
Development of Generic Search Method Based on
Transformation Invariance

Fuminori Adachi1, Takashi Washio1, Atsushi Fujimoto1, Hiroshi Motoda1,
Hidemitsu Hanafusa2

1 I.S.I.R., Osaka University, 8-1 Mihogaoka, Ibarakishi,
Osaka 567-0047, Japan

{adachi,washio,fujimoto,motoda}@ar.sanken.osaka-u.ac.jp
2 INSS Inc., 64 Sata, Mihamacho, Mikatagun,

Fukui 919-1205, Japan
hanafusa@inss.co.jp

Abstract. The needs of efficient and flexible information retrieval on multi-
structural data stored in database and network are significantly growing. Espe-
cially, its flexibility plays one of key roles to acquire relevant information de-
sired by users in active retrieval process. However, most of the existing ap-
proaches are dedicated to each content and data structure respectively, e.g., re-
lational database and natural text. In this work, we propose a generic informa-
tion retrieval method directly applicable to various types of contents and data
structures. The power of this approach comes from the use of the generic and
invariant feature information obtained from byte patterns in the files through
some mathematical transformation. The experimental evaluation of the pro-
posed approach for both artificial and real data indicates its high feasibility.

1 Introduction

The recent progress of information technology increases the variety of the data struc-
ture in addition to their amount accumulated in the database and the network. The
flexible environment of information retrieval on multi-structured data stored in the
computers is crucial to acquire relevant information for users. However, the state of
the art remains within the retrieval for each specific data structure, e.g., natural text,
relational data and sequential data [1], [2], [3]. Accordingly, the retrieval on mixed
structured data such as multimedia data containing documents, pictures and sounds
requires the combined use of the retrieval mechanisms where each is dedicated to a
data type respectively [4], [5]. Because of this nature, the current approach increases
the cost and the work of the development and the maintenance of the retrieval system.

To alleviate this difficulty, we propose a novel retrieval approach to use the
most basic nature of the data representation. All real world data are represented by the
sequence of bits or bytes. Accordingly, a generic retrieval method is established if a
set of data which is mutually similar on this basic representation can be appropriately
searched. The main issue on the development is the definition of the similarity in the
low level representation which appropriately corresponds to the similarity on the

content level. Though the perfect correspondence may be hardly obtained, the follow-
ing points are considered to enhance the feasibility of our proposal.
(1) Commonly seen byte sequences in approximately similar order and length are

searched.
(2) The judgment of the similarity is not significantly affected by the location of the

patterns in the byte sequences.
(3) The judgment of the similarity is not significantly affected by the noise and the

slight difference in the byte sequences.
(4) The mutual similarity of the entire files is evaluated by the frequency of the simi-

lar byte sequences shared among the files.
(5) The similar byte sequences shared by most of the files are removed to evaluate

the similarity among the files as they do not characterize the specific similarity.
The last point addresses the matter that the excessively common patterns do not

provide any key information to sufficiently reduce the scope of the retrieval. This has
been also addressed by the idea of TFIDF (Term Frequency Inversed Document Fre-
quency) in the information retrieval [6] and the idea of “Stop List” [7].

In this work, a generic method to retrieve similar files in terms of the byte se-
quences is studied. A certain mathematical transform on the byte sequences is used by
treating each byte as a numeral. This can extract invariant characters of the sequences,
and the relevant files can be retrieved under the aforementioned consideration. The
basic performance of the proposed approach is evaluated through numerical experi-
ments and a realistic application to the retrieval of raw binary format data of a word
processor.

2 Principle of Similarity Judgment and Its Preliminary Study

The aforementioned point (1) is easily achieved by the direct comparison among byte
sequences. However, the point (2) requires a type of comparison among sequences
that is invariant against the shit of the sequences. If the direct pair wise comparison
between all subsequences selected from two sequences is applied, the computational
complexity is O(n1

2n2
2) where n1 and n2 are the numbers of bytes in the two se-

quences. To avoid this high complexity in practical sense, our approach applies a
mathematical transform to the byte sequence in each file. The transform has the prop-
erty of “shift invariance” where the value obtained through the transform is hardly
changed against the shift of the sequence. To address the point (3), the result of the
transform should be quite robust against the noise and slight difference in the se-
quence. Moreover, the transform must be conducted within practically tractable time.
One of the representative mathematical transform to suffice these requirements is the
Fast Fourier Transform (FFT) [8]. It requires only computation time of O(n log n) in
theory when the length of the byte sequence is n, and a number of methods for practi-
cal implementation are available. In addition, the resultant coefficients can be com-
pressed into the amount of 50% of the original if only their absolute values are re-
tained. However, when the transform is applied to very long sequences or sub-
sequences contained in a large file where each part of the file indicates a specific

meaning, the characters of the local byte sequence reflecting a meaning in the con-
tents level will be mixed with the characters of the other local part. Accordingly, we
partition the byte sequence in a file into an appropriate length, and apply the FFT to
each part to derive a feature vector consisting the absolute values of the Fourier coef-
ficients.

 The feasibility and the characteristics of the proposed method have been assessed
though some numerical experiments on some pieces of byte sequences in advance
before the further study and implementation are proceeded. In the experiment, the
length of each byte sequence is chosen to be 8 bytes because it is the length of byte
sequences to represent a word in various languages in standard. A number 128 is
subtracted from the value of each byte to eliminate the bias of the FTT coefficient of
order 0, while each byte takes an integer value in the range of [0, 255]. First, we shift
the byte sequences to the left randomly, and the bytes out of the edge are located in
the right in the same order. Thus, the byte sequences are shifted in circular manners.
Because of the mathematical nature of FFT, i.e., shift invariance, we observed that
this did not cause any change on the absolute value of the transformed coefficients.
Next, the effect of the random replacement of some bytes is evaluated. Table 1 exem-
plifies the effects of the replacement in a basic sequence “26dy10mo” on the absolute
coefficients. The distance in the table represents the Hamming distance, i.e., the num-
ber of the different bytes from the original. The absolute coefficients from f5 to f8 are
omitted due to the symmetry of Fourier Transform. In general, only n/2+1 coeffi-
cients for an even number n and (n+1)/2 for an odd number n are retained. The num-
bers of the absolute coefficients are quite similar within the Hamming distance 2 in
many cases. However, they can be different to some extent even in the case of dis-
tance 2 such as “(LF)5dy10mo” where the value of “(LF)” is quite different from that
of “2”. Accordingly, some counter measure to absorb this type of change or noise in
the similarity judgment must be introduced.

Table 1. Effect of byte replacements on FFT coefficients

Sequences f0 f1 f2 f3 f4 Distance

26dy10mo 144 112.9 345.6 103.8 108 0

20dy10mo 150 112.4 350.7 103.9 102 1

19dy10mo 142 113.8 343.6 103.1 112 2

(LF)5dy10mo 174 89.9 361.2 136.2 156 2

(LF)5dy11mo 178 86.6 364.4 137.3 152 3

(LF)5dy09mo 180 88.6 365.8 136.8 152 4

The method taken to enhance the robustness against the replacement noises in

this work is the discretization of the absolute value of the FFT coefficients. If the
absolute coefficients are discretized in an appropriate manner, the slight differences
of the coefficient vales do not affect the similarity judgment of the byte sequence. An

important issue is the criterion to define the threshold values for the discretization. A
reasonable and efficient way to define the thresholds of the absolute coefficients for
arbitrary sequences is that the absolute coefficient obtained from a randomly chosen
sequence falls into an interval under an identical probability. To define the thresholds
of the absolute coefficient in every order for a certain length of byte sequences, i.e.,
the length n, we calculated the absolute coefficient value distribution for all 28n byte
sequences for every order. This computation is not tractable in straight forward, how-
ever in practice, this is quite easily achieved by using the symmetric and invariant
characteristics of the absolute values of the FFT coefficients on various sequence
patterns. For example, the absolute coefficients are invariant against the aforemen-
tioned circular shift. They are also invariant against the reverse of the order in the
byte sequence and the reverse of the positive and negative signs of all byte numbers
in the sequence. Furthermore, the absolute coefficients of the third order are invariant
against the reordering of the two byte units in the sequence. For example, their values
do not change among “26dy10mo” and “dy26mo10”. By combining these character-
istics of the absolute FFT coefficients, the space of the sequences consisting of 8
bytes to be assessed for the derivation of the exact absolute coefficient value distribu-
tions is significantly reduced, and the distributions are obtained in a few hours com-
putation. Upon the obtained absolute coefficient distribution for every order, (m-1)
threshold values for every order are defined where every interval covers the identical
probability 1/m in the appearance of a coefficient. When the number of m is small,
the character of each byte sequence does not become significant due to the rough
discretization. We tested various number m, and chose the value m=16 empirically
which is sufficient to characterize the similarity of the byte sequence in generic means.
Through this process, the information of a FFT coefficient for every order is com-
pressed into 16 labels. In summary, a feature vector consisting of n/2+1 or (n+1)/2
elements for an even or odd number n is derived where each element is one of the 16
labels.

 Moreover, the moving window of a fixed length byte sequence is applied to
generate a set of feature vectors for a file as depicted in Fig.1. First, a feature vector
of the byte sequence of a length n(=8) at the beginning of the file is calculated. Then
another feature vector of the sequence having the same length n but shifted with one
byte toward the end of the file is calculated. This procedure is repeated until the fea-
ture vector of the last sequence at the end of the file is obtained. This approach also
enhances the robustness of the similarity judgment among files. For example, the
feature vectors of the first 8 bytes windows of “26dy10mo02yr” and
“(LF)5dy10mo02yr” are quite different as shown in Table 1. However, the feature
vectors for the 8 bytes windows shifted by one byte, i.e., “6dy10mn0” and
“5dy10mn0”, are mutually very similar. Furthermore, the vectors for the windows
shifted by two bytes become identical because both byte sequences are “dy10mo02”.
This moving window approach enhances the performance of the frequency counting
of the parts having similar patterns among files. Thus, the point (4) mentioned in the
first section is addressed where the mutual similarity of the entire files is evaluated by
the frequency of the similar byte sequences shared among the files. To address the
point (5), the feature vectors which are obtained from a given set of files more than a
certain high frequency threshold are registered as “Unusable Vectors”, and such un-
usable vectors are not used in the stage of the file retrieval.

Figure1. FFT on moving windows

3 Fast Algorithm of Retrieval

The data structure to store the feature vectors for given vast number of files must be
well organized to perform the efficient file retrieval based on the similarity of the byte
sequences. The approach taken in this work is the “inversed file indexing” method
which is popular and known to be the most efficient in terms of retrieval time [3],[9].
Through the procedure described in the former section, the correspondence from each
file to a set of feature vectors derived from the file is obtained. Based on this informa-
tion, the inversed indexing from each feature vector to a set of files which produced
the vector is derived. The data containing this inversed indexing information is called
“inversed indexing data”. By using the inversed correspondence in this data, all files
containing patterns which are similar with a given feature vector are enumerated
efficiently.

 Figure 2 outlines our retrieval approach. The path represented by solid arrows is
the aforementioned preprocessing. The “Data Extraction” part applies the moving
window extraction of byte sequences to each file in a given set of data files. The
extracted byte sequences are transformed by FFT in the “Mathematical Transforma-
tion” part. The “Vector Discretization” part discretizes the resulted coefficients by the
given thresholds, and the feature vectors are generated. The “Vector Summarization”
part produces the correspondence data from each file to feature vectors while remov-
ing the redundant feature vectors among the vectors derived from each file. Finally,
the “Inversed Indexing” part derives the inverse correspondence data from each fea-
ture vector to files together with the “Unusable Vectors List”.

Figure2. FFT on moving windows

The file retrieval is conducted along the path represented by the dashed arrows. A key
file for the retrieval is given to the “Data Extraction” part, and the identical informa-
tion processing from “Data Extraction” to “Vector Summarization” with the former
paragraph derives the set of the feature vectors of the key file. Subsequently, the
unusable vectors are removed from the set in the “Unusable Vectors Removal” part.

Finally, the files corresponding to the feature vectors in the set are enumerated based
on the inverse correspondence data in the “Vector Matching” part. First, the “fre-
quency” of the complete match of every feature vector in the set to the identical vec-
tor in the inverse corresponding data is counted in this part. Then to focus the re-
trieval result to only files having strong relevance with the key file, the total sum of
the frequencies of all feature vectors in the set are calculated. If the total frequency of
the vector matching is less than a given “frequency threshold value”, the file is not
retained in the retrieval result. Moreover, the result is sorted in the order of the match-
ing frequency.

4 Basic Performance Evaluation

A program based on the proposed method has been developed, and its basic perform-
ance was evaluated by using artificial data sets. The specification of the computer
used in this experiment is CPU: AMD Athlon 1400MHz, RAM: PC2100
DDRSDRAM 348MB, HDD: Seagate ST340824A and OS: LASER5 Linux 7.1. 500
files having the normal distribution in their sizes were generated. Their average size
is 30KB and the standard deviation 10KB. Once the size of a file is determined, the
byte data in the file were generated by using the uniform random distribution. In the
next stage, 5 specific sequences in the length of 16 bytes, which were labeled as No.1,
…, 5, were embedded in each file. They were embedded not to mutually overlap, and
moreover the nonexistence of the sequences accidentally identical with these 5 se-
quences in the random generation of the byte data is verified. The moving window
size of 8 bytes, the 16 level of discretization of the FFT coefficients for each order
and 70% for the threshold frequency to determine the unusable vector are set for the
generation of the feature vectors.

Table 2. Retrieval by key file No.1

Sequence
No.

Threshold
Retrieved

Files
Correct

Files
Precision Recall

Comp
Time

1 1.0 250 250 1.00 1.00 1.6

 0.25 261 250 0.96 1.00

 0.125 344 250 0.73 1.00

Table 3. Retrieval by shifted key file No.1

(a) Result by proposed method using FFT
Sequence Threshold Retrieved Correct Precision Recall Comp.

No. Files Files Time
1 0.66 2 2 1.00 0.01 0.7

 0.55 37 37 1.00 0.15

 0.44 250 250 1.00 1.00

 0.33 252 250 0.99 1.00

 0.22 266 250 0.94 1.00

 0.11 326 250 0.77 1.00

(b) Result by conventional keyword matching

Sequence
No.

Threshold Retrieved
Files

Correct
Files

Precision Recall Comp.
Time

1 - 0 0 0.00 0.00 0.5

 The performance indices used in the experiment is the precision and the recall.

In ideal situation, both values are close to 1. However, they have a trade off relation
in general. Table 2 shows the performance of the retrieval by the key file consisting
of the sequence No.1. The thresholds in the table are the frequency threshold values
to evaluate the similarity of the files in the “Vector Matching” part in Fig.2. Under
the condition of the high threshold values, only highly similar files are retained. The
sequence No.1 is embedded in the 250 files among 500 test files. This is reflected in
the result of the threshold equal to 1.0, i.e., the key file consisting of the sequence
No.1 is certainly included in these files as a subsequence. In the lower value of the
threshold, some files containing similar subsequence with the sequence No.1 are also
retrieved. Thus, the precision decreases. In this regard, our proposing approach has a
characteristic to retrieve a specified key pattern similarly to the conventional keyword
retrieval when the threshold is high.

 Table 3 (a) shows the result of the retrieval where the key sequence No.1 is
shifted randomly in circular manner. Because the lengths of the embedded sequences
and the key sequence are 16 bytes, but that of the moving window for FFT is only 8
bytes, the FFT coefficients do not remain identical even under its shift invariance
characteristics. Accordingly, the feature vectors of the key sequence do not match
with these of the embedded sequences in complete fashion. However, the coefficients
of FFT reflects their partial similarity to some extent, and thus the excellent combina-
tion of the values of the precision and the recall is obtained under the frequency
threshold values around [0.2, 0.4]. Similar results were obtained in case of the other
key sequences. In contrast, when we applied the conventional retrieval approach
based on the direct matching without using the FFT to derive the feature vectors, very
low values of the precision and the recall were obtained as shown in Table 3 (b).
Table 4 represents the results for noisy data. 2 bytes are randomly chosen in each
original 16 bytes sequence, and they are replaced by random numbers. Similarly to
the former experiment, the excellent combination of the precision and the recall was
obtained for the most of the key sequences under the threshold value of [0.3, 0.5]. If
the distortion on the embedded sequences by the replacement becomes larger, i.e., the

increase of the number of bytes to be replaced, the values of precision and the recall
decreases. But, the sufficient robustness of the proposed retrieval approach under the
random replacement of 3 or 4 bytes in the 16 bytes sequence has been confirmed
through the experiments.

Table4. Retrieval on Noisy Data

Sequence
No.

Threshold Retrieved
Files

Correct
Files

Precision Recall Comp
Time

1 0.33 3 2 0.67 0.01 0.9

 0.22 27 18 0.67 0.07

 0.11 159 92 0.59 0.37

2 0.77 1 1 1.00 0.01 1.2

 0.66 15 15 1.00 0.04

 0.55 125 125 1.00 1.00

 0.22 140 125 0.89 1.00

 0.11 203 125 0.62 1.00

3 0.625 1 1 1.00 0.01 1.0

 0.500 3 3 1.00 0.03

 0.375 31 28 0.90 0.28

 0.250 120 100 0.83 1.00

 0.125 229 100 0.44 1.00

4 0.375 1 1 1.00 0.02 1.1

 0.250 38 14 0.37 0.28

 0.125 178 50 0.28 1.00

5 0.66 3 3 1.00 0.12 1.2

 0.55 25 25 1.00 1.00

 0.22 34 25 0.74 1.00

 0.11 127 25 0.20 1.00

 The computation time to finish a retrieval for a given key file is around 1 second

due to the efficient inverse indexing approach. Thus, the proposed method shows
practical efficiency for this scale of problems. In short summary, the basic function of
our approach subsumes the function of the conventional retrieval approach, because
the retrieval equivalent to the conventional retrieval is performed by setting the fre-
quency threshold value of the feature vector matching at a high value as shown in
Table 2. Moreover, this approach can retrieve the files having some generic similarity.

References

[1] Baeza-Yates, R.A.: String Searching Algorithms, Information Retrieval, Data Structures &
Algorithms, Chapter 10, ed. Baeza-Yates, R.A., New Jersey: Prentice Hall, pp. 219-240
(1992).

[2] Faloutsos, C: Signature Files, Information Retrieval, Data Structures & Algorithms, Chap-
ter 4, ed. Baeza-Yates, R.A., New Jersey: Prentice Hall, pp. 44-65 (1992).

[3] Harman, D., Fox, E. and Baeza-Yates, R.A.: Inverted Files, Information Retrieval, Data
Structures & Algorithms, Chapter 3, ed. Baeza-Yates, R.A., New Jersey: Prentice Hall, pp.
28-43 (1992).

[4] Ogle, V.E., Stonebraker, M: Chabot: Retrieval from a Relational Database of Images, IEEE
Computer, Vol. 28, No. 9, pp.1-18 (1995).

[5] Faloutsos, C., Equitz, W., Flickner, M., Niblack, W., Petkovic, D., Barber, R.: Efficient and
Effective Querying by Image Content, Journal of Intelligence Information Systems, 3, 3/4,
pp.231-262 (1994).

[6] Salton, G. and McGill, M.J.: Introduction to Modern Information Retrieval, McGraw-Hill
Book Company (1983).

[7] Fox, C: Lexical Analysis and Stoplists, Information Retrieval, Data Structures & Algo-
rithms, Chapter 7, ed. Baeza-Yates, R.A., New Jersey: Prentice Hall, pp. 102-130 (1992).

[8] Digital Signal Processing, The Institute of Electronics, Information and Communication
Engineers (IEICE) 10th Ed., Gihoudou, pp.49-61 (1983) (in Japanese).

[9] http://www.namazu.org/

