Skip to main content

Discovering Ecosystem Models from Time-Series Data

  • Conference paper
Discovery Science (DS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2843))

Included in the following conference series:

  • 460 Accesses

Abstract

Ecosystem models are used to interpret and predict the interactions of species and their environment. In this paper, we address the task of inducing ecosystem models from background knowledge and time-series data, and we review IPM, an algorithm that addresses this problem. We demonstrate the system’s ability to construct ecosystem models on two different Earth science data sets. We also compare its behavior with that produced by a more conventional autoregression method. In closing, we discuss related work on model induction and suggest directions for further research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo, K.R., Worthen, D.L., Robinson, D.H.: A coupled ocean-ecosystem model of the Ross Sea. Part 2: Phytoplankton taxonomic variability and primary production. Journal of Geophysical Research (in press)

    Google Scholar 

  • Box, G.E.P., Cox, D.R.: An analysis of transformations. Journal of the Royal Statistical Society, Series B 26, 211–252 (1964)

    MATH  MathSciNet  Google Scholar 

  • Bradley, E., Easley, M., Stolle, R.: Reasoning about nonlinear system identification. Artificial Intelligence 133, 139–188 (2001)

    Article  MATH  Google Scholar 

  • Josephson, J.R.: Smart inductive generalizations are abductions. In: Flach, P.A., Kakas, A.C. (eds.) Abduction and induction, Kluwer, Dordrecht (2000)

    Google Scholar 

  • Jost, C., Adiriti, R.: Identifying predator-prey processes from time-series. Theoretical Population Biology 57, 325–337 (2000)

    Article  MATH  Google Scholar 

  • Koza, J., Mydlowec, W., Lanza, G., Yu, J., Keane, M.: Reverse engineering and automatic synthesis of metabolic pathways from observed data using genetic programming. In: Pacific Symposium on Biocomputing, vol. 6, pp. 434–445 (2001)

    Google Scholar 

  • Langley, P., George, D., Bay, S., Saito, K.: Robust induction of process models from time-series data. In: Proceedings of the Twentieth International Conference on Machine Learning, AAAI Press, Washington (in press)

    Google Scholar 

  • Luenberger, D.G.: Linear and nonlinear programming. Addison- Wesley, Reading (1984)

    MATH  Google Scholar 

  • Morris, W.F.: Disentangling effects of induced plant defenses and food quantity on herbivores by fitting nonlinear models. American Naturalist 150, 299–327 (1997)

    Article  Google Scholar 

  • Richmond, B., Peterson, S., Vescuso, P.: An academic user’s guide to STELLA. Lyme, NH: High Performance Systems (1987)

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel distributed processing, MIT Press, Cambridge (1986)

    Google Scholar 

  • Saito, K., Nakano, R.: Law discovery using neural networks. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1078–1083. Morgan Kaufmann, Yokohama (1997)

    Google Scholar 

  • Schneider, T., Neumaier, A.: Algorithm 808: ARFIT – A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software 27, 58–65 (2001)

    Article  MATH  Google Scholar 

  • Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 376–384. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  • Veilleux, B.G.: An analysis of the predatory interaction between Paramecium and Didinium. Journal of Animal Ecology 48, 787–803 (1979)

    Article  Google Scholar 

  • Washio, T., Motoda, H., Niwa, Y.: Enhancing the plausibility of law equation discovery. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 1127–1134. Morgan Kaufmann, Stanford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

George, D., Saito, K., Langley, P., Bay, S., Arrigo, K.R. (2003). Discovering Ecosystem Models from Time-Series Data. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds) Discovery Science. DS 2003. Lecture Notes in Computer Science(), vol 2843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39644-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39644-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20293-6

  • Online ISBN: 978-3-540-39644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics