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Abstract. A scalable feedback mechanism to solicit feedback from a
potentially very large group of networked nodes is an important building
block for many network protocols. Multicast transport protocols use it for
negative acknowledgements and for delay and packet loss determination.
Grid computing and peer-to-peer applications can use similar approaches
to find nodes that are, at a given moment in time, best suited to serve
a request. In sensor networks, such mechanisms allow to report extreme
values in a resource efficient way.

In this paper we analyze several extensions to the exponential feedback
algorithm [5,6] that provide an optimal way to collect extreme values
from a potentially very large group of networked nodes. In contrast to
prior work, we focus on how knowledge about the value distribution in
the group can be used to optimize the feedback process. We describe the
trade-offs that have to be decided upon when using these extensions and
provide additional insight into their performance by means of simulation.
Furthermore, we briefly illustrate how sample applications can benefit
from the proposed mechanisms.

1 Introduction

Feedback is crucial to many networked group applications. The classical example
are multicast transport protocols where receivers send negative acknowledgments
to initiate retransmissions or report parameters for congestion control [1,7]. Mo-
bile or embedded devices with limited memory need similar mechanisms for
flow-control. Feedback is also important for network health monitoring and a
variety of distributed computing applications. For example, grid computing ap-
plications that employ a huge number of nodes with largely differing capabilities
will want to assign each task to the node that is, at a given moment in time, best
suited to process the request [2]. A peer-to-peer file-sharing application will want
to find the servant that provides the best download capacity and an e-commerce
application will seek for the best matching offer at the lowest price.

Although, in principle, feedback could be aggregated by multicast routers,
commercial networks do not offer the required functionality. For other networks
(e.g., satellite networks) aggregation is not possible at all, since there simply are
no intermediate systems. In yet other networks, as for example sensor-networks,
responding to feedback requests is very resource consuming, so that it is desir-
able that only a few nodes need to become active and transmit their responses.



(Note, that in this example we assume also asymmetric costs for reception and
transmission of messages. See [4] for a potential usage scenario.)

If aggregation is not possible or inefficient, end-to-end feedback algorithms
need to be employed. Such algorithms rely on spreading the feedback across a
time interval that allows the group to suppress unfavorable and thus unneces-
sary feedback responses. The broader this spread (as compared to the network
latency) the better the suppression that can be achieved.

In previous work [5,3], it has been shown that exponentially distributed
timers are optimal for many feedback scenarios. The algorithms presented there
guarantee feedback within a predefined time interval 7" and avoid feedback im-
plosion, if T is sufficiently large as compared to the network latency 7 and an
upper bound N to the number of nodes is known. In [6] this exponential feed-
back algorithm is extended so that extreme values from a group of nodes can be
determined.

This paper presents a further extension of the exponential feedback mech-
anism, namely a mechanism exploiting the knowledge nodes have about the
distribution of the values that are to be reported. Such knowledge can typically
be expected for most of the practical usage scenarios. In particular, we study
cases where the values are independent and identically distributed to one of sev-
eral possible distributions. Not knowing which distribution applies in a given case
makes this problem hard. Again, this can be considered a rather typical case.
Network measurements indicate that loss characteristics and round-trip-times
follow known distributions, but the parameters of the distribution can quickly
change when the network becomes congested. Sensors reporting physical values
(e.g., temperature or humidity of the environment, etc.) often reflect a common
distribution whose parameters change simultaneously for all sensors. Requests
in file-sharing peer-to-peer networks show largely differing popularity, where a
few requests can be served by a large number of nodes and a large number of
requests can only be served by a few nodes. This, again, leads to uncertainty for
individual request while good statistical knowledge exists about the distribution
of requests in general.

In the remainder of the paper, we will discuss the different feedback mecha-
nisms in Section 2, present further simulation results in Section 3, and conclude
with Section 4.

2 Feedback Suppression Mechanisms

In this section, we propose feedback schemes for a potentially very large group of
networked nodes to report extreme values to a central instance. We assume that
the reported values are received by all other nodes of the group, too. This can
be achieved either by using multi-source multicast, with a broadcast medium,
or by having the central instance repeat reported values in a suitable manner.
We do not assume any aggregation capabilities inside the network.

Let v; € [0; 1] be the set of values from which we want to know vpin = min{wv; :
i =1,...,N}. Generalization to other intervals (open and closed) or maximum-



search instead of minimum-search is relatively straightforward by appropriately
mapping the respective value interval to [0; 1]. From prior work [5,3] it is known
that the following algorithm is optimal for the binary case v; € {0;1} (e.g., to
report packet loss (v; = 0) in a reliable multicast transport protocol).

Algorithm 1 (Binary feedback) Fach node with v; = 0 draws a uni-
formly distributed random variable xz; € [0;1] and sends a report at
t; = T - max{0;1 + logy z;} unless it knows that another node has an-
swered prior to that time.

If no feedback is received from the receivers within the time interval T then
Umin = 1. Here, T' is the maximum feedback delay and N is an upper bound on
the number of responders.

Extending this algorithm, [6] describes an mechanism to produce vmin for
general distributions of v; € [0;1]. To this end, it makes use of that fact that a
random variable can often be described by a probability density function p(v). If
the v; are independent and identically distributed (iid), the following algorithm
is optimal:

Algorithm 2 (Deterministic feedback) Each node i calculates z; =
P(v;) and sends a report at t; = T - max{0; 1+ logy z;} unless it knows
that another node has already reported its value.

Here, P(v) = [ p(v') dv' is the cumulated probability distribution function.
In other words, the random variable x employed in Algorithm 1 is substituted
by the random variable v. This is achieved by using a mapping that turns the
distribution of the values into a uniform distribution, namely the mapping P :
[0;1] — [0;1]. As a consequence, minimal values are reported early, thereby
increasing the probability for suppressing unnecessary reports of non-minimal
values.

Algorithm 2 is optimal for the case of an iid random variable with known
probability density function p(v). In practice, however, the values that are to
be reported are rarely iid to one known probability density function. Therefore,
in the following sections more complicated but also more realistic scenarios are
analyzed and respective solutions are derived.

In order to judge the effectiveness of an algorithm, it is important to know
the expected number of responses. Ideally, the fraction of nodes that respond at
(or before) a given moment should rise exponentially over time. As described in
[3] this accounts best for an unknown group size. Conversely, considering ever
shorter time-intervals the fraction of nodes responding in any of these intervals
should remain constant. Hence, plotting the fraction of responding nodes as
area below a response density function on a (reversely) logarithmic axis, the
ideal curve becomes constant. Note that, according to the fact that there is
a finite probability for a node to not delay its answer, the origin of the time
axis does not lie at the leftmost end of the time range. Furthermore, because
of the t = logy z relationship the response time depends also on the group
size estimate N. Therefore, the following graphs are only illustrative and not



exact. Since both, the probability density function and the expected number of
responses as a function of time, can be plotted into a square, the resulting overall
graph consists of three adjacent squares.

Figure 1 gives an illustration of Algorithm 2. Its single line shows that each
value maps to one defined response time. For algorithms containing random
elements, the line widens, assigning a whole range of response times to each
value. Furthermore, generally, the actual shape of a response time graph does
not only depend on the algorithm but also on the probability density functions.

2.1 Semi-deterministic timers with a priori decision

In many cases where the values v; are not iid to one probability distribution p(v),
one can find a set of probability distributions p;(v) so that with probability =;
the values are iid to p;(v). In other words, we do not know which probability
distribution applies at any given moment in time, but we know that all the
values are from the same probability distribution. This is what can typically
be expected if the nodes are identically subject to the same causal effects of a
random process. In such a scenario we have two different notions of probability:

— m; is the probability that a distribution p; applies.

— Pj(v) is the probability of a node ¢ to draw a value v; < v under the condition
that this distribution applies.
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Fig.1. Uniform distribution of values Fig. 2. Response time distribution and
treated with Algorithm 2 expected number of responses for the a
priori selection algorithm

There are two obvious algorithms for a priori determination of the response
time curves:



Algorithm 3 (A priori mean) Fach node responds at time

t; =T -max{0;1 + logy Z i Pj(v;)}
J

unless it knows that another node has already reported a smaller value.
and

Algorithm 4 (A priori selection) Each node performs a random ez-
periment such that it responds with probability 7; at time

t; = T - max{O; 1+ IOgN P]('l)z)}
unless it knows that another node has already reported a smaller value.

Both algorithms are semi-deterministic because once the values v; are known
the response times ¢; are completely determined. They are a priori in a sense
that the decision which response time curve applies does not depend on the value
Vj.

The problems that can arise from these algorithms are best illustrated by
peaked distributions. Consider for example two peaked distributions each of
which applies with a probability of 0.5. Using Algorithm 4 results in two signif-
icantly differing curves (Figure 2) that are equally populated with responding
nodes. The two plateaus in the time domain correspond to the two mean values
of the distributions (i.e., each time distribution curve tries to maximally spread
out values around the corresponding mean value). Since each curve bears only
50% of the nodes and either of two curves tremendously fails to spread the values
in the respective opposite case, 50% of the values are not spread out anymore.
The graph shows two peaks in the response density, containing 25% of the nodes
each. Only half of the nodes are uniformly distributed over the z-axis.

The mean value algorithm is performing better since it attributes two spreads
corresponding to the two peak values (Figure 3). For each case, there is a con-
stant expected number of responses with the expected response time depending
on the minimal value within the group. The low value peak corresponds to early
responses, the large value peak to late responses. However, compared to spread-
ing the values in both cases over the whole interval, this scenario with a 50%
chance each for the low and the high value distribution doubles the respective
density of the expected number of responses. Note that the mean value algorithm
corresponds to using the combined distribution together with Algorithm 2.

Hence, if the two distributions have greatly differing probabilities (e.g., 90%
versus 10%) the distribution with the low a priori probability does not sufficiently
contribute to the spread to avoid its values falling into a small time window. This
effect thus causes a feedback implosion (see right graph in Figure 3). With a low
a priori probability a large amount of responders will start responding almost at
the same time. In the example shown above, this will happen at about 0.97.

This aptness of feedback implosion is a general and unavoidable feature of
all algorithms that are based on a priori selection of a single response time
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Fig. 3. Response time distribution and expected number of responses for the mean
value algorithm. (Left: two peaks with 50% weight each. Right: two peaks with 90%
and 10% weight)

curve. Hence, this type of feedback algorithm should not be used in case of
asymmetric probabilities for two different probability distributions and in case
of many largely differing probability distributions. In fact, it is hard to think of a
scenario where the deterministic feedback of Algorithm 2 fails and Algorithms 4
or 3 work well.

2.2 Semi-deterministic timers with value-based decision

One way around this problem is the use of the values v; not only to calculate the
response time t; but also to decide on the distribution curve that is used for the
calculation. As in the previous case, there are two different alternatives: the use
of a single mean-value curve and a value-based selection of one response curve
among many.

Algorithm 5 (Value-based mean) Each node i reports its value at

time
> pi(vi) Pj(vy)
Zk Pr(vi)

unless it knows that another node has already reported a smaller value.

t; =T -max{0;1 +logy

The value-based mean value algorithm can produce close to ideal behavior
for certain probability distributions while it fails for others. Figure 4 shows three
cases each with three peaked distributions of differing width. The response den-
sity is exemplarily shown for the case that the real distribution has a large mean
value.
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Fig. 4. Response time distribution and expected number of responses for the value-
based mean value algorithm with three peaked potential distributions

1. For broad distributions the expected number of responses rises gently to a
modest maximum and then falls again to the value that corresponds to an
optimal spread. The function mapping values to response times is almost
linear.

2. For moderately peaked distributions the rise is much sharper with a large but
narrow maximum. Again, towards the limiting value the optimal response
density is reached.

3. For narrowly peaked distributions the rise in the response density is very
early and very sharp. Almost the whole response interval is covered by an
optimal response density. Indeed, the sharp response peak is so small that
the probability of a node having a value that falls into this response time
tends to zero (i.e., even though the values are closely peaked, they are almost
surely optimally spread over the whole response time interval).

At first sight, it might be surprising that the function mapping values to
response times is not one-to-one. But a moment’s thought shows that this func-
tion does not need to rise monotonically: Consider for example three almost
completely separated peaks (Figure 4). Then, for each value one can tell with
near certainty which of the three peaked distributions applies. Hence, each of the
three peaks can be spread over the whole feedback interval, forcing the function
to oscillate between early and late response. If, on the other hand, the peaks
overlap, many values could either be very small values from a distribution with
large mean, or reversely, large values from a distribution with small mean. Both
cases would lead to exactly opposite response times. Thus, as a result, the value-
based mean value algorithm averages the z-parameter. In case of medium peaks
that are too broad to be entirely separated but too narrow to spread the val-
ues across a large enough interval, this can lead to a feedback implosion (see
Section 3 for an example).



Algorithm 6 (Value-based selection) Fach node i performs a ran-
dom experiment such that it reports its value with probability

. p;(vi)

TS ()

at time
t; =T - max{0;1 + logy P;(v;)}

unless it knows that another node has already reported a smaller value.

Algorithm 6 shows the same effect as Algorithm 5 but in a slightly different
way. Instead of overshooting at the point where the large value peak becomes
more likely than the middle peak, there is a continuing increase in the expected
number of responses. As shown in Figure 5, we can observe a considerable risk of
feedback implosion towards the end of the feedback interval where suppression
is no longer effective.

Thus, although the value-based algorithms are quite capable of spreading
responses over the whole feedback interval, there are certain distributions that
cause feedback implosion due to peaking or delaying responses: Low value nodes
delay their response to allow suppression. If a distribution with a large mean-
value applies, both algorithms have to cope with the resulting delay. The mean
value version does it as soon as possible and thereby in some cases too fast,
causing feedback implosion. The random selection on the other hand adapts
more gently but happens to be too slow in some cases.
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2.3 Randomly Spread Timers

Let Pr(v) and Pg(v) be the upper-left and bottom-right envelope to the cumu-
lated distribution functions P;(v) in the sense that at least nPr(v) nodes have
a value v' < v and only up to nPgr(v) nodes have a value v' < v where n is a
reasonable fraction of the maximum node number N.3

Algorithm 7 (Random spread) Fach node i draws a uniformly dis-
tributed random number

z; € [Pr(vi), Pr(vi)]
and reports its value at time
t; =T -max{0;1 +logy z;}
unless it knows that another node has already reported a smaller value.

Like Algorithms 5 and 6, this algorithm is able to spread peaked distribu-
tions almost equally over the whole response interval (see Figure 6). Additionally,
due to the randomness it is rather insensitive to exceptional value distributions.
Even if all receivers report exactly the same value, this algorithm avoids a feed-
back implosion. Secondly, this algorithm does not require extensive calculations.
However, for scenarios in which very little is known about the probability dis-
tributions, Algorithm 7 approximates the biased feedback algorithms presented
in [6].

3 Simulations

To further illustrate the characteristics of the different mechanisms, we simulate
the feedback process with two truncated normal distributions with peaks at 0.2
and 0.8 respectively for the distribution of values at the receivers. Both of the
distributions apply with a probability of 0.5. The simulations were carried out
with T set to eight times the network latency and for sizes of the receiver set n
from 1 to 100,000 receivers. The upper bound on the size of the receiver set V
was fixed at 100,000.

As shown in Figure 7, plain exponential feedback suppression achieves the
lowest expected number of responses for a given maximum feedback delay T'.
However, the response times are independent of the response values, leading to
an average deviation of the first reported value from the optimum of almost 0.4,
when the total number of nodes is close to the estimate N (Figure 8). With
deterministic feedback (not shown), the best value is always reported first while
maintaining the same average number of responses. As expected, a priori selec-
tion and a priori mean frequently lead to a feedback implosion, resulting in an

3 Note that for n = N we would force the envelope to comprise all nodes. Choosing
n < N prevents outliers from disturbing the overall efficiency.



average number of responses only one order of magnitude lower than the num-
ber of nodes. Consequently, these algorithms cannot be recommended for general
usage. By using information about the value at the receivers, one would expect
to be able to improve the performance of the algorithms. Yet, only the meth-
ods of value-based random selection and random spread achieve a reasonable
suppression of feedback messages. With a priori selection, feedback implosions
may occur at the beginning of the feedback interval, whereas a priori mean and
value-based mean lead to a feedback implosions towards the end of the feedback
interval.
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With all proposed mechanisms, the quality of the feedback (i.e., the de-
viation of the obtained response values from the real optimum of the group)
improves significantly. Figure 8 shows the absolute deviation of the value of the
first response from the optimal value. As before, we assume the values to be dis-
tributed between 0 and 1. A priori mean causes the optimal value or a close to
optimal to be reported first almost all of the time. The performance of the other
mechanisms is comparable with a deviation of roughly 0.1. Similar results are
obtained when analyzing the best of the responses given, instead of the first one.
However, such an analysis favors mechanisms which eventually cause a feedback
implosions, since the optimal value is likely contained in the large number of
responses given.

As mentioned in the previous section, particularly the value-based mean
method depends to a large degree on the underlying distributions. When normal
distributions with peaks further apart or closer together are used for the simu-
lations, the method performs much better, as shown in Figure 9 for peaks at 0.1
and 0.9. While still prone to feedback implosion, the average number of feedback
messages is reduced by a factor of 50. With value-based selection, which already
performed very well in the previous simulation, the number of feedback messages
is further reduced to around six messages. As is to be expected, the easier it is to
distinguish the two distributions, the better the performance of the mechanisms.

Likewise, the number of responses is significantly better if the two normal
distributions have different probabilities. In Figure 10, we depict the average



number of responses when the probability that the distribution with a peak at
0.3 applies is 0.9 and the probability for the distribution with peak at 0.7 is 0.1.
The number of responses for the methods where feedback implosion occurs is
reduced by a factor of 10 compared to the previous simulations.
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Similar simulations with different distributions of response values and differ-
ent probabilities for these distributions were carried out but have to be omitted
for reasons of brevity.

4 Outlook and Conclusion

In this paper, we have analyzed several modifications to the basic exponential
feedback mechanism. These modifications incorporate knowledge about the dis-
tribution of values that are to be reported into the feedback process. In the simple
case of iid values, the distribution function can be used to obtain an optimal feed-
back algorithm. In more complicated cases, where one out of several potential
distributions applies, a trade-off needs to be resolved: If the value distribution is
either very broad or very narrow, the value-based mean value algorithm leads to
a good spread of the responses (see Figure 4). However, for medium peaked dis-
tributions this algorithm can cause a severe feedback implosion. The value-based
random selection and the random spread algorithms provide better protection
against implosion while falling behind the efficiency of non-random algorithms.
Both effects have also been demonstrated by means of simulations.

The proposed mechanisms greatly improve upon the quality of the feedback
in case some assumptions about the underlying distribution of the response
values can be made. This is often the case when measurement values are to be
reported.

In future work, we intend to investigate a number of further issues. So far, the
feedback process is independent of possible previous feedback rounds. Since the
value distribution often changes on a much larger timescale than the duration
of a feedback round, values from previous rounds can be used in addition to



the current value to more reliably infer both, the underlying distribution and
the group size. The latter can then be used to improve the efficiency beyond
the plain exponential feedback approach. The former extends the applicability
of the proposed algorithms to cases where we have no a priori assumptions
about underlying distributions, thus leading to a “generic” extremum feedback
algorithm.
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