Specification and Selection
of Network Management Agents

Ichiro Satoh*

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. This paper proposes a framework for building a reusable mobile agent
from two kinds of components: an itinerary component and an application-specific
logic component. Both components are implemented as mobile agents. The for-
mer is a carrier of the latter over particular networks and the latter defines man-
agement tasks performed at each host independently of any network. This frame-
work also provides a mechanism for matchmaking the two mobile agent-based
components. Since the mechanism is formulated based on a process algebra ap-
proach, it can strictly select an itinerary component that is suitable to perform
management tasks at hosts that the tasks want to visit over networks. A proto-
type implementation of this framework and its application were constructed on a
Java-based mobile agent system.

1 Introduction

Network management for telecommunication systems is is a typical application of mo-
bile agent technology. Adopting mobile agent technology eliminates the need for the
administrator to constantly monitor many network management activities, e.g., instal-
lation and upgrading of software and periodic auditing of the network. There have been
several attempts to apply this technology to network management tasks.

There has been a serious problem associated with the development of mobile agent-
based network management systems in addition to security problems. Such systems are
required to efficiently migrate their agents among all specified multiple hosts because
the itineraries of agents seriously affect the achievement and efficiency of network man-
agement tasks. Network management systems on the other hand must often handle in-
complete networks that may have various malfunctions and disconnections and whose
exact topology may not be known. It is almost impossible to dynamically generate an
efficient itinerary among multiple hosts. As a result, many existing mobile agent-based
network management systems explicitly and implicitly assume that their mobile agents
have been statically designed for particular itineraries over their target networks. How-
ever, such an agent that has been optimized for particular networks cannot be reused in
other networks.

To solve this, we constructed a framework for building and operating mobile agents
for network management without losing their reusability or efficiency. The framework

* E-mail: ichiro@nii.ac.jp

E. Horlait (Ed.): MATA 2003, LNCS 2881, pp. 11-2}, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

12 1. Satoh

separates the application-specific tasks and itineraries of mobile agents. The former de-
fines network management tasks independently of any networks and the latter can be
optimized for particular networks. The framework also offers a mechanism for match-
making between the two. Since the mechanism is formulated based on an extended
process algebra for reasoning about the itineraries of mobile agents, it can select an ap-
propriate itinerary that can satisfy the requirements of a network management task. The
current implementation of the framework is built on a Java-based mobile agent system,
called MobileSpaces [9].

This paper is organized as follows: Section 2 presents the basic ideas behind this
framework and Section 3 defines the process algebra for specifying mobile agents. Sec-
tion 4 describes a prototype implementation of the framework and Section 5 presents
some applications. Section 6 surveys related work and Section 7 sums up with conclud-
ing remarks.

2 Approach

The goal of this paper is to propose a framework for building and operating mobile
agents, which can autonomously travel among hosts on multiple sub-networks to per-
form their management tasks at each of the hosts they visit.

2.1 Two-Layered Mobile Agents

The framework divides a mobile agent for network management into two layered mo-
bile agents as follows:

Navigator Agent is independent of any application-specific tasks. Instead, it has its
own itinerary on a sub-network and carries task agents among their multiple desti-
nations on the sub-network. It is reused with arbitrary network management tasks.

Task Agent is an application-specific agent that performs its management task at each
of the hosts it visits. It can travel from sub-network to sub-network, but may be
unfamiliar with the sub-networks it visits. It can be reused in other sub-networks.

Most mobile agents for network management, which itinerate among multiple hosts,
often perform the same code, such as monitoring and controlling various equipments,
at each of the hosts they visit. Therefore, task agents do not always have to change their
tasks according to its visiting hosts.

2.2 Mobile Agent Matchmaking Mechanism

This framework also provides a mechanism for matchmaking between tasks agents and
navigator agents. The mechanism, called Agent Pool, stores idle agents in a manner
similar to that in a bus-terminal or a taxi stand (Fig. 1). Each sub-network has more than
one agent pool for storing navigator agents with various itineraries. Each task agent is
responsible for traveling among the agent pools of its destination sub-networks, where
each navigator agent is responsible for navigating its inner agents among the hosts in
its sub-network, and has been designed to return to its place soon after achieving its

Specification and Selection of Network Management Agents 13

. . =
migratiol

task agent

sub-network A
host 4

agent B' host 2

agentB (—— sub-network B

Fig. 1. Agent pools, navigator agents, and task agent

navigation task to wait for the next task. Therefore, to travel among some of the hosts
on a sub-network, a task agent migrates to an agent pool at the sub-network and selects
a navigator agent stored in the pool to carry it among the hosts. Also, each agent pool
should assign a task agent to idle navigator agents, which are staying at agent pools,
since moving agents are busy in achieving their current tasks.

Since mobile agents are written in general-purpose programming languages, such
as Java, it is difficult to extract only the itineraries of mobile agents from their programs.
We therefore defined a process algebra-based specification language for the itineraries
of mobile agents to select mobile agents according to their itineraries. This framework
assumes that each task agent specifies its required itinerary as a term of the language
and each navigator agent specifies its own possible itinerary as a term of a subset of the
language. The selection of navigator agents is formulated based on an algebraic order
relation over the terms of the language.

3 Mobile Agent Selection

A typical mobile agent for network management must monitor and control some equip-
ment at multiple hosts over a network whose exact topology may not be known and
which may have various malfunctions and disconnections. Such an agent often has its
own itinerary to statically solve problems in its target network. When a task agent is car-
ried by a navigator agent, the performance and achievement of the task agent is depen-
dent on the itinerary of the navigator. If a mobile agent gathers information from a host
and reflects the information on other hosts, its order of movement among these hosts
may affect their states. Therefore, such an agent must migrate among hosts according
to a specified itinerary. However, if an agent can travel among hosts to aggregate in-
teresting information from them without writing on them, the order of movement may
be independent of its achievement. Moreover, an agent’s itinerary is often dependent
on the results of the agent’s network management task. For example, such an agent can
determine its destinations based on information, such as routing tables, it has acquired
from the hosts that it has visited so far.

Definition 3.1 The set £ of expressions of the language, ranged over by E, E+, Es, . ..
is defined recursively by the following abstract syntax:

*

E:=0 | V4 | E1; Es | FEi1+E, | E1#E, | FE1% Es | FE1 & E, | E

14 1. Satoh

where L is the set of location names, ranged over by £, £ 1,£5,.... We often omit 0.
We describe a subset language of £ as S, when eliminating £, # Es, Ey % Es, By & Es,
and E™ from £. Let S, 51,59, ...beelements of S. O

This framework assumes that each agent has its own itinerary written in S. Since each
agent has an interpreter for the terms of S, it can dynamically evaluate its itinerary and
migrate among hosts along the itinerary. Intuitively, the meanings of the construction
are as follows: O represents a terminated itinerary; £ represents agent migration to a
host whose name or network address is ¢; E; ; Es denotes the sequential composition
of two itineraries 1 and E,. If the migration of E; terminates, then the migration of
E, follows that of E; E1+E, denotes that an agent moves according to either E'; or E,
where selection can be explicitly done by processing the agent; E; #FE> means that an
agent can select either E/; or E» under its control regardless of its processing; E; $ s
means that an agent can follow either £/; before E» or Ey before E; as its itinerary;
E, & E> means that two itineraries F; and E5 can be performed asynchronously L E*
is the transitive closure of £ and means that an agent can move along E an arbitrary
number of times. The formal semantics of the language is defined as the following la-
beled transition rules:

Definition 3.2 The language is a labeled transition system (£, £ U {7} { —C & x
Ela e EU{r}}) defined as induction rules as given below:

— E, —'>E) E, —'>E, E, —'>E)
(-0 Ey;Ey——E,;Ey Ei+E, ——E, E +E,——E)
B, — > E, By, —— B}

Ei&Ey ——E,sEy, Eis&E: ——E &E)

E\ # E> —T—)El E\ # E, —T—)EQ E, % E, —T—)El ; Eo E, % E, _T—>E2 ; Eh

E, " —>E; E, "> E; E; "> E,
Ei\; By ——E, ; By E1+Ey ——E| Ei+E, ——E)
E, "= E] E, —— E

Ei&Ey ——Ei&Ey E,&FEy; ——E &E)

where 0 ; E is treated to be syntactically equal to £ and E * s recursively defined
as 0 # (E ; E*). We often abbreviate Fg — - E; — =+ — > FEp,_1 ——=F, to
Eo(— 3"E,. O
In Definition 3.2, the /-transition defines the semantics of an agent’s mobility. For ex-
ample E —' 3 E' means that the agent moves to a host named ¢ and then behaves as

E'. Also, if there are two possible transitions F ! '‘3E; and E ! “F, in an agent, the
agent being processed chooses one of destinations £ and ¢». However, the T-transition
corresponds to a non-deterministic choice in an agent’s itinerary. Let us describe three
agent migration patterns studied in [1]. To simplify our discussion hereafter, we intro-
duce three macros, corresponding to the patterns, e.g., Travel, Star, and Turn. These

!'In CCS-like process algebras, & is an operator for specifying parallel executions. The opera-
tional semantics of the language is an interleaving model in the literature of process algebras,
and each agent migration is an atomic action.

Specification and Selection of Network Management Agents 15

macros do not extend the language because they are mapped into £. We will describe
the list of host names as [(1, £, ..., (], where ¢1,...,¢, € L. Let [] be an empty list,
car(X) be the top element of list X, i.e., let £; and cdr(X) be the remaining list of X
except for the top element, i.e., [{a, ..., {y].

o
o
e,

Travel($(X)) = car($(X)) ; Travel(cdr($(X)))
Travel([]) < o

Star ($(X)|h) ' (car($(X)) ; h) ; Star(cdr($(X))|h)
Star([J|h) < o

Let h be an element of £ and X be a list of host names in £. To illustrate the transition
defined in Definition 3.2, we shows a partial transition of Star([a, b, c||h) as follows:

def

Star([a,b,c]|h) = (a; h); Star([b, c]|h)
% h ; Star([b,c]|h)
Ly Star([b,]|h)
L (b h) ; Star([c]|h)
-5 b ; Star([c]|h)
Ly Star([c]|h)

We next formulate an algebraic order relation based on the concept of bisimulation [7].
The relation is suitable for selecting one of the navigator agents whose itineraries can
satisfy the requirement of a task agent.

Definition 3.3 A binary relation R™ (R C (£ x S) x N) is an n-itinerary prebisimu-
lation, where N is the set of natural numbers. If whenever (E,S) € R™ where n > 0,
then the following hold for all £ € £ or 7.

(i) if E -5 E' then there is an S’ such that S —— S’ and (E',S") € Rn—1

(ii) E(—)*E'and (E',S) € R"

(iii) if S —= S’ then there exist B, E" such that E (——)*E' — E" and (E',S') €
Rnfl

where E J,, S if there exist some n-itinerary prebisimulations such that (E,S) € R".
We call J,, n-itinerary order. a
The informal meaning of £ 1, S is that S is included in one of the permissible itineraries
specified in £ and n corresponds to the number of movements of the agent that can sat-
isfy E. There are some basic examples below.
- (a%b%c);h dycia;b;h
where the right side requires an agent to migrate among three hosts a, b, and ¢ in
indefinite order and then return to host A and the right side migrates among three
hosts ¢, a, and b sequentially. When the left side is changed to a ; b ; ¢ ; h, the
relation is still preserved, but when the left side becomes a ; h ; b; h; ¢; h or
a ; b ; h, the relation is not preserved.
- ((a;b;c)&h*);h Jea;h;b;h;c;h
where the left side allows an agent to drop in at host h at arbitrary times during the
itinerary a ; b ; c and then finish its movement at host h. The right is a star-shaped
route between three destinations, a, b, ¢ and host h can satisfy the left side.

16 1. Satoh

4 Design and Implementation

This section presents a prototype implementation of our framework. We tried to keep
the implementation within the framework as much as possible.

4.1 Hierarchical Mobile Agents

Before describing the framework presented in this paper, let us briefly review the Mo-
bileSpaces mobile agent system that has provided the infrastructure for this framework. 2
Mobile agents in MobileSpaces are programmable entities like other mobile agents.
They are capable of conserving their state while on the move and their itineraries can
include multiple hosts. Furthermore, MobileSpaces provides each mobile agent with
two novel concepts: agent hierarchy and group migration. The former means that an-
other mobile agent can be contained within a mobile agent. The latter means that each
mobile agent can migrate to another mobile agent or computer along with all its inner
agents, as long as the destination accepts them. Therefore, an agent can contain other
mobile agents inside it. Each agent has direct control of all its inner agents and can
thus instruct them to move to other locations and destroy them. In contrast, each agent
has no direct control over its container agents. Instead, each agent can have a set of
service methods, which can be accessed by its containers. Each agent has a globally
unique name and can have more than one active thread under the control of the runtime
system.

4.2 Navigator Agent

Each navigator agent is a container of one or more task agents and is responsible for
carrying them to hosts in the network it covers. It travels with its inner agents in accor-
dance with its itinerary written in S and invokes the callback methods of its inner task
agents at certain times, such as arrival and departure. Each navigator agent is designed
to go back to its agent pool and then register its itinerary at the pool soon after achieving
its navigation to wait for the next task. This framework provides abstract classes in the
Java language and navigator agents can be defined by extending these classes.

1: public class NavigatorAgent extends MobileAgent {
2: void setRoute (Route r) throws c..

3: void moveTo (Host h) throws IllegalHostException,
4: NoSuchHostException ... { ...

5: void moveToNext () throws MultiplePossibleHostsException,
6: NoSuchHostException ... C

7: Host [] getPossibleHosts() ... { ... }

8: void arrivedAt (Host here) ;

9: void depaturingFor (Host dst) ;
10:
11: }

Each navigator agent has its own itinerary as a term of S and registers the term with
itself and an agent pool, in which it is stored, by invoking the setRoute () method as
follows:

2 Details on the MobileSpaces mobile agent system can be found in our previous paper [9].

Specification and Selection of Network Management Agents 17

_ navigator agent

_ - _ 7| [task arrlvedAt
-7 _ - agent callback method
state

- - A depaturingFor ()
callback method

depaturingFor ()
callback method

moveToNext ()
setRoute ()

arb;

-
- callback method
state

moveTo ()

itinerary

itinerary
interpreter

J
event API for agbnt migration

‘ MobileSpaces runtime system ‘

Fig. 2. Structure of navigator agent

setRoute (new Route ("a;b; (c+d) ")) ;

where a;b; (c+d) is an itinerary attached to the navigator agent and means that the
agent migrates to host a and then to host b. The agent can then select either host ¢ or
d according to its own processing results. Each agent can migrate itself over a network
by using the following two approaches.

The first approach allows each agent to move along the itinerary it has registered
with itself. Each agent has a lightweight interpreter for the language in S. When the
agent invokes the moveToNext () method, the interpreter evaluates the agent’s next
destination from the itinerary and automatically moves the agent to the destination.
However, if the itinerary contains one or more candidate destinations combined by
selective operator +, then the invocation of the method throws an exception, named
MultiplePossibleHostsException. The agent can get all the destinations that
it can move to at the next hop by invoking the getPossibleHosts () method and
it moves to one of these by invoking the moveTo (dst) method with the selected des-
tination specified as dst. For example, suppose that an agent registers a;b; (c+d)
as its own itinerary. As we can see Fig. 3, it performs method moveToNext () two
times for two hops; from the current host to a and then from host a to b. It can then
select either ¢ or d and then perform the moveTo (dst) method with the name of the
selected destination as the method’s argument.

The second approach corresponds to the common approach used in existing mo-
bile agent systems. That is, an agent explicitly specifies its destination whenever it mi-
grates itself over a network. The moveTo () of the NavigatorAgent class causes
the agent to move from host b to the destination specified as its argument. For example,
an agent whose itinerary is a;b; (c+d) can invoke the moveTo () method with a
and then b to move to host a and then to b. It can then invoke the same method with
either c or d.

This framework restricts navigator agents from straying from the itinerary they reg-
istered with themselves. In both the above approaches, when the movement of a mobile
agent deviates from the itinerary registered by invoking the setRoute () method, it
is constrained and I1legalHostException is thrown to the agent. Each naviga-

18 1. Satoh

tor agent can explicitly limit the length of the execution period for its incoming task
agents after arriving at each destination. When the time limit of a task agent inside it
expires, it automatically terminates the task agent. Each agent can dynamically regis-
ter its itinerary by invoking the setRoute () method while it is moving, but the new
itinerary only becomes available after it returns to a certain agent pool.

migration

itinera
agent program agent program <— ” v

agent program
moveToNext () ;

moveToNext () ; .
navigator agent

itinerary _ migration host ¢
a;b; (c+ igrati ; =
A itinerary
navigator agent navigator agent navigator age
host h host a host b]
moveTo (d) j| - navigator agent

agent program host d

Fig.3. Following-itinerary movement of a mobile agent whose itinerary is specified as
a;b; (c+d).

4.3 Task Agent

Each task agent is a mobile agent that defines its management tasks at each of the hosts
in accordance with its management criteria. Although it may be able to travel among the
agent pools of its target sub-networks, it is unfamiliar within each of the sub-networks.
This framework provides a Java-based abstract class that allows us to easily define
advanced task agents by extending the the TaskAgent class.

1: public class TaskAgent extends MobileAgent {
void setRoute (Route r)

throws IllegalSyntaxException ... { ... }
void arrivedAt (Host here) ;
void depaturingFor (Host dst) ;
void finished (Route r) ;

}

Each agent defines its task in the arrivedAt () method. When arriving at an agent
pool, a task agent gives the pool the required itinerary along which a navigator agent
needs to carry itself by performing the setRoute () method with a term of £ corre-
sponding to that itinerary. The agent pool selects a suitable navigator agent and then
migrates the task agent into the selected agent. Having arrived at a host, the navigator
agent invokes the arrivedAt () method of its task agent to instruct it to do some-
thing during a given time period at the host. After receiving a certain event from all the
task agents or after the period has elapsed, the navigator agent invokes the depatur-
ingFor () method with the address of the next host and then moves itself and its task
agents to the destination according to its itinerary. For reasons of security, all agents
must be authenticated by the agent pool of a sub-network on behalf of the sub-network.
This is helpful in network management systems whose hosts may have limited CPU
power and memory. Since a sub-network may explicitly prohibit any task agent from
visiting its hosts, task agents must be carried by a navigator agent managed by the agent
pool of the sub-network. Therefore, a task agent alone cannot migrate to all the hosts,
even if it knows the addresses of its target hosts in the sub-network.

O JO U WN

Specification and Selection of Network Management Agents 19

4.4 Agent Pool

Each agent pool is a stationary agent, which can contain more than one navigator agent
as shown in Fig. 4. It is also responsible for receiving the requirements of a visiting
task agent and selecting a suitable navigator agent to carry the task agent among hosts
on its sub-network. It maintains a repository database about the itineraries of idle nav-
igator agents waiting for a chance to guide task agents. When an agent pool receives a
task agent, it extracts the required itinerary from it and selects a navigator agent whose
itinerary can satisfy the required itinerary from the idle navigator agents stored inside it.
The selection mechanism is just a direct implementation of the algebraic relation pre-
sented in Definition 3.3. That is, the agent pool compares the required itinerary written
in £ with each of the possible itineraries of the agents written in S by directly using
the order relation J,, C £ x § in Definition 3.3. It then assigns the task agent to the
navigator agent whose itinerary can satisfy the itinerary required. If more than one nav-
igator agent satisfies the required itinerary, it selects an agent with the least number of
agent migrations over a network, which is n of J,, in Definition 3.3.

itinerary

inference

. . 1 t t . I
migration_engine navigator agen possible

itinerary

task agent navigator agent

agent pool

Fig.4. Agent pool

4.5 Current Status

The cost of selecting navigator agents is dependent on the number of agents and the
length of itineraries. Although the current implementation was not optimized for per-
formance, it can handle each of all the itineraries presented in this paper within a few
milliseconds. Also, the per-hop latency of migrating a simple task agent using a navi-
gator agent whose itinerary is static is 43 ms. This is where the per-hop latency of agent
migration using a non-hierarchical minimal-size agent is 35 ms in a MobileSpaces run-
time system running on computers (Pentium III-800 MHz with Windows2000 and JDK
1.4) connected through a 100-Mbps Ethernet.

5 Application

We developed a network management system for a cluster computing environment con-
sisting of two sub-networks to evaluate the effectiveness of this framework. Each of the
sub-networks had from four to eight processor elements distributed geographically. 3

3 We presented the GRID environment in our previous paper [11] It was small scale because it
was implemented as a testbed for developing middleware and applications for GRID comput-
ing rather than a computational infrastructure.

20 1. Satoh

The purpose of this system was to monitor various network and computational resources
at the hosts.

The system deploys an agent pool at one host of each sub-network and offers several
task agents and navigator agents. For example, the task agent that monitors network
traffic loads has been designed to perform its task at each host that it visits. Although
the system itself is independent of any network management protocols, we constructed
a task agent that can access SNMP data from a small stationary agent situated at its
visiting host. The stationary agent allows that visiting task agent to access the MIB
of its host via interagent communication. Since the task agent can contain codes to
perform both information retrieval and filtering, it can only carry relevant information.
Also, the system has three other task agents for monitoring computational resources at
the processor hosts. They have been designed to collect information on the use of CPU,
memory, and disks by incorporating performance monitoring systems at the hosts. Also,
the system offers several navigator agents with different itineraries. However, due to
word limitations, this section only explains two navigator agents optimized for one of
the sub-networks defined by NaviAgentl and NaviAgent2 classes.

1: public class NaviAgentl extends NavigatorAgent (
2: public NaviAgentl ()

3: // registering its possible itinerary

4: setRoute (new Route ("h;a;b;c;d;h"));

5:

6: // invoked at the completion of the task agent’s
7: // processing at the current host

8: public void done () throws

9: MultiplePossibleHostsException .. {
10: moveToNext () ;
11:
12:
13: |}

NaviAgentl can travel along a sequential route. NaviAgent 2 is defined as the same
class except for the fourth line as follows:

4: setRoute (new Route ("h;a;h;b;h;c;h;d;h"));

The above itinerary defines a star-shaped route among four hosts,a, b, ¢, and d. Next,
suppose a task agent gathers local information from SNMP agent running on each of
the hosts that it visits. The agent has its required itinerary specified as follows:
public class SimpleTaskAgent extends TaskAgent

public SimpleTaskAgent ()
setRoute (new Route ("h; ([SNMP-AGENT] &h"*) ;h")) ;

NSO WN R

}

where [SNMP-AGENT] is a list of the hosts that perform SNMP agents. We assumed
that the list could be transformed into an itinerary (a $b % ¢ % d), which means that the
agent must visit the four hosts specified in a, b, ¢, and d in any order of movement
and can visit the home host h more than zero times on the way. The two navigator
agents can satisfy the required itinerary of the task agent. Since NaviAgent1 has
fewer agent migrations than that for NaviAgent2, the agent pool selects the former

Specification and Selection of Network Management Agents 21

navigator agent and moves the task agent into it. After receiving the task agent, the
NaviAgent1 navigator agent carries it from host to host according to its own itinerary.
Whenever it arrives at one of the destinations, it issues certain events to invoke the
arrived () method of the task. The task agent performs its application-specific task,
such as accessing and filtering from the SNMP agent of its visiting host, defined in the
arrived () method.

6 Related Work

Many mobile agent systems have been developed over the last few years. There have
been several attempts to develop mobile agent-based network management, for exam-
ple see [2,4]. Existing work on mobile agents has focused on the development of agent
infrastructures, applications, and functions that can be used by agents, but not on ap-
proaches to selecting mobile agents. Of these, Plangent [8] is a mobile agent system,
which can dynamically generate a plan to let itself acquire the knowledge that users
need and then perform its application-specific actions and movements according to the
plan. However, Plangent’s planning functionality does not target the mobility of agents
and cannot always generate valid plans. Our approach on the other hand offers a theo-
retical foundation for the selection of mobile agents and allows us to determine whether
or not the movements of agents can satisfy the requirements of network management
tasks.

Moreover, there have been various theoretical models for specifying mobile agents,
e.g., Mobile UNITY [6] and Ambient calculus [3]. The former is an extension of
UNITY and was designed for specifying control flows, variables, and conditional as-
signment statements at programs; it cannot merely extract or analyze only the itineraries
of mobile components. The latter is just a theoretical framework for formalizing the
whole computation of mobile agents. As far as the author knows, no existing calculi
can provide any preorder relations for the selection of mobile agents according to their
itineraries.

We should next compare the framework with our previous works. We presented
an approach to building mobile agents for network management in our previous paper
[11]. This approach separated a mobile agent into two parts: its mobility control part
and its application-specific part, like the framework presented in this paper. However,
the previous paper did not provide any approaches to matchmaking two parts, unlike
this paper. We presented active network protocols for building and managing several
agent migration protocols in our another previous paper [10], but this was just an in-
frastructure for configurable protocols for agent migration.

7 Conclusion

This paper presented a framework for building and operating mobile agents for network
management. The framework makes two contributions to mobile and multi-agent tech-
nologies. The first is to propose an approach for building a reusable mobile agent from
two subcomponents: a navigator agent and a task agent. The second contribution is to
formulate a specification language and an algebraic order relation between the terms of

22 1. Satoh

the language as a theoretical foundation for the selection of mobile agents. It provides
a matchmaking mechanism for navigator and task subcomponents. We believe that the
framework itself is general-purpose so that it is available for other mobile agent-based
applications as well as network management.

Finally, we would like to mention some future research directions. We plan to es-
tablish an axiomatic system based on the order relation to improve the performance of
agent selection. This paper does not discuss any coordination among multiple mobile
agents, but we are interested at developing a mechanism for assigning a task to one or
more mobile agents. We are interesting in applying the framework to an infrastructure
for ambient intelligence in ubiquitous computing environments presented in our previ-
ous paper [12] and to mobile agent-based managements for sensor networks presented
in another previous paper [13].

References

1. Y. Aridor, and D.B. Lange, Agent Design Patterns: Elements of Agent Application Design,
Proceedings of Second International Conference on Autonomous Agents (Agents’98), pp.
108-115, ACM Press, 1998.

2. A. Bieszczad, B. Pagurek, and T. White: Mobile Agents for Network Management, IEEE
Communications Surveys, vol. 1, no. 1, 1998.

3. L. Cardelli and A. D. Gordon: Mobile Ambients, Proceedings of Foundations of Software
Science and Computational Structures, LNCS, vol. 1378, pp. 140-155, 1998.

4. A. Karmouch, Mobile Software Agents for Telecommunications, IEEE Communication
Magazine, vol. 36 no. 7, 1998.

5. B.D. Lange and M. Oshima: Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

6. P.J.McCann, and G.-C. Roman, Compositional Programming Abstractions for Mobile Com-
puting, IEEE Transaction on Software Engineering, vol. 24, no.2, 1998.

7. R. Milner, Communication and Concurrency, Prentice Hall, 1989.

8. A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and S. Honiden, PLANGENT: An Approach to
Making Mobile Agents Intelligent, IEEE Internet Computing, vol.1, no.4, pp.55-57, 1997.

9. I Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Using
a Hierarchical Mobile Agent System, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April, 2000.

10. I. Satoh, Network Processing of Mobile Agents, by Mobile Agents, for Mobile
Agents, Proceedings of Workshop on Mobile Agents for Telecommunication Applications
(MATA’2001), LNCS, vol.2146, pp.81-92, Springer, 2001.

11. I Satoh, A Framework for Building Reusable Mobile Agents for Network Management, Pro-
ceedings of Network Operations and Managements Symposium (NOMS’2002), pp.51-64,
IEEE Communication Society, April, 2002. (A long version will appear in IEEE Transaction
on Systems, Man and Cybernetics, vol.33, no.3, 2003)

12. I. Satoh, Physical Mobility and Logical Mobility in Ubiquitous Computing Environments,
Proceedings of Conference on Mobile Agents (MA’02), LNCS, Vol. 2535, pp.186-202,
Springer, 2002.

13. T. Umezawa, 1. Satoh, Y. Anzai, A Mobile Agent-based Framework for Configurable Sensor
Networks, Proceedings of International Workshop on Mobile Agents for Telecommunication
Applications (MATA’2002), LNCS, Vol. 2521, pp.128-140, Springer, 2002.

	1 Introduction
	2 Approach
	2.1 Two-Layered Mobile Agents
	2.2 Mobile Agent Matchmaking Mechanism

	3 Mobile Agent Selection
	4 Design and Implementation
	4.1 Hierarchical Mobile Agents
	4.2 Navigator Agent
	4.3 Task Agent
	4.4 Agent Pool
	4.5 Current Status

	5 Application
	6 Related Work
	7 Conclusion

