Skip to main content

Simulating Evolution’s First Steps

  • Conference paper
Book cover Advances in Artificial Life (ECAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2801))

Included in the following conference series:

Abstract

We demonstrate a simple artificial chemistry environment in which two small evolutionary transitions from the simplest self-replicators to larger ones are observed. The replicators adapt to increasingly harsh environments, where they must synthesise the components they need for replication. The evolution of a biosynthetic pathway of increasing length is thus achieved, through the use of simple chemical rules for catalytic action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cairns-Smith, A.G.: Seven clues to the origin of life. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  2. Channon, A.: Improving and still passing the ALife test: Component-normalised activity statistics classify evolution in Geb as unbounded. In: Standish, R., Bedau, M.A., Abbass, H.A. (eds.) Proc. Artificial Life VIII, pp. 173–181. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries - a review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  4. Fontana, W., Buss, L.W.: What would be conserved if “the tape were played twice”? Proc. Nat. Acad. Sci. 91, 757–761 (1994)

    Article  Google Scholar 

  5. Horowitz, N.H.: On the evolution of biochemical synthesis. Proc. Nat. Acad. Sci. 31, 153–157 (1945)

    Article  Google Scholar 

  6. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artificial Life 8(4), 341–356 (2002)

    Article  MathSciNet  Google Scholar 

  7. Joyce, G.F., Orgel, L.: Prospects for understanding the origin of the RNA world. In: Gesteland, R.F., Cech, T.R., Atkins, J.F. (eds.) The RNA World, pp. 49–77. Cold Spring Harbor Laboratory Press, New York (1999)

    Google Scholar 

  8. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The evolutionary origin of complex features. Nature 423, 139–144 (2003)

    Article  Google Scholar 

  9. Margulis, L.: Symbiosis in Cell Evolution. Freeman, New York (1981)

    Google Scholar 

  10. Mayer, B., Rasmussen, S.: Dynamics and simulation of micellar selfreproduction. International Journal of Modern Physics C 11(4), 809–826 (2000)

    Article  Google Scholar 

  11. McMullin, B.: John von Neumann and the evolutionary growth of complexity: Looking backwards, looking forwards. Artificial Life 6(4), 347–361 (2000)

    Article  Google Scholar 

  12. Ono, N., Ikegami, T.: Artificial chemistry: Computational studies on the emergence of self-reproducing units. In: Kelemen, J., Sosík, P. (eds.) Proc. European Conference on Artificial Life, pp. 186–195. Springer, Heidelberg (2001)

    Google Scholar 

  13. Orgel, L.E.: Selection in vitro. Proceedings of the Royal Society B 205, 435–442 (1979)

    Article  Google Scholar 

  14. Paun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  15. Sayama, H.: A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artificial Life 5(4), 343–365 (1999)

    Article  Google Scholar 

  16. Suzuki, Y., Tanaka, H.: Chemical evolution among artificial proto-cells. In: Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Proc. Artificial Life VII, pp. 54–64. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Szathmáry, E., Demeter, L.: Group selection of early replicators and the origin of life. Journal of Theoretical Biology 128, 463–486 (1987)

    Article  Google Scholar 

  18. Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing life. Nature 409, 387–390 (2001)

    Article  Google Scholar 

  19. Taylor, T.: Creativity in evolution: Individuals, interactions and environment. In: Bentley, P., Corne, D. (eds.) Proceedings of the AISB 1999 Symposium on Creative Evolutionary Systems. The Society for the Study of Artificial Intelligence and Simulation of Behaviour, Morgan Kaufman, San Francisco (1999)

    Google Scholar 

  20. The IBM Blue Gene team. Blue gene: A vision for protein science using a petaflop supercomputer. IBM Systems Journal, 40(2) (2001)

    Google Scholar 

  21. Wilke, C.O., Adami, C.: The biology of digital organisms. Trends in Ecology and Evolution 17(11), 528–532 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutton, T.J. (2003). Simulating Evolution’s First Steps. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science(), vol 2801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39432-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39432-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20057-4

  • Online ISBN: 978-3-540-39432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics