent set of QoS requirements. [3] describes a DiffServ per-hop behavior (PHB)
called expedited forwarding (EF) intended for use in building a scalable, low loss,
low latency, low jitter, assured bandwidth, end-to-end service that appears to
the endpoints like an unshared, point-to-point connection. Typically real-time,
and mission-critical applications require this service. On the other hand, assured
forwarding (AF) PHB [] is suggested for applications that require a better relia-
bility than the best-effort service. However, as a QoS control technology, DiffServ
involves different traffic management mechanisms to provide the required multi-
ple levels of services [5]. In this context, therefore, the packet scheduler is one of
the key components of DiffServ networks, which plays important roles in service
isolation because it actually gives different services to different traffic classes.

We propose a simple and efficient scheduling mechanism for DiffServ based
Internet that enables fair bandwidth sharing while supporting better bounds
on end-to-end delay for QoS-sensitive applications such as VoIP. It is based on
our previous work [6] and incorporates the best characteristics of some exist-
ing approaches, notably the rate-based packet fair queueing algorithms [7JT3]
[T4]. However, our scheme considers only serving a greatly reduced number of
service classes rather than potentially a huge number of flows, and so lowers
significantly its implementation complexity, while maintaining the robustness
properties, required for end-to-end delay bounds and bandwidth fairness, of pre-
viously proposed alternatives. We call this algorithm Enhanced WF@Q (EWFQ),
as it depicts the capacity to adapt efficiently to Differentiated services environ-
ment.

The rest of the paper is organized as follows. Section [briefly reviews ex-
isting alternatives, and explains both their strengths and limitations. Section
Bl discusses a new scheduling mechanism that lowers the implementation com-
plexity, and ensures tight delay bounds for real-time packets within EF service
class and bandwidth fairness among all traffic classes. Section Ml analyzes the
performance of the proposed mechanism using simulations. The same Section,
first describes the network topology and traffic models considered and some of
the assumptions made for evaluation of the mechanism, and then presents the
simulation results and discusses their implications. Finally, Section] concludes
the paper with a brief summary and outlines directions for future work.

2 Background and Related Work

Scheduling disciplines are the key to fairly share a limited amount of net-
work resources and provide QoS for performance-sensitive applications. A queue
scheduling discipline allows to manage access to such a fixed amount of output
link bandwidth by selecting the next packet that is transmitted on output port.

274 T. Bayle, R. Aibara, and K. Nishimura

So, when there is congestion, then scheduling is the mechanism used to differ-
entiate traffic and provide the required QoS. But the key challenge is to find
an appropriate scheduling algorithm, especially with desirable properties of low
end-to-end delay bound, efficiency (low complezity of implementation), fairness
and scalability.

There have been many research work done regarding this issue, each attempt-
ing to find the right balance among complexity, control, scalability, and fairness.
For instance, priority queuing (PQ) [§] is the basis for a class of queue scheduling
algorithms that are designed to provide a relatively simple method of support-
ing differentiated service classes. There is, however, a potential undesirable side
effect with this scheme. Traffic with low-priority can become starved if there
are a large number of high-priority classes. Moreover, PQ provides just a delay
guarantee but no bandwidth guarantee. On the other hand, deficit round-robin
(DRR) scheduling algorithm [10] addresses the limitations of the PQ mecha-
nism by accurately supporting the weighted fair distribution of bandwidth when
servicing queues that contain variable-length packets. DRR, though, does not
provide the required good end-to-end delay bounds as other queue scheduling
disciplines, which are described below. DRR provides a bandwidth guarantee
but no delay guarantee.

WEFQ [7] also known as Packetized Generalized Processor Sharing (PGPS)
is more appropriate queue scheduling approach for applications with variable-
size packets. WFQ supports bounded delay and fair bandwidth distribution for
variable-length packets by approximating the ideal generalized processor sharing
(GPS) system [9]. It does so by time-stamping each arriving packet with a finish
time, the expected completion time of the packet if it were scheduled under the
ideal GPS scheduler. However, WFQ implements a complex algorithm that re-
quires the maintenance of a significant amount of per-packet state and iterative
scans of state on each packet arrival and departure. Such computational com-
plexity impacts the scalability of WFQ when attempting to support a very large
number of flows on high-speed networks, which simply turns out not to be practi-
cal to implement it. As a result, many variants of WFQ [LT[12/13l14] have been
proposed with different trade-offs. Among the well-known variants, the worst
case fair weighted fair queueing (WF2Q) [13], and worst-case fair weighted fair
queueing plus (WF2Q+) [14] achieve tight delay bounds and worst-case fairness
properties. While WFQ uses only finish times of packets in the GPS system,
WEF2Q uses both the start and finish times of packets to achieve a more accurate
emulation of a GPS system to provide improved worst-case fairness. However,
WEF2Q has the same computational complexity as WFQ. On the other hand,
WF2Q+ is an enhancement to WF2Q, and implements a new virtual time func-
tion that results in lower complexity. Even though both schemes are fair in the
worst-case sense and tend to have low delay, they were not designed to provide
service differentiation among classes in the context of DiffServ networks.

Non of the scheduling disciplines described above, however, avoid the main-
tenance of either per-packet or per-flow state somewhere in the network or oth-

Providing Enhanced Differentiated Services for Real-Time Traffic 275

Packet
Classifier

Input traffic

Buffer management ‘

Fig. 1. Scheduler based on EWFQ

erwise dealing only with flows instead of with differentiated service classes. They
significantly affect the scalability of the Internet backbone.

Therefore, by exploiting the DiffServ architecture, and use of the start and
finish times for a packet only at the head of each of the active service class queues,
the approach used in this paper goes a step further to reduce the size of huge
traffic flows into very few service classes, as well as reducing the computational
complexity, with respect to system virtual time computation, required for its
implementation in high-speed backbone routers when compared with the above
approaches.

3 Proposed Scheduler: EWFQ

In this section, we propose a scheduling mechanism called EWFQ for real-time
IP traffic in DiffServ Networks. EWFQ is an improved mechanism in such a way
that not only controlled bandwidth sharing and tight delay bounds are supported
but also simplifications of implementation complexity are offered in the context
of DiffServ environment.

EWFQ algorithm requires the maintenance of only aggregate state of very
few traffic classes in the DiffServ networks, instead of a huge number of flows. In
our approach, flows are aggregated and such aggregated flows are mapped into
separate queues with different weights corresponding to service classes. Then the
service time for a packet only at the head of the queue of active service class is
calculated. Also, the sorting to transmit the next packet is done only among the
head of very few active QoS classes. This implies that the complexities associated
with EWFQ scheduler both for computing the system virtual time (for tagging
with virtual finish time) and maintaining the set of eligible classes sorted by
virtual finish times depend only on the number of supported service classes,
which typically are much smaller than the number of sessions or flows. This
simplification with our approach greatly reduces the computational complexity
that is attached inherently with other approaches.

276 T. Bayle, R. Aibara, and K. Nishimura

EWFQ Algorithm

/* a new packet P of class i arrives */
FOR i < index of class i’s queue that will hold new P

DO
BEGIN Enqueue(i, P)
if (queueli] == empty) {

enqueue (P, queueli]) ;
/* compute starting/finishing times for */
/* packet at the head of class ¢ queue */
S[i] « max(V, Fli]);
Flil < Sil + L7 / 3
/* update system virtual time */
V + maz(min(S[j])jenr, V);
} else

/* append packet to end of class ¢ queue */
enqueue (P, queueli]);

END Enqueue

BEGIN Dequeue(i)
/* dequeue and transmit (tx) the head packet */
P, + dequeue(queueli]) ;
send (P;.) ;
/* get the next head packet from the same class i */
/* queue and compute starting and finishing times */
Prheat + getfromhead (queueli], head) ;
if (Pnext) {

Sli] «+ Fli];
Fli] « S[] 4+ LPre=t / ¢y
} else

/* update system virtual time */
V o maa(min(SG)yen (V + LP/S, 5 60);
END Dequeue

Fig. 2. Enqueue and Dequeue Pseudocode for EWFQ

Consider n traffic classes, each class i, ¢ = 1,...,n, assigned to a separate
queue, is associated with weight ¢;, and the link capacity is shared among all
active classes in direct proportion to their weights, such that the sum of the
weights of all classes is no larger than a predefined value . That means, if we
consider Fig. [l in which there are n service classes, then

[Pr+dot .t <v,i=1,..,N. J (1)

Here, the weight of the class specifies a relative share of how much of the
capacity of the output link the class is entitled to receive. Furthermore, each

Providing Enhanced Differentiated Services for Real-Time Traffic 277

class i is associated with two variables S[i] and F[i] that represent, respectively,
the starting and the finishing times corresponding to the packet at the head of
the queue for a particular class i. Finally, a global variable V', called system
virtual time, is associated to the system. The EWFQ can be then described
briefly as follows: First initialize variables S[i], and F[i] for all classes i, and
V to 0, and other variables, such as ¢; and n to their respective values. Then
proceed with Enqueue, and Dequeue operations as described below.

Enqueue: The Enqueue operation is called whenever a new packet of class 4
arrives. According to Fig. Bl the scheduler visits each queue and when a packet
P of length L for class ¢ arrives at its queue i, it executes the first part of the
pseudocode. The function first checks whether class ¢ just becomes backlogge
from the idle state. If the case is a transition from the idle state, it first places
the newly arriving packet into the head of its corresponding class queue. Then it
involves computing the starting S[i] and finishing F[i] times, as well as updating
the system virtual time V for packet at the head of queue of class , in this case,
which is the newly arriving packet. Otherwise, if class i queue were previously
backlogged, i.e., non-empty, it only appends the newly arriving packet to the end
of queue of class i. In updating the system virtual time, min(S[j]); ¢ p represents
the minimum of starting times among all backlogged classes.

Dequeue: The Dequeue function is the core of the algorithm that schedules
packets from the queues corresponding to different service classes. Consider the
set, of all backlogged traffic classes B, such that their starting times are no larger
than the system virtual time V, i.e., S[j] < V, for any class j in B, and form
a set of eligible classes E for service. The algorithm then selects class ¢ among
the set of classes in E that has the smallest finishing time. Accordingly, the
algorithm dequeues the head packet from this class queue and denotes it by Pj,
for transmission. Finally, it proceeds to execute the remaining second part of
the pseudocode in Fig. 2l The getfromhead() function gets the next available
packet P,..: from the head of the same class i’s queue whose head is passed
as a parameter to the function. Then S[i] and F[i] are computed for the class.
Otherwise, if P,ct = NULL, the system virtual time V' will be updated.

In Eq. @), if v = C, where C represents the link capacity, then the weight
of a class represents the minimum bandwidth that the class is guaranteed to
receive. When the traffic class i is constrained by a token bucket (p;,0;), where
p; is the average token generation rate, and o; is the token bucket depth, then
class 7 is guaranteed to obtain a minimum fair service rate shown in Eq. (2).

b Vi € B
ri = [Zjem]” ' 2)
0

otherwise.

L' A class is called backlogged if it has at least one packet in the queue waiting for
transmission on the output link, or idle otherwise.

278 T. Bayle, R. Aibara, and K. Nishimura

(N
Boundary Nodes Configurations

Traffic
Meter l

Traffic Sources ——{'VC‘;‘"‘F‘““ H Marker }—~
assifier

Dropper

Shaper/ %» Traffic Sinks

VoIP{ ;
H l DiffServ Domain { :
CBR { : Ingress |45Mbps| Core |5Mbps | Egress
! Router Router Router

Best-
Effort U

BA (DSCP)

P
Propagation Delay

(all links): 5 ms Interior Node Configurations

. /

Fig. 3. DiffServ Network Model for Simulations

4 Performance Evaluation

The EWFQ algorithm is evaluated using a network simulation test-bed. We im-
plemented the algorithm in the most popular ns-2 network simulator [16], and
then validate its functionality and effectiveness with several simulation results.
The key aspect of the experiment is to evaluate EWFQ scheme on its assurance
of bounds on delay and jitter, as well as the minimum guaranteed bandwidth for
the class that was given high priority, while equally observing its fair allocation
of link bandwidth to other low priority service classes. These performance char-
acteristics enable to determine whether the suggested scheme is fair and efficient,
and can support VoIP applications in DiffServ networks in order to achieve an
acceptable voice quality.

Note that the implementation of different PHBs is achieved through a combi-
nation of a variety of packet classification, packet marking, traffic conditioning,
and buffer management mechanisms. These are on top of our packet scheduling
mechanism, and thus, we make use of all the DiffServ components in our mod-
ified ns-2 to implement both EF and AF PHBs. Also note that the scheduling
mechanism analyzed in this section assumes that the input traffic for both EF
and AF is rate regulated [4 at the ingress hop using traffic policing technique.
Thus, the proposed scheduler does not provide performance guarantees if the in-
put traffic is not conditioned according to some service level agreements (SLAs).
Another assumption is that the effect on high priority traffic should be minimal
or negligible as the medium (AF) and low priority traffic classes are varied.

2 This rate-limiting functionality is achieved using a token bucket scheme that regu-
lates class ¢ traffic with (o4, p;) model in the DiffServ network we consider.

Providing Enhanced Differentiated Services for Real-Time Traffic 279

Table 1. Classifying traffic packets into their service Classes (1% scenario)

Traffic Mapped | No. Flows | Service | Relative
Types Classes | per Class | (PHBs) | Weights
VoIP Class 1 100 EF ¢1 = 60%
CBR (data) || Class 2 5 AF ¢2 = 30%
FTP Class 3 5 BE o3 = 10%

4.1 Simulation Network Model

To evaluate the effectiveness of the algorithm through simulations, we use the
simple network model as depicted in Fig. Bl In this model, we consider a net-
work connection between six computers over a single-domain route in which the
network connection passes through three DiffServ routers.

4.2 Traffic Model

In order to perform more realistic simulations with a variety of traffic behaviors,
we consider three types of traffic mixes as follows: voice traffic, constant-bit-rate
(CBR) data over UDP, and FTP data over TCP. The voice traffic is assumed
to be an exponential distributed on-off traffic of two states, speaking and silence
[15], and consists of 100 flows; each characterized by a packet size of 84 bytes,
burst time 350 ms, idle time 650 ms, and peak rate of 64 kbps during on period.
Therefore, the average sending rate for each voice source is 22.4 kbps, which
comprises the total voice traffic rate about 2.24 Mbps. Our aim is to emulate
a voice traffic over differentiated IP networks so that we can use this as VoIP
traffic model to be treated with DiffServ EF PHB. In fact, the characterization
depends on the coding system utilized, but for our simulations purpose we use
such a simple voice traffic model to simulate VoIP. To describe both the second,
and third traffic classes, we consider two different scenarios based on different
changes in the traffic types and their sending rate behaviors.

Scenario 1. In the first scenario, we imagine the CBR traffic is sending at a
rate more than its subscription rate (oversubscription case), and the background
traffic class comprises 5 FTP sessions. And thus, the second class of traffic con-
sists of 5 CBR sessions, which can be treated with AF PHB, and the third class,
which represents best effort (BE) background traffic, consists of a set of 5 FTP
connections. For FTP traffic transportation, we consider TCP Reno [17], which
is widely used in today’s Internet. Here, the main objective is to observe the
ability of EWFQ mechanism how it can satisfy the delay, and average band-
width requirements of the traffic in the first class (voice traffic) by protecting it
from other misbehaving traffic classes. In this case, the CBR source is sending
traffic at an average rate of 4 Mbps to be served with AF treatment. Imagine
the bandwidth of the bottleneck link is 5 Mbps.

Furthermore, packets from these classes of traffic are scheduled using EWFQ
policy with relative weights of ¢1 = 60%, ¢o = 30%, and ¢3 = 10%, to represent

280 T. Bayle, R. Aibara, and K. Nishimura

Table 2. Classifying traffic packets into their service Classes (2"¢ scenario)

Traffic Mapped | No. Flows | Service | Relative
Types Classes | per Class | (PHBs) | Weights
VoIP Class 1 100 EF P11 = 60%
CBR (data) || Class 2 5 AF 2 = 30%
Self-Similar || Class 3 30 BE ¢s = 10%

DiffServ PHBs of EF, AF, and BE, respectively. Table [l shows the summary of
the traffic mapping into their respective classes, and the corresponding PHBs
treatments for the first scenario. EWFQ was setup at the hot-spot link between
the Core and Egress routers, according to Fig. Bl That means, the three service
classes share the same bottleneck link of capacity 5 Mbps. To isolate the three
types of service classes, each router uses three separate physical output queues of
each size of 100 packets scheduled with EWFQ policy. Then, with this scenario,
we carried out several tests, and measured the results of throughput, latency,
jitter and packet loss for all traffic classes to ensure that the oversubscription
by medium priority (AF) class should not affect the high priority class but only
the low priority class.

Scenario 2. Table 2] shows the summary of the traffic mapping into their re-
spective classes, and PHBs treatments for the second case. In this scenario, as
a background best-effort traffic, we use 30 Pareto On/Off sources, each with an
average rate of 100 kbps to generate an aggregate traffic rate of 3 Mbps. Traffic
characterization according to a Pareto ON/OFF distribution has been proved
to be self-similar in nature [I8]. Such traffic modelling is widely considered to
describe well the selfsimilarity (burstiness) nature of the Internet traffic. More-
over, the total CBR traffic rate was reduced from 4 Mbps into 1.5 Mbps (still
5 CBR sessions). Also, in order to reduce the delay experienced by all packets
because of the queue depth, the three queue sizes are set to be 50 packets.

4.3 Simulation Results and Discussion

In this section, we discuss the results of the simulation described above by show-
ing the benefits of the proposed scheduler in DiffServ network environments. We
record the packet loss, throughput, latency and jitter for each class, as these are
vital performance metrics for supporting real-time voice traffic over IP networks.

Table Bl depicts the summary of packets statistics for each DSCP — Class
match for the first simulation scenario. Here, the packets for each class are identi-
fied by two differentiated services code points (DSCPs), signifying in profile, and
out of profile packets, according to the predefined SLAs. So, this enables, first
to classify marked packets into their corresponding classes, and second, within
each service class, to identify the drop precedences for the buffer management
mechanisms.

Providing Enhanced Differentiated Services for Real-Time Traffic 281

Table 3. Summary of Packets Statistics for each DSCP — Class match (1% scenario)

DSCP Total Pkts | Total Pkts | Total Pkts | Pkts Loss
Mapping Received Sent Drops | Rate (%)
00 — BE 5415 5101 314 6
01 — BE 86 65 21 24
10 — EF 197300 197300 0 0
11 — EF 0 0 0 0
20 — AF 29493 15493 14000 48
21 — AF 0 0 0 0
350 EF Class (weight: 6, = 60%) —= | | 300 EF Class (weight: ¢, = 60%) &
% 300 AF Class (weight: ¢, = 30%) ---%-- |- AF Class (weight: ¢, = 30%) ----
£ BE Class (weight: 03 = 10%) o % 200 BE Class (weight: ¢3 = 10%) o
> 250 E
B 200 powiw g ,’xw *5 X & 100 i
? 150 g
> a
2 100
B 50 ‘Q'a'/ “W'G-g 57‘7/91(70 ‘erq‘b'g‘&mﬂa‘s s o. 100
0 -200
10 15 20 25 30 35 40 45 50 55 60 30 32 34 36 38 40
Time (s) Packet sequence number (x10%)
Fig. 4. Average end-to-end delay Fig. 5. Inter-packet delay jitter (1°¢ sce-
(1% scenario) nario)
45 w
4.0 EF Class (weight: ¢, = 60%) -4 1 100 EF Class (weight: ¢; = 60%) -
__ 35 AF Class (weight: ¢, = 30%) ---- |- AF Class (weight: 6, = 30%) ----
§_ 2.0 BE Class (weight: ¢; = 10%) ——o-— < 80 BE Class (weight: 93 = 10%) o
s 25 A = N x| ¥
ER T N R R PP Y A 8 e0 i
EPYRY. BRI S5 vy~ ed s DA R R
2 15 g I R AR
= i
1.0 = s 20 A
05 000909.6.6.5560005 500,800 P0OP06.400" i /q".‘x I Y o ’ L ,9‘:
0 0 festess oasoons Gooere
10 15 20 25 30 35 40 45 50 55 60 10 15 20 25 30 35 40 45 50 55 60
Time (s) Time (s)

Fig. 6. Bottleneck link bandwidth (1°* Fig. 7. Packet loss at the bottleneck (1%
scenario) scenario)

For the first scenario, the results for different performance metrics are shown
in Fig. [through Fig. [Figure @l and Fig. [present the end-to-end packet
delay and jitter of each class, respectively. From these simulation results, we
observe that voice traffic, which is classified as high priority class (Class 1) for
EF PHB treatment with EWFQ, receives much tight delay bound, while its jitter
is almost insignificantly small. Its request for bandwidth is also fully satisfied
compared with medium (Class 2) and low priority (Class 3) traffic classes. This

282 T. Bayle, R. Aibara, and K. Nishimura

140 EF Class (weight: ¢; = 60%) ---&- s 15 EF Class (weight: ¢; = 60%) -

% 120 AF Class (weight: ¢, = 30%) --x-- | | 10 AF Class (weight: 0, = 30%) ---x--
3 BE Class (weight: 03 = 10%) -——o-- & BE Class (weight: 93 = 10%) --—o--
& 100 E 5
2 5 FAA P 2 00 o ; 700 1
S 60 o o 3
° o 5
lﬁ 40 EAKK X EXXXK X ° J)

20 -10

01 0 15 20 25 30 35 40 45 50 55 60 ! 520 22 24 26 28 30
Time (s) Packet sequence number (x1 03)

Fig. 8. Average end-to-end delay (2"¢ Fig.9. Inter-packet delay jitter (2"¢ sce-
scenario) nario)

is true even when the rates of the background best effort traffic is increased. For
example, if the weight ¢, is set to be more bigger, and at the same time the voice
traffic class has many more sessions to establish, then the performance of other
classes is degraded significantly due to the delay in their respective queues. This
is because the scheduler visits much often the queue for high priority class for it
has a big weight assigned by EWFQ.

As one can see clearly from Fig. Hland Fig. [0, the delay and packet loss for
AF class are rather high compared to the best-effort class. There are two obvious
factors that can be causing such behavior. First, the background traffic consists
of a set of TCP flows, and thus react to congestion by shrinking their flow-control
windows and sending less packets to reduce the packet loss. In fact, as it can
been seen from Fig. [0 and Fig. @] this behavior of TCP traffic results in lower
bandwidth and poor response times, respectively. Second, and more important
is that the traffic destined to AF class is sending with a rate much higher than
the subscribed rate, 4 Mbps. As a result, packets from this class suffer much
from the combination of both packet loss and longer delay in the queue.

On the other hand, the real-time packets marked for EF treatment are for-
warded with very low end-to-end delay (about 30 ms), minimal jitter and no
packet loss compared with packets marked for other service classes. This holds
true as long as it complies with the SLA of the network. We also observe that
it is difficult to create a wide range of influence on the targeted service classes
when the background best-effort traffic consists of a set of TCP flows. This is, as
described above, partly because of the TCP behavior itself, and partly there are
several other parameters needed to be tuned, especially with RIO (RED with
In and Out) buffer management mechanism that makes it extremely difficult to
generate the desired effect.

For the second scenario, Fig. Blthrough Fig. [Tl present the end-to-end delay,
jitter, throughput, and packet loss results, respectively, using EWFQ scheme.
These results are supplemented with the packet loss results in Table Hl Note
that we use self-similar traffic as a background best-effort traffic. Even in this
case, the performance of voice traffic is not affected by the self-similarity nature

Providing Enhanced Differentiated Services for Real-Time Traffic 283
4.0 —————— —
35 EF Class (weight: ¢; = 60%) ---&- 100 EF Class (weight: ¢; = 60%) -
AF Class (weight: ¢, = 30%) -~ -- AF Class (weight: ¢, = 30%) -~
2 3.0 BE Class (weight: ¢5 = 10%) —o- — &0 BE Class (weight: ¢; = 10%) —o-—
o N B
25 < a Q
= A o aa Pa, ahs A0 8 AT AYS L AN W A Sl
5 50 ; £ msans B A " o 60 PPwCES \ Y
2 - B A
S 15 S 40 Ay
3 FXHEEHHRBEED AN @ b
o0 [%4 % o T o900 Sot g & °
’ 20
05
0

0.0
10 15 20 25 30 35 40 45 50 55 60

Time (s)

Fig. 10. Bottleneck link bandwidth (2"¢

10 15 20 25 30 35 40 45 50 55 60

Time (s)

Fig.11. Packet loss at the bottleneck

scenario) (2" scenario)
Table 4. Summary of Packets Statistics for each DSCP — Class match (2" scenario)
DSCP Total Pkts | Total Pkts | Total Pkts | Pkts Loss
Mapping Received Sent Drops | Rate (%)
00 — BE 59486 29666 29820 50
01 - BE 32877 8373 24504 75
10 — EF 197429 197429 0 0
11 - EF 23 23 0 0
20 — AF 11154 11154 0 0
21 —» AF 0 0 0 0

of the traffic. This time, what one can see from Fig. [8 and Fig. [d is that for
both EF and AF classes the delay is minimal, and almost no jitter, respectively.
And from Fig. [, and Table @ we also observe no packet loss for the two
classes except best-effort class, which is expected. This is mainly because that
our scheduler also bounds the delay and packet loss for AF class, as long as the
traffic is within its allowed rate.

As for the bandwidth, both EF and AF traffic are also guaranteed with their
requirements. This can be seen clearly in Fig. [0l And since the voice traffic
consists of on/off traffic sources, during the on period it is ensured all its QoS
requirement, but during its off time, the bandwidth which is not used by it is
consumed by the best effort traffic. So, whenever excess bandwidth is available,
EWFQ distributes this extra bandwidth among all the classes proportionally,
i.e., according to their relative weights.

With EWFQ, all results in the above Figures show clearly how all voice
packets are served with the highest assurance of delay bounds, minimal jitter,
bandwidth guarantees, and packet loss regardless of the rates of medium and low
priority classes. For other classes, the delay and delay variations are correlated
largely with the increment of their average queue sizes during congestion, and
their corresponding weights, as well. This is mainly due to the 60% of the service
time of the scheduler is spent for serving the voice class. As a result, the more the
queue is in congestion, the more the delay for packets to reach the destination

284 T. Bayle, R. Aibara, and K. Nishimura

is increased. The delay and jitter problems will be more aggravated if the queue
size is getting large. On the other hand, the queue size should be set large enough
to avoid packet loss. So, one has to face a tradeoff between packet loss and delay
for medium and low classes during times of high congestion.

5 Conclusion and Future Work

In this paper, we study whether it is feasible to achieve fair and scalable band-
width sharing while supporting better bounds on end-to-end delay for real-time
IP traffic classes within the DiffServ framework. To this end, we propose a
scheduling mechanism called EWFQ. The proposed scheme is effective in provid-
ing efficient and enhanced services for real-time multimedia traffic class, such as
VoIP, over other non-real-time traffic classes while providing the additional bene-
fits of fair bandwidth sharing among all the classes proportionally. With EWFQ),
it is possible to maintain tight delay bound for high priority class, and distribute
the bandwidth according to the predetermined weights for all service classes. The
results demonstrate that the mechanism has the capability for providing service
isolation needed among different traffic classes in the network by protecting high
priority class from other misbehaving traffic classes, which is vital in order to
support real-time multimedia applications in the Internet. Another important
aspect of EWFQ), in the same context, is that the scheme lowers significantly
its implementation complexity, while maintaining the required end-to-end delay
bounds and bandwidth fairness, along with scalability.

Further work on testing the algorithm in the realistic Internet environments is
needed to see the impacts of extreme events. Other future work to consider, which
would also most likely be important in this regard is to provide mathematical
analysis on the end-to-end delay bound of EWFQ algorithm to show further its
strengths and limitations in comparison with other approaches.

Acknowledgement. This work was supported in part by Telecommunication
Advancement Organization Grant for Application Research and Development
on Japan Gigabit Network (JGN-P341005).

References

1. R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet Architecture:
an Overview,” RFC 1633, June 1994.

2. S. Black, et al., “An Architecture for Differentiated Services,” RFC2475, Dec. 1998.

3. V. Jacobson, K. Nichols, K. Poduri, “An Expedited Forwarding PHB,” RFC2598,
June 1999.

4. J. Heinanen, et al., “Assured Forwarding PHB Group,” RFC2597, June 1999.

5. Zheng Wang, “Internet QoS: Architectures and Mechanisms for Quality of Service,”
Morgan Kufmann, March 2001. (ISBN: 1558606084)

6. T. Bayle, R. Aibara and K. Nishimura, “Scheduling IP Traffic for Enhanced Ser-
vices in DiffServ Networks,” Proc. of APCC2002, September 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Providing Enhanced Differentiated Services for Real-Time Traffic 285

. A.Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair-Queueing
Algorithm,” Proc. ACM SIGCOMM ’89, September 1989.

H. Zhang and D. Ferrari, “Rate Controlled Static Priority Queueing,” Proceedings
of IEEE INFOCOMM 1993.

A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM
Transactions on Networking, Vol. 1, No. 3, June 1993.

M. Shreedhar and G. Varghese, “Efficient Fair Queueing using Deficit Round
Robin,” Proc. ACM SIGCOMM ’95, Vol. 25, No. 4, October 1995.

S. J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broadband Applica-
tions,” Proc. INFOCOM ’94, Apr. 1994. April 1994.

P. Goyal, Harrick M. Vin, H. Cheng, “Start-time Fair Queueing: A Scheduling Al-
gorithm for Integrated Services Packet Switching Networks,” IEEE/ACM Trans-
actions on Networking, Vol. 5, No. 5, October 1997.

Bennett, J. and Zhang, H. “WF2Q: Worst-case Fair Weighted Fair Queueing,”
Proceedings of IEEE INFOCOM ’96, March 1996.

Bennett, J. and Zhang, H. “Hierarchical Packet Fair Queueing Algorithms,” Proc.
ACM SIGCOMM 96, August 1996.

J. G. Gruber, “A Comparison of Measured and Calculated Speech Temporal Pa-
rameters Relevant to Speech Activity Detection”, IEEE Trans. Communs., Vol.
COM-30, No. 4, pp 728-738, 1982.

“The Network Simulator, NS-2,” http://www.isi.edu/nsnam/ns/.

J. Padhye et al., “Modeling TCP Reno performance: a simple model and its em-
pirical validation,” IEEE/ACM Transactions on Networking 8, April 2000.

W. E. Leland, et al., “On the Self-Similar Nature of Ethernet Traffic,” Proc. SIG-
COMB93, 1993, San Francisco, California, pp. 183-193.

	Introduction
	Background and Related Work
	Proposed Scheduler: EWFQ
	Performance Evaluation
	Simulation Network Model
	Traffic Model
	Simulation Results and Discussion

	Conclusion and Future Work

