Skip to main content

Phase Transitions in Self-Organising Sensor Networks

  • Conference paper
Advances in Artificial Life (ECAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2801))

Included in the following conference series:

Abstract

In this paper we consider a multi-cellular sensing and communication network, embedded in an ageless aerospace vehicle, that is expected to detect and react to impact location, intensity and damage over a wide range of impact energies. In particular, we investigate self-organization of impact boundaries enclosing critically damaged areas, and measure their spatiotemporal robustness. The presented quantitative information-theoretic techniques clearly identify phase transitions, separating chaotic dynamics from ordered and robust patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D., Doyle, B., Dunlop, J., Farmer, T., Hedley, M., Herrmann, J., James, G., Johnson, M., Joshi, B., Poulton, G., Price, D., Prokopenko, M., Reda, T., Rees, D., Scott, A., Valencia, P., Ward, D., Winter, J.: Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles. Development of Concepts for an Intelligent Sensing System. NASA technical report NASA/CR-2002-211773, Langley Research Center, Hampton, Virginia

    Google Scholar 

  2. Erdos, P., Renyi, A.: On the strength of connectedness of random graphs. Acta Mathematica Scientia Hungary 12, 261–267 (1961)

    Article  MathSciNet  Google Scholar 

  3. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century Challenges: Scalable Coordination in Sensor Networks. In: Proceedings of the 5th Annual International Conference on Mobile Computing and Networks (MobiCOM 1999), Seattle (1999)

    Google Scholar 

  4. Green, D.: Emergent Behavior in Biological Systems. Complexity International 1 (1994)

    Google Scholar 

  5. Langton, C.: Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. In: Forest, S. (ed.) Emergent Computation, MIT Press, Cambridge (1991)

    Google Scholar 

  6. Lovatt, H., Poulton, G., Price, D., Prokopenko, M., Valencia, P., Wang, P.: Self-organising Impact Boundaries in Ageless Aerospace Vehicles. In: Proc. of the 2nd Int’l Joint Conf. on Autonomous Agents and Multi-Agent Systems (2003) (to appear)

    Google Scholar 

  7. Macias, N.J., Durbeck, L.J.K.: Self-assembling circuits with autonomous fault handling. In: Proceedings of NASA/DoD Conference on Evolvable Hardware (2002)

    Google Scholar 

  8. Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent control. In: The Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Italy (July 2002)

    Google Scholar 

  9. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  10. Suzudo, T.: The entropy trajectory: A perspective to classify complex systems. In: Proceedings of the Int’l Symposium on Frontiers of Time Series Modeling, Tokyo (2000)

    Google Scholar 

  11. Wang, P., Valencia, P., Prokopenko, M., Price, D., Poulton, G.: Selfreconfigurable sensor networks in ageless aerospace vehicles. In: Submitted to the 11th International Conference on Advanced Robotics, ICAR 2003, Portugal (2003)

    Google Scholar 

  12. Wolfram, S.: Universality and Complexity in Cellular Automata. Physica D 10 (1984)

    Google Scholar 

  13. Wuensche, A.: Classifying Cellular Automata Automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3), 47–66 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Foreman, M., Prokopenko, M., Wang, P. (2003). Phase Transitions in Self-Organising Sensor Networks. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science(), vol 2801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39432-7_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39432-7_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20057-4

  • Online ISBN: 978-3-540-39432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics