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Abstract

We propose a partial ordering that approximates a ranking of the items in a database

according to their similarity to a query item. The partial ordering uses a single-link hierar-

chical clustering of the data items to rank them with respect to the query’s closest match.

The technique avoids the O(kn) cost of calculating the similarity measure between the query

and every item in the database. It requires only O(n) space for pre-computed information.

The technique can also provide a criterion for determining which items may not need to be

included in the ranking. The results of our experiments suggest that the partial ordering

provides a good approximation to the similarity ranking.
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1 Introduction

We consider the information retrieval problem of ranking the items in a database according to

their similarity to a query item. A large part of the cost is due to the calculation of the similarity

measure. In order to rank the data items according to their similarity to the query, the similarity

measure needs to be calculated between the query and every item in the database. For example,

if the data items are k-dimensional vectors, and similarity is measured by the Euclidean distance,

then ranking the items in a database of size n will cost O(kn) computations. A large portion

of those calculations can be avoided if we can determine which items are so far away from the

query, that they need not be included in the ranking, without having to compute the similarity

measure between them and the query.

One solution is to avoid the calculation of the similarity measure between the query and

every item in the database by ranking the items according to their similarity to the query item’s

closest match instead. The idea is that items which are similar to the closest match are also

likely to be similar to the query item. There are a number of fast nearest-neighbour (NN)

search techniques that can be used for finding a query item’s closest match in the database [1].

An O(n2) proximity table that lists the value of the similarity measure between data items can

be pre-computed. The data items can be ranked with respect to the closest matching item by

looking up the table, and sorting the data items according to their similarities to the closest

match. The problem with this approach is that the O(n2) space required by the proximity table

can be prohibitive in applications involving large databases.

The solution we propose in this paper is to cluster the data items hierarchically using a

minimal cost spanning tree (MCST), and to use the resulting partial ordering to rank the data

items relative to the closest match. The MCST represents a single-link hierarchical clustering

of the data [2], [3]. The clustering is also invariant under monotonic transformations of the

distance function. We shall discuss the technique in Section 2. If the similarity measure is a

metric, then the triangle inequality provides a criterion for determining sections of the MCST

which contain items that may be considered too far away to be included in the ranking. We

shall discuss this criterion in Section 3. Section 4 shows the performance of these techniques in

our experiments.
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2 Hierarchical Ordering

Consider an MCST where each vertex is a data item, and the weight of an edge between two

vertices is the value of the (dis)similarity measure between the data items connected by that

edge. There are a number of efficient algorithms for constructing and updating an MCST over

the database (for example: [4], [5], and [6]). An MCST can be stored in O(n) space. An

important well-known property of an MCST is as follows:

Property 1 Every edge in an MCST partitions the vertices into two clusters, such that no other

pair of vertices between those clusters are closer to each other than the two vertices connected

by the partitioning edge.

Suppose the database consists of items y1,y2, . . . ,yn, and x is the query item. Property

1 implies that every yi is connected to the MCST through one of its closest matching items.

Thus, every yi is linked to a “chain” of nearest-neighbouring items in the MCST. Each chain

terminates at an edge that connects two mutual nearest neighbours—that is, the two items are

nearest-neighbours to each other. Disjoint chains are connected in the MCST by the shortest

path from one of the vertices in one chain to a vertex in another chain.

We obtain a partial ordering of the data items by following the nearest-neighbour chains,

starting from the query’s closest match. We illustrate this partial ordering in Fig. 1 with a

sample MCST from [2]. Suppose item y6 is the query’s closest match. We follow a nearest-

neighbour (NN) chain from y6 as follows: y4 is a nearest neighbour of y6, and y5 is a nearest

neighbour of y4 (Fig. 1-a and 1-b). That chain terminates at y5 because y5 and y4 are mutual

nearest neighbours. Since vertex y7 is closest to the chain y6y4y5, we follow the NN chain from

y7, which is y7y5y4, but without going through the items y5 and y4 again (Fig. 1-c). Since the

two chains are now linked, we look for another vertex closest to either chains. In this example,

the closest vertex is y2, and so we follow the chain y2y3 (Fig. 1-d and 1-e), and so on. As a

result, the items are ordered as follows:

y6 → y4 → y5 → y7 → y2 → y3 → y1 → y8

We use the single-link hierarchical clustering represented in the MCST. The single-link

clustering algorithm proposed by Gower and Ross [2] consists of an increasing series of pre-

defined edge weight thresholds (δ1, δ2, . . .). The clusters at level δl are constructed by grouping
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Figure 1: This figure illustrates an example of how the chains in the MCST can be followed
starting from y6. The resulting partial ordering is given by y6y4y5y7y2y3y1y8.
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Figure 2: The dendogram representing the single-link hierarchical clustering for the MCST in
Fig. 1. The thresholds are determined by the sorted weights of all the edges in the MCST.

together the vertices which are joined in the MCST by an edge whose weight is δl or less. At

level δl+1, two clusters will combine into a bigger cluster only if they are joined by an edge whose

weight is greater than δl and less than or equal to δl+1. The thresholds can be spaced uniformly

within the range of the edge weights. In our implementation, we use the sorted weights of all

the edges in the MCST for the thresholds. The resulting clustering information is represented

by a dendogram. Fig. 2 shows an example of the dendogram that corresponds to the example

in Fig. 1.

We implement the dendogram as a binary tree where each child node has a pointer to its

parent node, as illustrated in Fig. 3. Each non-leaf node represents the MCST edge connecting

two mutually exclusive subtrees of the MCST. Each subtree represents a cluster, and the leaves

are the items in the cluster represented by that subtree.

The partial ordering is obtained by traversing the dendogram recursively according to the

links provided by the nodes. Fig. 3 demonstrates the traversal for the example in Fig. 1. The

resulting ordering is hierarchical in the sense that the clusters are traversed recursively from the

lowest to the highest level of the hierarchy. Clusters closest to the smallest cluster containing

the starting leaf are traversed first. The dendogram makes it easy to find another NN chain

that can link to the current NN chain, because the link is given by the node with which the

current cluster is connected to the rest of the dendogram. We obtain an approximate similarity

ranking of the items by traversing the dendogram from the leaf that corresponds to the query’s

closest match.

3 Terminating Criterion

If the similarity measure, d(·, ·), is a metric, then the triangle inequality provides a criterion for

pruning the ranked list of items. The triangle inequality guarantees that if h = d(x,ycurr) and
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Figure 3: This figure illustrates how to traverse the binary-tree representation of the dendogram
in Fig. 2. The hierarchical clusters are traversed recursively from the lowest to the highest level
of the hierarchy. Starting from y6, the same partial ordering as that of Fig. 1 is obtained.
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d(yi,ycurr) > 2h, then d(x,yi) > h [7]. Suppose item yj is followed immediately by item yi in

an hierarchical ordering which starts from ycurr. Property 1 and the triangle inequality imply

that if

d(yj ,yi) > 2h (1)

then yi, as well as all the items that follow it in the ordering, cannot be closer than ycurr to x

[8]. Thus, we can terminate the partial ordering with respect to ycurr as soon as we find two

consecutive items which are connected by an edge of weight greater than 2h.

Furthermore, the triangle inequality ensures that all the closest matches of x are included

in the pruned list at that stage of the partial ordering [8]. This can be useful in applications

where a good match, though not necessarily the closest, can be obtained inexpensively. For

example, our experiments in [1] suggest that a variation of the k-d tree proposed in [9] can yield

good approximate matches at O(log n) scalar decisions. The hierarchical ordering can start at

the approximate match, and terminate as soon as the terminating criterion is satisfied. All the

closest matches of x are contained in the pruned list.

We note that the shortened list can be extended by relaxing the criterion in Equation 1 by

a scale of h. For example, if the user finds that the items in the pruned list are too few, then

the hierarchical ordering can continue by replacing the right-hand side of the inequality to 2.5h,

3h, 4h, and so on, until the user’s requirements are satisfied. We also note that the criterion

does not guarantee that all the items in the pruned list are going to be closer to x than the

discarded items. If the query is close to a cluster, the criterion may ignore other clusters which

are farther than the current cluster, even when those other clusters may have items that are

closer to the query than some of the items in the current cluster.

4 Results of Experiments

We demonstrate the technique proposed in this paper using data sets from vector quantisation

(VQ) coding of images. Each data item is an image block from an 8-bit grayscale image. The

database is a VQ codebook trained over an image using the LBG algorithm [10]. We use various

image block and codebook sizes in our experiments. We show the results for two test images:

len (“Lenna”) is a 512 × 512 image of a woman, and f18 is a 480 × 640 image of an F-18 jet

fighter. The Euclidean distance function is used as the similarity measure.

Tables 1 and 2 show the average results over the total number of queries, QTotal. In Table
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Block Codebk Performance:
Image size size (n) QTotal NNCost ShiftsF RSize ShiftsR

2 × 2 1024 65536 11.552 0.380 2.418 0.049

(k=4) 256 65536 5.898 0.362 2.419 0.050

4 × 4 1024 16384 28.082 0.361 7.575 0.094

len (k=16) 256 16384 8.793 0.353 4.139 0.056

512 × 512 8 × 8 256 4096 13.748 0.337 7.780 0.075

(k=64) 128 4096 7.879 0.330 4.223 0.047

16 × 16 128 1024 10.845 0.306 7.111 0.082

(k=256) 64 1024 7.457 0.309 5.066 0.054

2 × 2 1024 76800 9.425 0.164 16.344 0.025

(k=4) 256 76800 3.880 0.243 2.301 0.019

4 × 4 1024 19200 71.396 0.224 34.506 0.089

f18 (k=16) 256 19200 12.278 0.206 10.141 0.107

480 × 640 8 × 8 256 4800 23.957 0.168 33.783 0.122

(k=64) 128 4800 6.337 0.222 6.643 0.094

16 × 16 128 1200 13.073 0.157 20.009 0.110

(k=256) 64 1200 5.671 0.199 6.011 0.094

Table 1: Results for query sets which are the same as the VQ codebook’s training data.

1, the query set is the same as the training set used to generate the VQ codebook. Thus, it

is likely that a good match can be found for every query. In Table 2, however, the results for

image len f18 were obtained by encoding len using VQ codebooks trained for f18, and vice

versa. Since the query set is outside the training set, it is possible that some queries may not

have a good match.

Column NNCost shows the average cost of finding the query’s closest match. We used the

fast NN search algorithm proposed in [1]. The algorithm uses O(n) pre-computed information.

The algorithm also uses the MCST to speed up the search. The cost of the search is expressed

in the tables as the equivalent number of O(k) distance function evaluations. Compared to

the O(kn) arithmetic cost of an actual similarity ranking, the cost of finding a closest match is

considerably smaller.

We evaluate the approximate similarity ranking from the hierarchical ordering according to

the “sortedness” of the resulting list. We measure this in terms of the amount of work that a

sorting algorithm would require to re-arrange the items in the order that an actual similarity

ranking would list them. We count the number of element shifts that the insertion sort algorithm

has to perform to re-arrange the items so that their distances to the query are in increasing

9



Block Codebk Performance:
Image size size (n) QTotal NNCost ShiftsF RSize ShiftsR

2 × 2 1024 65536 21.871 0.271 18.495 0.040

(k=4) 256 65536 4.525 0.318 2.818 0.034

4 × 4 1024 16384 62.323 0.336 84.248 0.068

len f18 (k=16) 256 16384 12.022 0.304 10.937 0.070

512 × 512 8 × 8 256 4096 30.269 0.267 42.604 0.138

(k=64) 128 4096 9.839 0.322 8.338 0.093

16 × 16 128 1024 23.651 0.250 45.169 0.237

(k=256) 64 1024 12.472 0.266 19.846 0.190

2 × 2 1024 76800 15.416 0.328 7.740 0.074

(k=4) 256 76800 7.323 0.328 4.529 0.097

4 × 4 1024 19200 43.603 0.340 37.153 0.158

f18 len (k=16) 256 19200 12.506 0.317 10.030 0.109

480 × 640 8 × 8 256 4800 18.916 0.313 19.003 0.079

(k=64) 128 4800 9.417 0.298 8.736 0.056

16 × 16 128 1200 16.051 0.274 14.242 0.099

(k=256) 64 1200 9.270 0.294 7.941 0.066

Table 2: Results for query sets which are outside the VQ codebook’s training data.

order. We chose the insertion sort algorithm because it returns the best result if the distances

were already in sorted order, so that no element in the list needs to be shifted. The worst

case result occurs when the distances are in reversed (decreasing) order, resulting in N(N−1)
2

shifts (where N is the number of items in the list). We scale the results by taking the ratio

between the actual number of element shifts over the number of shifts in the worst case. The

performance value ranges from 0 (best) to 1 (worst).

Column ShiftsF shows the performance when all the items are ordered hierarchically. The

values range from 0.157 to 0.380. We note from the results that the performance appears to

be dependent on the relative distances between the items in the database. In both query sets

len and f18, hierarchical ordering performed better on the VQ codebook which was trained

over f18, than on the codebook which was trained over len. Because hierarchical ordering is

based on a single-link hierarchical clustering of the data items, the technique is likely to perform

better in cases where the items tend to form small dense clusters which are distant from each

other.

Column RSize shows the average size of the pruned list when the criterion based on the

triangle inequality is used to terminate the partial ordering. The comparatively small size of
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Block Codebk Performance:
Image size size (n) QTotal hbest h ShiftsF RSize ShiftsR

2 × 2 1024 65536 4.831 7.104 0.380 6.974 0.130

(k=4) 256 65536 6.495 9.300 0.361 5.012 0.135

4 × 4 1024 16384 18.945 28.951 0.361 36.418 0.173

len (k=16) 256 16384 22.518 32.794 0.353 9.758 0.135

512 × 512 8 × 8 256 4096 66.401 94.500 0.338 20.782 0.163

(k=64) 128 4096 71.395 107.156 0.332 11.046 0.136

16 × 16 128 1024 190.852 272.514 0.310 17.076 0.159

(k=256) 64 1024 217.874 320.189 0.316 11.764 0.154

Table 3: Results for hierarchical ordering which starts from the approximate match obtained
using a k-d tree. The query set is the same as the VQ codebook’s training set.

the pruned list indicates that a large part of the result in Column ShiftsF is probably due

to data items that may not need to be included in the ranking because they are too far away

from the query. Column ShiftsR indicates the “sortedness” of the items in the pruned list.

The comparatively small element shift ratios suggest that the items in the pruned list are often

already arranged in nearly the same order in which an actual similarity ranking would list them.

Table 3 shows the results when a variation of the k-d tree is used to obtain the approximate

match [1]. The k-d tree can be pre-computed, and then stored in O(n) space. It takes just

O(log n) scalar decisions to find an approximate match. Column h shows the average Euclidean

distance between x and the approximate match. Note that the distances are relatively close

compared to Column hbest, which shows the average Euclidean distance between x and the clos-

est match. Column ShiftsF shows the performance when all the times are ordered hierachically

starting from the approximate match. Column RSize shows the size of the pruned list when the

terminating criterion is applied. As expected, the pruned list contains more items compared

to the corresponding pruned list in Table 1, where the closest match is used. Column ShiftsR

shows the element shift ratios in sorting the pruned list.

5 Conclusion

The results of our experiments suggest that hierarchical ordering is able to provide a good

approximate similarity ranking at a fraction of the cost of an actual similarity ranking. The

technique is efficient in terms of both arithmetic cost and storage space requirements. The

cost of finding the closest match for the hierarchical ordering is only a fraction of the O(kn)
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cost of an actual similarity ranking. Hierarchical ordering itself requires only scalar decisions

to traverse the dendogram. It also requires only O(n) space for the dendogram, compared to

the O(n2) space required by the proximity table. If the similarity measure is a metric, then the

triangle inequality provides a criterion for determining a partial list of ranked items.

The efficiency and performance of hierarchical ordering can allow researchers to consider

sophisticated similarity measures despite the arithmetic complexity of those measures [11], [12].

Of interest to the authors are data mining and case-based reasoning applications, where large

databases have been accumulated over the years in an ad hoc manner. Given an appropriate

similarity measure, a single-link hierarchical clustering can provide the needed structure for

such databases.
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