
Achieving Relative Differentiated Services Using
Proportional Probabilistic Priority Scheduling

on Network Processor

Chee-Wei Tan and Chen-Khong Tham

Department of Electrical and Computer Engineering,
National University of Singapore, Singapore 119260
cheewei@alumni.nus.edu.sg, eletck@nus.edu.sg

Abstract. This paper studies the design and performance of the Prob-
abilistic Priority (PP) packet scheduling algorithm to schedule packets.
Unlike an earlier design that uses fractional arithmetic and prohibits
large number of classes, we present an integer PP algorithm and show
that PP is a special scheme of applying lottery scheduling to bandwidth
allocation in a strict priority sense. We then propose a Multi-winner
PP (MPP) scheduler using multi-winner lottery scheduling to improve
the throughput and response time accuracy and a flexible ticket transfer
algorithm to improve the deadline violation probability in probabilistic
scheduling. Finally, we investigate the issue of parameter assignment for
an MPP scheduler and use our techniques to implement a prototype
Assured Forwarding (AF) mechanism in a network processor.

1 Introduction

In the Differentiated Service (DiffServ) architecture, individual flows with sim-
ilar Quality-of-Service (QoS) requirements are aggregated, and given the same
treatment as described by a Per-Hop-Behavior (PHB) in terms of QoS metrics
such as average packet delay, packet loss and jitter. The routers do not keep
per-flow states and there are no complex resource signaling mechanism involved
[1]. The Assured Forwarding (AF) PHB guarantees only that the assured traffic
is delivered with a higher probability than the best-effort traffic; in the case of
severe network congestion, the assured traffic can still experience severe losses
and high delay. This paper analyzes the Probabilistic Priority (PP) scheduling
discipline within the framework of relative service differentiation. PP adopts a
probabilistic relative service model. At every service round, each class takes a
bid. Since higher priority classes have higher probabilities associated with them,
in the long run, they will be served more often than lower priority classes. As
compared to Strict Priority (SP), this increases fairness among classes and pre-
vent the starvation of lower priority classes. We first show that PP is a cross
application of lottery scheduling in a strict priority sense to provide propor-
tional bandwidth sharing among classes. This in turn allows us to benefit from
numerous techniques presented in [7,8] to control PP. The lottery and stride

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 300–312, 2003.
c© IFIP International Federation for Information Processing 2003

Achieving Relative Differentiated Services 301

scheduling algorithms are very well-known scheduler for statistical allocation of
CPU resources [7,8]. Lottery scheduling randomizes resource allocation among
clients whose shares of resources are represented by tickets using policies such as
ticket inflation and deflation. An allocation is performed by holding a lottery, and
the resource is granted to the client with the winning ticket. Multi-winner lottery
scheduling is a variant of lottery scheduling that produces better throughput ac-
curacy for many workloads. Based on this multi-winner concept, we formulate a
multi-winner PP algorithm to improve the response-time variability of PP. As
lottery scheduling is effectively stateless, a great deal of complexity is removed
in comparison to other proportional schedulers. The feasibility of using lottery
scheduling in packet forwarding has been analyzed in [2,4,9] but no work has
been done to address its weaknesses at the packet level due to its probabilistic
nature. The probabilistic relative service model is only suitable for applications
that are able to tolerate deadline violations of a few packets. We propose a
technique that is analogous to the idea of dynamically-controlled ticket trans-
fer which has been applied to graphics rendering and Monte-Carlo tasks [8] to
address this problem.

The rest of the paper is organized as follows. We propose an efficient integer
PP algorithm in section 2 and show that PP is indeed a cross application of lot-
tery scheduling. We use the multi-winner concept to generalize PP to improve
its throughput accuracy and reduce its response-time variation. We present a
technique based on flexible ticket transfer to reduce the deadline violation prob-
ability in times of congestion. In Section 3, we investigate parameter assignment
and propose a framework to implement Assured Forwarding. Our implementa-
tion is described in Section 4. A performance study on a network processor-based
router is presented in Section 5. We conclude in Section 6.

2 Probabilistic Priority Scheduler

2.1 Basic PP Integer Algorithm

The work conserving PP Scheduler is based on the SP scheduler with each queue
being assigned a probability pi [4]. By appropriate setting of a parameter pi ∈
[0, 1], i = 1, . . . N −1 and pN = 1 in a multi-class system, a class is selected with
a probability corresponding to equation (1) for service at every cycle. A class
parameter of pi = 1 means that the class i definitely gets served when polled if
all higher priority classes are empty or not selected during the cycle. Hence PP
reduces to SP when pi = 1.0, i = 1, . . . N . Here, we derive an integer algorithm
and show that it is indeed a cross application of lottery scheduling in the strict
priority sense.

First, consider a multi-class system of N priority levels with the highest
priority level denoted by 1. Let us define the weight of class i to share the
server [4] as

ri = pi

i−1∏

j=1

(1 − pj) (1)

302 C.-W. Tan and C.-K. Tham

Without loss of generality, assume that all classes in the system are busy so that
the normalized weight of class i among all classes is

r̂i∈Ω =
ri∑

j∈Ω rj
(2)

where Ω consists of all queues, i.e. {1, . . . , N}. After rearranging all ri such that
they share a common denominator of lowest common multiple, we have

r̂i∈Ω =
xi∑

j∈Ω xj
(3)

where xj is the numerator of the normalized relative weight r̂i. It is easy to see
that this will also be true for all network conditions:

r̂i∈BQ =
xi∑

j∈BQ xj
, BQ ∈ Ω (4)

where BQ is the set of non-empty queues in Ω. For example, BQ = {1, 2}
which denotes non-empty queue 1 and 2 can be found in Ω. The total num-
ber of possible network conditions, i.e. the permutation of non-empty queues in
Ω, is equal to 2N − 1 but the most interesting set would be the total number
of possible network conditions with more than one non-empty queue which is

equal to M =
∑N−1

i=1
∑N−i

j=1

(
N − i

j

)
= 2N − N − 1. We now have numerator

xi to calculate r̂i without having to store in advance r̂i for all possible combina-
tions of empty and non-empty queues with each combination corresponding to
a particular instance of Ω. This effectively removes both the need for fractional
arithmetic in recalculation of network states whenever pi changes dynamically
and the restriction for a small set of all possible network states. The integer
algorithm of PP works without the need for a priori network state computation.
PP is analogous to having sets of different numbers of tickets that are present
in a service round with each set corresponding to one of the network conditions
in M .

2.2 Multi-winner PP (MPP) Integer Algorithm

Multi-winner lottery scheduling is a generalization of the basic lottery scheduling
technique that produces better throughput accuracy and smaller response-time
variation [8]. Instead of selecting a winner per round, Nw winners are selected
with only the first winner being randomly selected and each winner is guaranteed
the use of the resource for one quantum. The set of Nw consecutive quanta
allocated by a single multi-winner lottery is referred to as a super-quantum. Due
to the probabilistic nature of PP, the highest priority class can exhibit substantial
variability over small time scales which can cause its HOL packet to miss its
deadline if sufficient numbers of service round are given to its lower priority
classes instead. At worst, this may cause buffer overflow and incoming high
priority packets to be dropped. This necessitates incorporating a deterministic

Achieving Relative Differentiated Services 303

mechanism in PP to achieve predictable behavior at small time scales. We use
the multi-winner concept to extend the original PP integer algorithm. In this
paper, we use a fixed value of Nw = 20. The ordering of the winners in MPP is
based on a fixed permutation that goes in a round robin fashion, starting from
the first winner and followed by its immediate lower priority class. This integer
algorithm requires a total of 2N − 1 uniform distributions of integer random
numbers for N classes. This is analogous to the total number of tickets differing
in every service round of lottery scheduling. Waldspurger et al. [7] provides a
multiplicative linear congruential Park-Miller pseudo random number generator
in MIPS assembly language code but we use a generic algorithm U-map described
in section 4 to scale uniform distributions without using multiplication assembly
language instructions. In our algorithm, each super-quantum is reset back to
0 when the network condition changes which would happen very often if the
system is highly loaded. This implies that MPP is able to reduce the throughput
error and response-time variability. Through extensive simulations under heavy
load conditions, we observe that the super-quantum is reset on an average of
about 85% of the total time. Hence Nw does not have a significant impact on
the reduction rate of throughput error. The advantage of MPP over PP appears
to be small for 8 classes but by keeping the number of classes small, we can
increase the number of winners to provide stricter throughput guarantees within
a class.

2.3 Flexible Ticket Transfer Algorithm

In the previous section, we described an extension of PP to achieve throughput
guarantee. In this section, we aim to reduce the time given up to the lower pri-
ority classes by the higher priority classes (”slack” in probabilistic scheduling)
by setting a rate of approaching strict prioritization using the relationship be-
tween delays of different classes. In particular, we use the following propositions
of average delay of class i, Wi proven in [6] to affect pi.
(1) As pj ↑ [0 → 1]1 for j < i, Wi is continuously and monotonically increasing.
(2) As pi ↑ [0 → 1], Wi is continuously and monotonically decreasing.
(3) As pj ↑ [0 → 1] for j > i, Wi is nearly constant under congested network
conditions.
Let us define the initial parameter ri for class i that satisfies the relationship
r1 ≥ r2 · · · ≥ ri ≥ · · · ≥ rN for the multi-class system where Class 1 is the high-
est priority class. Such assignment means that the probability of higher priority
class is larger. This algorithm consists of the following two steps. The first step
is to reduce the probability of a lower priority class after it has been served by
transferring some probability to its immediate higher priority class. Note that
the transfer of tickets from the class served to its immediate higher priority
class will create a snowball effect that will cause the highest priority class to be
eventually served while still using probabilistic scheduling. The second step is to
preserve as much as possible the priority allocation that is defined at the start of
1 Following [6], the notation ”x ↑ [0 → 1]” means ”x increases from 0 to 1”.

304 C.-W. Tan and C.-K. Tham

the algorithm by transferring probability starting from the lowest priority class
even though it has not been served to the immediate higher priority class of the
class being served if the first step persists. Eventually the class that continuously
gets served will lose its bid after the probabilities of all lower priority classes have
been depleted.

Table 1. Outline of ticket transfer algorithm

At each service round, suppose classes 1 to L, corresponding to a particular network
condition BQ ∈ M = 2N − N − 1 where N is the total number of classes, are busy,

1. If class i, 1 < i ≤ L, gets served, then r
′
i = max (ri − �i, ri+1), and

r
′
i−1 = min (ri−1 + �i, 1.0), such that r

′
i ≥ ri+1, i.e. transfer �i of probability being

served to the immediate next higher priority level with ri �= 0.

2. If ri = ri+1, then r
′
k = (rk − �k)+, i < k ≤ L where k is the lowest priority class

in BQ that satisfies rk �= 0, and r
′
i−1 = min (ri−1 + �k, 1.0), i.e. transfer �k of

probability being served to the immediate next higher priority class i − 1.

3. If the highest priority class is served or the network condition BQ changes,
r

′
i = ri, i.e. reset all class parameters back to their original ri.

From the algorithm shown in Table 1 and equation (1), we can make the
following propositions:
(a) If pi+1 < pi

1−pi
≤ 1 and �i of probability to be served is transferred from

class i to class i − 1, p̂i decreases, p̂i−1 increases, and p̂j , j �= i, i − 1 remains
constant.
(b) If pi+1 = pi

1−pi
≤ 1, and �k of probability to be served is transferred from

class k, i < k ≤ L to class i−1, p̂j ↑
[
porig

j → 1
]
, j ≤ i where porig

j is the original
PP parameter of class j.
Proposition (a) states that only the probabilities of the class served and its im-
mediate higher priority class will change while the other classes will maintain the
original PP configurations at the initial stages after the algorithm begins while
proposition (b) states that higher class priority will approach the configuration
of SP, i.e. p̂j → 1, p̂j �= 0, 1 < j ≤ i if the situation where the highest priority
class HOL packet is not served while class i is constantly being served persists.
Therefore, from proposition (1) and (2), the average delays of classes with higher
priorities than class i will decrease monotonically over time while those classes
with lower priorities than class i will increase monotonically over time. We intro-
duce an additional parameter �i to provide a dynamic feed-forward mechanism
based on the current workload or the slack of the corresponding high priority
HOL packet. This user-tunable class parameter �i can be a function of the
class’s burstiness or the higher priority classes’ backlog. It provides a way for
the original PP to approach SP in a configurable length of time so that the HOL
packet of higher priority classes will not exceed its deadline unnecessarily.

Achieving Relative Differentiated Services 305

2.4 Simulation Studies

In this section, we consider scenarios with high traffic loads and tight deadlines
for each class. For each class, we use Long range dependent (LRD) traffic modeled
as Pareto On-off processes with shape parameter 1.3 since aggregated traffic in
real DiffServ networks is LRD in nature. The mean service time is taken to be
the unit of time and the service times of packets in each class follow the same
exponential distribution with mean 1.0 units. Results are averaged over 106 time
unit simulation windows unless otherwise indicated. Throughout this paper, we
use λi and ρi to denote the arrival rate and traffic intensity of class i respectively.
In Table 2, the arrival rates for all classes are the same, i.e. ρi = 0.125 so the
system is not overloaded, i.e. ρ = 1.0. Each class has the same parameter i.e.
pi = 0.6, i �= N . To compare the performance between the various schemes,
we use deadline violation probability in Table 2 as a performance metric. The
deadlines for class 1 to N , where N = 8, are arbitrary selected as 11, 16.5,
22, 27.5, 33, 38.5, 44, and 49.5 time units respectively. The probability transfer
quantum is the same for all classes, i.e. �i = min (0.15, ri).

Table 2. Comparison of (a)deadline violation probabilities (%) and (b)average delay
(time units) under full utilization condition

PP/Lottery MPP MPP w/ ticket xfer SP
Class 1 0.114 0.069 0.036 0.000
Class 2 0.172 0.082 0.068 0.010
Class 3 4.297 1.680 0.646 0.410
Class 4 23.513 17.883 11.451 9.647
Class 5 34.696 27.678 21.410 14.609
Class 6 57.679 45.020 35.453 27.650
Class 7 91.627 88.020 64.952 58.243
Class 8 94.831 90.671 67.316 100.000

PP/Lottery MPP MPP w/ ticket xfer
Class 1 1.350 1.170 1.201
Class 2 1.990 1.460 1.450
Class 3 4.920 3.550 3.471
Class 4 55.290 45.640 37.400
Class 5 198.490 214.620 120.810
Class 6 555.440 402.180 240.080
Class 7 6719.060 3726.320 1973.990
Class 8 22243.940 19847.430 7240.370

Results in Table 2 indicates that ticket transfer algorithm does not have
an adverse effect on low priority class though it discriminates against them by
allowing high priority classes to be selected as fast as possible. In addition, it

306 C.-W. Tan and C.-K. Tham

also suggests that this mechanism improves deadline violation probability of low
priority classes as opposed to intuition which we investigate next.

We now consider the ticket transfer algorithm used in a 4-class system to
evaluate its effectiveness. Each class has parameter p1 = 0.5, p2 = 0.55, p3 = 0.6
and p4 = 1.0. Note this parameter assignment provides lower priority classes
with higher probabilities of being serviced than in previous simulations. Fig.
1 shows the probabilities of all possible network conditions occurring in the
system for SP, PP and MPP with ticket transfer schedulers at both short (103

time units) and long timescales (106 time units) with respect to packet service
times under different loads. Each network condition is binary-coded as follows:
bit 0 corresponds to the highest priority class, class 1 hence 0101B implies that
only class 1 and 3 are present. Note that the network condition is a function
of offered loads and scheduling mechanism. We also compare the Pareto on-
off traffic model with the token bucket-constrained traffic model with a bucket
depth of 17 time units which exhibits short bursts.

Fig. 1. (a) Comparison of network condition probabilities between PP, SP and MPP
with ticket transfer scheme under light load (b) Comparison of network condition
probabilities between PP, SP and MPP with ticket transfer scheme under heavy load

Note that, in contrast to intuition, the deadline violation probability of the
lowest priority class is improved significantly when the ticket transfer algorithm
is used because higher priority classes are assured to get transmitted within short
timescale and this implies that the probability of network conditions containing
these high priority classes occurring within a longer time frame will be smaller
than that in comparison to normal PP scheduling. From Fig. 1 and Fig. 2, we
can make the following observations:

Achieving Relative Differentiated Services 307

Fig. 2. Average queueing delay under different traffic loads using Pareto on-off and
token bucket filter constrained traffic

– We found that MPP with ticket transfer can always achieve smaller average
delay and deadline violation probability than PP and MPP scheme for most
classes. Its deadline violation probability of the lowest priority class can be
better than SP.

– Generally the delay of token bucket-constrained traffic lies in between the
M/G/1 delay bounds derived in [6]. But the heavy-tailedness of Pareto
on-off, for eg. with a shape parameter of 1.3, and burst rate 0.25 can cause
the delay to exceed the M/G/1 delay bound.

– The ticket transfer algorithm has an evident impact on reducing the mean
delay of all classes except the lowest priority class. This is due to: (a) the
probability of the network condition 12 (1100B) that contains only the two
lowest priority classes becomes higher, and (b) the probability of the network
condition 15 (1111B) that contains all classes becomes smaller, and in both
cases, they approach that of SP. Both (a) and (b) increase the probability
of the lower classes being serviced. Since the algorithm differentiates that
higher priority classes are served as fast as possible when network condi-
tions containing them appear, the mean delays of higher priority classes will
therefore be much smaller than PP.

308 C.-W. Tan and C.-K. Tham

3 Achieving Assured Forwarding Using MPP

We consider 8 QoS classes and we configure a MPP scheduler to have 2 segrega-
tion groups AF1 and AF2. Each group has the last parameter pAF1

4 = pAF2
4 = 1.

In each group, the AF classes are assigned parameters pAFi
1 < pAFi

2 < · · · < pAFi
4 ,

i = 1, 2. The following theorem ensures that this parameter assignment guaran-
tees AF classes to obtain better statistical relative delay service differentiation
than its immediate lower priority class. The group segregation property states
that in PP, the service discipline among segregation groups is exactly the Strict
Priority discipline hence the first AF group is guaranteed to have better service
than the second group in terms of delay [4]. By means of segregation, this frame-
work (a) provides more isolation among high priority classes that demand low
delay and deadline violation probability, and low priority classes that require at
least best effort service, and (b) reduces the number of classes within a group
as this means a smaller number of network conditions within each group there-
fore we can configure more number of winners within each super-quantum, i.e.
smaller spacing between consecutive winners to improve the response time vari-
ability in multi-winner scheduling. Since each group is based on MPP scheduling,
there is fairness in the resource allocation within each group by means of fair
distribution to excess capacity [4]. The ticket transfer algorithm is used in the
first segregation group to provide improved deadline violation probability and
average delay. Since we do not consider admission control, we expect some form
of policing to limit the burst size and amount of bandwidth admitted to each
class to prevent starvation if a non-conforming flow enters the node.

Theorem 1. An assignment of average probability parameter for each class
where 0 < p1 < p2 · · · < pN = 1 satisfies the priority hierarchy for relative
service differentiation.

Proof. Define ri as in equation (1) and qi as the average queue length of class i.
At steady state, we want higher priority classes to have shorter backlogs. Hence
using the relationship that ri

r1
∝ qi

q1
, we can use Little’s theorem [5] to show that

pi = λi∏i−1
k=1(1−pk)

∑N
j=1 λj

, i = 1, . . . , N . Since pi−1 = λi−1∏i−2
k=1(1−pk)

∑N
j=1 λj

there-

fore pi−1
pi

= λi−1
λi

(1 − pi−1) which can be further simplified to pi−1λi

(1
pi

+λi−1
λi

)
=

λi−1. Since the highest priority class gets served with the highest probabil-
ity, its average departure rate must be the greatest among all classes, i.e.
λ1 > λ2 · · · > λN > 0. Thus we have pi−1

(1
pi

+ λi−1
λi

)
> 1. Rearranging the

term leads to pipi−1
pi−pi−1

> λi

λi−1
hence pi−1 < pi. Thus the theorem is implied.

Since this assignment is independent of the number of classes in the system,
p1 > 1

2 .

4 Efficient Implementation of MPP in IXP1200

We implemented our proportional bandwidth guaranteed probabilistic priority
multi-class framework proposed in the previous section on Intel IXP1200 network

Achieving Relative Differentiated Services 309

processor [3]2. To convert the class parameter pi to tickets in lottery schedul-
ing, all the assigned parameters pi within a group are normalized to their least
common multiple. For a large number of classes, we use Euclid’s Greatest Com-
mon Divisor algorithm to speed up computation in the StrongARM core before
supplying the scheduler’s parameters in a numerator vector string to the micro-
engines. For an 8-class system at an egress port, all the class parameters are
stored in only two SRAM memory words with each parameter pi occupying 8
bits thus the smallest probability being addressable is 1

256 which offers relatively
high computational granularity. In comparison, earlier implementation [6] will
require over 100 Bytes of parameters’ storage and larger memory access over-
heads. Clearly, our approach reduces memory access overhead drastically and
accommodates more classes in a multi-port setting.

4.1 Fast Algorithm for Scaling Uniform Distribution

The StrongARM is elected to run a periodic task of generating uniform pseudo-
random numbers in the SRAM. When the microengines require a random num-
ber for computation, they simply do a table lookup. This table has to be up-
dated often by StrongARM to prevent a microengine from reading the same
entry twice. However, we note that too high a refreshing frequency will lead to
a higher latency for a microengine’s SRAM read operation to this shared table
due to increased contention between StrongARM and microengines. Numerous
techniques exist for scaling uniform random numbers. An exact scaling method
would convert the random number from an integer to a floating-point number be-
tween 0 and 1, multiply it by X, and then convert the result back to the nearest
integer [8]. Alternatively, 32-bit random numbers in a particular uniform dis-
tribution, Uniform[0, X] can be obtained by dividing any random 32-bit wide
number in the range 0 to 232 − 1 by X and keeping the remainder under the
assumption that X 	 232 − 1 [8]. Due to the significant computation overhead
of integer division (measured as 378 cycles and independent of the value size
of X), this method is not scalable without a pseudo random number generation
co-processor. From the observation that each bit in any 32-bit uniformly dis-
tributed random number has an equal chance of being a ”1” or ”0”, we use a
simple generic bit-wise algorithm to map this uniform random number into an-
other equally uniform random number, effectively scaling Uniform

[
0, 232 − 1

]

to Uniform [0, X]. This algorithm shown in Table 3 first performs the AND
operation, and then re-claims those bits lost in the AND operation, ignoring
bits which are outside the desired range. It is noteworthy that the instruction
cycle count for this algorithm depends on the value size of X, i.e. we can trade-off
computational granularity with speed. For X less than 255, this algorithm takes
41 instruction cycle counts. In the worst case, mapping a full 32-bit value of X
requires a maximum of 173 instruction cycle counts but the gain is already an
exponential increase in computational granularity to approximately 232 − 1.

2 We use Intel network processor IXM1200 c-PCI hardware based on IXP1240 chipset.

310 C.-W. Tan and C.-K. Tham

Table 3. U-Map scaling algorithm

int result = 0;
int comparator = denominator & random_number;

if(comparator == 0) comparator = denominator;
while(comparator)

{
result | = (comparator & random_number);
comparator >>= 1;

}
if(result > denominator) result = denominator ˆ result;
return result;

5 Performance Study and Results

In this section, we evaluate the performance of our implementation. In our ex-
periments, we use token bucket metering to characterize the service and allocate
a pre-calculated buffer space for each class. We present here the results in terms
of mean delay and deadline violation probability. The topology of the experi-
mental test-bed is shown in Fig. 3. All network links are full-duplex and have a
capacity of 100 Mbps. We classify the traffic generated as Assured Forwarding
(AF) and Best-Effort (BE). We implement 8 QoS classes with DiffServ Code-
points (DSCP) classification using our framework with two segregation groups.
Each priority class in AF has marking 0x2e, 0x0a, 0x12, 0x1a, 0x22, 0x0c, 0x14,
and 0 respectively. Class 1 and 2 traffic is sent from Sender 1 with the rest of the
traffic in Class 3 to 8 from Sender 2. All flows are independent Poisson processes
with exponentially distributed packet lengths and have the same mean sending
rate and mean packet size. In order to simulate congestion, we use one IXP1200
(IXP Router 2) to generate high volume of traffic at the Gigabit output which is
in turn forwarded to the Fast Ethernet output port on the other IXP1200 (IXP
Router 1) which runs the MPP scheduler algorithm. Additional cross-traffic is
also generated in the background to vary the congestion load pattern. All traffic
terminates at Receiver.

The parameters for the framework are as shown in Fig. 3.The deadline viola-
tion probabilities of class 1 and class 2 are shown in Fig. 4(a). As expected, the
deadline violation probabilities of class 1 and class 2 of MPP with ticket transfer
scheme lie in between that of normal PP and SP. At low load, the deadline vio-
lation probability is very close to that of SP. Fig. 4(b) shows the average delay
ratio between classes of the MPP with ticket transfer scheme measured within
an interval of 1 hour. As the traffic load increases, the delay differences between
classes become wider. Thus, with appropriating setting of the class parameter as
described in section 4, higher priority classes get better delay differentiation at
medium to high load. Due to space limitation, we do not present the packet loss
statistics but we observe that the packet loss for each class in our experiments
is strictly increasing as the priorities get lower. Note in Fig. 4(b) that the delay

Achieving Relative Differentiated Services 311

Sender 1
- 192.168.133.y

Receiver
- 192.168.133.x

Sender 2
- 192.168.133.z

Cross Traffic
Sub-net

IXP Router 1

IXP Router 2

Ethernet
Switch

Group 0

Group 1

Get
Denominator
& Compute

Lottery

Comparator

Euclid’s
GCD

Algorithm Random Num
Generator

PP Parameters

Microengines

Reiteration

AF1 : {p1=0.5, p2=0.55, p3=0.6, p4=1.0}
AF2 : {p1=0.7, p2=0.75, p3=0.8, p4=1.0}

StrongARM

Packet transmitted

Fig. 3. (a)Relative DiffServ Test-bed and Assured Forwarding framework configuration
(b) Block diagram of implementation on IXP1200 network processor

spacing between the last class in AF1 and the first class in AF2 is quite small.
However, MPP scheduler observes the strict priority rule between segregation
groups hence we can expect packet loss and deadline violation probability of the
first class in AF2 to be higher.

Fig. 4. (a)Deadline violation probabilities (b)Delay ratios between classes

In order to compare the impact of packet sizes on the performance of the
MPP with ticket transfer scheme with PP scheme under congested conditions,
we repeated the same experiments with different packet size distributions. The
observed experimental results were largely similar to those obtained above but

312 C.-W. Tan and C.-K. Tham

we note that for large packet size close to MTU, the benefit of the ticket transfer
algorithm is not so obvious because, at high load, the time for a single packet
transmission becomes longer thereby increasing the probability of the network
condition where all classes’ HOL packets are present as is in the case of SP.
Nevertheless, the queuing delays in this case are still not as high as those for SP
or the PP scheme. In summary, the MPP with ticket transfer scheme is good
when the primary goal is to provide relative delay differentiation as in SP while
ensuring that deadlines of higher priority classes are not unnecessarily violated,
and also meeting specific timing requirements, for eg. small delay bounds for
high priority classes as in absolute QoS.

6 Conclusion

This paper showed that PP is a special scheme of lottery scheduling in the strict
priority sense and the PP algorithm was generalized to a Multi-winner PP al-
gorithm which ensures that high priority classes get served within deterministic
time quanta. A ticket transfer algorithm was proposed to overcome the problem
of the highest priority class from missing its deadline at small time scales. Sim-
ulations showed that MPP with ticket transfer surpasses the original PP and
SP using bursty traffic class aggregation. Our algorithm provides lower deadline
violation probability and mean delay to most classes than original PP. Finally,
we presented the performance of our algorithms on high-speed routers.

References

1. S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang and W. Weiss, An architecture
for differentiated services, IETF RFC 2475, Dec 1998.

2. J. Eggleston and S. Jamin, Differentiated services with lottery scheduling, Proc.
Int’l Workshop on Quality of Service (IWQoS’01), Jun 2001.

3. Intel IXP 1200 Network Processor: Microcode Programmer’s Reference Manual Re-
vision 11, Part No. 278304-011 March 2002.

4. Y. Jiang, C.K. Tham and C.C. Ko, A probabilistic priority scheduling discipline for
multi-service networks, Computer Communications 25 (13) 2002 pp. 1243–1254,
2002.

5. L. Kleinrock, Queueing Systems: Vol.2, Computer applications, John Wiley & Sons,
1976.

6. C.-K. Tham, Q. Yao and Y. Jiang, Achieving differentiated services through multi-
class probabilistic priority scheduling, Computer Networks, 40, pp. 577–593, 2002.

7. C. Waldspurger and W. Weihl, Lottery scheduling: Flexible proportional-share
resource management, Proc. the First USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov 1994.

8. C. Waldspurger, Lottery and stride scheduling: Flexible proportional-share resource
management, Ph.D. Thesis, Massachusetts Institute of Technology, Sep 1995.

9. M. Zhang, R. Wang, L. Peterson and A. Krishnamurthy, Probabilistic packet
scheduling: Achieving proportional share bandwidth allocation for TCP flows, Proc.
IEEE INFOCOM 2002, Jun 2002.

	Introduction
	Probabilistic Priority Scheduler
	Basic PP Integer Algorithm
	Multi-winner PP (MPP) Integer Algorithm
	Flexible Ticket Transfer Algorithm
	Simulation Studies

	Achieving Assured Forwarding Using MPP
	Efficient Implementation of MPP in IXP1200
	Fast Algorithm for Scaling Uniform Distribution

	Performance Study and Results
	Conclusion

