Skip to main content

Computing Minimum-Cardinality Diagnoses Using OBDDs

  • Conference paper
KI 2003: Advances in Artificial Intelligence (KI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2821))

Included in the following conference series:

Abstract

The paper addresses the problem of solving diagnostic problems by exploiting OBDDs (Ordered Binary Decision Diagrams) as a way for compactly representing the set of alternative diagnoses. In the MBD (Model Based Diagnosis) community it is indeed well known that the number of diagnoses can be exponential in the system size even when restricted to preferred diagnoses (e.g. minimal diagnoses). In particular, the paper presents methods and heuristics for efficiently encoding the domain theory of the system model in terms of an OBDD. Such heuristics suggest suitable ordering of the OBDD variables which prevents the explosion of the OBDD size for some classes of domain theories. Moreover, we describe how to solve specific diagnostic problems represented as OBDDs and report some results on the computational complexity of such process. Finally, we introduce a mechanism for extracting diagnoses with the minimum number of faults from the OBDD which represents the entire space of diagnoses. Experimental results are collected and reported on a model representing a simplified propulsion subsystem of a spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking. In: Proc. IJCAI 2001, pp. 473–478 (2001)

    Google Scholar 

  2. Brusoni, V., Console, L., Terenziani, P., Theseider Dupré, D.: A spectrum of definitions for temporal model-based diagnosis. Artificial Intelligence 102, 39–79 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bryant, R.: Symbolic boolean manipulation with Ordered Decision Diagrams. ACM Computing Surveys 24, 293–318 (1992)

    Article  Google Scholar 

  4. Console, L., Portinale, L., Theseider Dupré, D., Torasso, P.: Diagnosing timevarying misbehavior: an approach based on model decomposition. Annals of Mathematics and AI 11, 381–398 (1994)

    MATH  Google Scholar 

  5. Console, L., Picardi, C., Ribaudo, M.: Process algebras for system diagnosis. Artificial Intelligence 142(1), 19–51 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Cordier, M.-O., Largouet, C.: Using model-checking techniques for diagnosing discrete-event systems. In: Proc. DX 2001, pp. 39–46 (2001)

    Google Scholar 

  7. Darwiche, A.: Model-based diagnosis using structured system descriptions. Journal of Artificial Intelligence Research 8, 165–222 (1998)

    MATH  MathSciNet  Google Scholar 

  8. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing Diagnoses and Systems. Artificial Intelligence 56(2-3), 197–222 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dvorak, D., Kuipers, B.: Model-Based Monitoring of Dynamic Systems. In: Proc. IJCAI 1989, pp. 1238–1243 (1989)

    Google Scholar 

  10. Friedrich, G.: Theory Diagnoses: A Concise Characterization of Faulty Systems. In: Proc. IJCAI 1993, pp. 1466–1471 (1993)

    Google Scholar 

  11. Goldszmidt, M., Pearl, J.: Rank-based systems: a simple approach to belief revision, belief update, and reasoning about evidence and actions. In: Proc. KR 1992, pp. 661–672 (1992)

    Google Scholar 

  12. Jensen, R.M., Veloso, M.M.: Obdd-based universal planning: Specifying and solving planning problems for synchronized agents in nondeterministic domains. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 213–248. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Kurien, J., Nayak, P.: Pandurang: Back to the Future for Consistency-Based Trajectory Tracking. In: Proc. AAAI, pp. 370–377 (2000)

    Google Scholar 

  14. Mozetic̃, I.: Hierarchical Model-Based Diagnosis. Int. Journal of Man-Machine Studies 35(3), 329–362 (1991)

    Article  Google Scholar 

  15. Muscettola, N., Nayak, P., Pell, B., Williams, B.: Remote Agent: to Boldly Go Where No AI System has Gone Before. Artificial Intelligence 103, 5–47 (1998)

    Article  MATH  Google Scholar 

  16. Portinale, L., Torasso, P.: Diagnosis as a Variable Assignment Problem: a Case Study in a Space Robot Fault Diagnosis. In: Proc. IJCAI 1999, pp. 1087–1093 (1999)

    Google Scholar 

  17. Sachenbacher, M., Struss, P.: AQUA: A Framework for Automated Qualitative Abstraction. In: Proc. QR 2001 (2001)

    Google Scholar 

  18. Sauerhoff, M., Wegener, I., Werchner, R.: Optimal Ordered Binary Decision Diagrams for Fanout-Free Circuits. In: Proc. SASIMI, pp. 197–204 (1996)

    Google Scholar 

  19. Struss, P.: Fundamentals of model-based diagnosis of dynamic systems. In: Proc. IJCAI 1997, pp. 480–485 (1997)

    Google Scholar 

  20. Struss, P., Rehfus, B., Brignolo, R., Cascio, F., Console, L., Dague, P., Dubois, P., Dressler, P., Millet, D.: Model-based Tools for the Integration of Design and Diagnosis into a Common Process – A Project Report. In: Proc. DX 2002 (2002)

    Google Scholar 

  21. Sztipanovits, J., Misra, A.: Diagnosis of discrete event systems using Ordered Binary Decision Diagrams. In: Proc. DX 1996 (1996)

    Google Scholar 

  22. Torta, G., Torasso, P.: Automatic abstraction in component-based diagnosis driven by system observability. In: Proc. IJCAI (2003) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torasso, P., Torta, G. (2003). Computing Minimum-Cardinality Diagnoses Using OBDDs. In: Günter, A., Kruse, R., Neumann, B. (eds) KI 2003: Advances in Artificial Intelligence. KI 2003. Lecture Notes in Computer Science(), vol 2821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39451-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39451-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20059-8

  • Online ISBN: 978-3-540-39451-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics