

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

REQUIREMENT ENGINEERING MEETS SECURITY:
A CASE STUDY ON MODELLING SECURE ELECTRONIC
TRANSACTIONS BY VISA AND MASTERCARD

Paolo Giorgini, Fabio Massacci and John Mylopoulos

May 2003

Technical Report # DIT-03-027

.

Requirement Engineering meets Security: A
Case Study on Modelling Secure Electronic

Transactions by VISA and Mastercard

Paolo Giorgini1 and Fabio Massacci1 John Mylopoulos1,2

1 Department of Information and Communication Technology
University of Trento - Italy

{massacci,giorgini}@dit.unitn.it
2 Deptartment of Computer Science

University of Toronto - Canada
jm@cs.toronto.edu

Abstract. Computer Security is one of today’s hot topic and the need
for conceptual models of security features have brought up a number
of proposals ranging from UML extensions to novel conceptual mod-
els. What is still missing, however, are models that focus on high-level
security requirements, without forcing the modeler to immediately get
down to security mechanisms. The modeling process itself should make
it clear why encryption, authentication or access control are necessary,
and what are the tradeoffs, if they are selected. In this paper we show
that the i*/Tropos framework lacks the ability to capture these essential
features and needs to be augmented. To motivate our proposal, we build
upon a substantial case study – the modeling of the Secure Electronic
Transactions e-commerce suites by VISA and MasterCard – to iden-
tify missing modeling features. In a nutshell, the key missing concept
is the separation of the notion of offering a service (of a handling data,
performing a task or fulfilling a goal) and ownership of the very same
service. This separation is what makes security essential. The ability of
the methodology to model a clear dependency relation between those
offering a service (the merchant processing a credit card number), those
requesting the service (the bank debiting the payment), and those own-
ing the very same data (the cardholder), make security solutions emerge
as a natural consequence of the modeling process.

1 Introduction

“... Is there such a thing anymore as a software system that doesn’t
need to be secure? Almost every software controlled system faces threats
from potential adversaries, from Internet-aware client applications run-
ning on PCs, to complex telecommunications and power systems ac-
cessible over the Internet, to commodity software with copy protection
mechanisms. Software engineers must be cognizant of these threats and
engineer systems with credible defenses, while still delivering value to

customers. ... security concerns must inform every phase of software de-
velopment, from requirements engineering to design, implementation,
testing and deployment.

In 2000, Devambu and Stubblebine introduced with these words their ICSE
article on security and software engineering [5]. The article marked a surfacing
need in the IT community: security is not just about securing protocols and
communication lines, it is also about software [1, 16]. Indeed, the need of securing
software is even more pressing than the need of securing communication. Almost
no attack has been reported in the literature where hackers harvesting credit card
numbers by snooping communication lines, whereas exploits of software security
bugs are constantly among the headlines [20].

It has also clearly emerged that security concerns must be tackled from the
very beginning because looking at them as an afterthought often leads to prob-
lems [1, 16]. In their ICSE article, Devambu and Stubblebine posed a challenge
of integrating security concerns with requirements engineering, and in particular
with UML.

Part of this challenge has been answered, and indeed we have a number of
proposals for UML models that incorporate security features [9, 8, 10, 7, 13], as
well as early requirements models of security concerns [17, 22, 12]. What is still
missing is capturing the high-level security requirements, without getting sud-
dendly bogged down into security solutions or cryptographic algorithms. If we
look at the requirement refinement process of many proposals, we find out that at
certain stage a leap is made: we have a system with no security features consist-
ing of high-level functionalities, and then the next refinement shows encryption,
access control, authentication and the like. The need for these features is indeed
explained by the English text but this is hardly satisfactory. The modelling pro-
cess itself should make it clear why encryption, authentication or access control
are necessary.

In this paper we propose a solution that is based on augmenting the i*/Tropos
framework [4, 21] to take into account security considerations. Our decision to
augment the language has been mainly driven by a major case study, the mod-
elling of the Secure Electronic Transactions e-commerce suite3 by VISA and
MasterCard [14, 15] that one of us has contributed to formally verify [2, 3]. The
industrial relevance of the case study is clear but the topic is challenging also
for technical reasons. At first because the proposal is accompanied by a massive
documentation spanning from an high-level business description to bit-oriented
programming guide. However, if we look to the documentation we find out that
the business case is described in a totally informal way and the programming
guide is fairly operational, in many points a good example of bit-oriented pro-
gramming. It is not possible to trace back the requirements from the 1000+
pages of the system description, except from the English text. In particular, the
documentation contains no such thing as a UML process model.

3 A new proposal superseding SET and encompassing also features related to smart-
cards, the VISA and Mastercard 3-D Secure initiative, has been launched this year.

Analysis has shown that the key to modelling security features is the sepa-
ration of the notion of offering a service (of a handling data, performing a task
or fulfilling a goal) and ownership of the very same service. Our enhancement of
the Tropos/i* methodology is based exactly on this idea.
The ability of the methodology to model a clear dependency relation between

those offering a service (for example, the merchant processing a credit card
number), those requesting the service (e.g., the bank debiting the payment),
and those owning the very same data (the cardholder), is what make security
solutions emerge as a natural consequence of the modelling process. Indeed, our
proposal ensures that security mechanisms are not introduced early on into a
software system design. We believe that this early introduction is what creates
gaps in the requirements analysis process and makes unclear the reason behind
the introduction of these security mechanisms.
In the rest of the paper we give a quick introduction to the SET e-commerce

suite (Section 2) and the Tropos/i* methodology (Section 3) with some examples
drawn from the case study (Section 4). Then we present an initial model using
Tropos (Section 5) and note its unsatisfactory character in explaining why some
security mechanisms have emerged. We then introduce our enhanced version
of Tropos/i* (Section 6) and show how we can capture more appropriately the
(missing) trust relationships that are behind the SET design (Section 7). Finally,
we discuss related works and conclude (Section 8).

2 A SET Primer

With the boom of internet shopping in the mid 90s, a consortium led by credit
card companies (VISA and Mastercard) and major software vendors (Netscape
and Microsoft among them) have put forward an architecture for securing elec-
tronic payments.
The need for a secure solution payment solution was spurred by the current

unsatisfactory protection offered to customers and merchants dealing on-line.
Indeed, people normally pay for goods purchased over the Internet using a credit
card. Customers give their card number to the merchant, who claims the cost of
the goods against it. To prevent eavesdroppers on the net from stealing the card
number, the transaction is encrypted using the SSL protocol. Basically, this is
what happen when the browser shows the closed lock on the screen. However
this arrangement has many serious limitations:

– The cardholder is protected from eavesdroppers but not from dishonest mer-
chants (pornographers have charged more than the advertised price, expect-
ing their customers to be too embarrassed to complain), nor incompetent
ones (a million credit card numbers have been stolen from Internet sites
whose managers had not applied security patches) [20].

– The merchant has no protection against dishonest customers who supply an
invalid credit card number or who claim a refund from their bank without
cause. In most countries, legislation shields customers rather than merchants.
So, upon receiving a claim, the banks will go to the merchant asking for a

signed receipt and if it does not exist (as it is obviously the case), though
luck for the merchant.

The proposal of the consortium, called SET (Secure Electronic Transactions)
aims to “provide confidentiality of information, ensure payment integrity and
authenticate both merchants and cardholders”, according to the Business De-
scription [14, p. 3].
SET’s participants are cardholders and merchants. Their financial institu-

tions are called issuers and acquirers respectively. Other participants are pay-
ment gateways (PG), who play the traditional role of clearing-houses in settling
the payment requests made by merchants and cardholders during a purchase.
There is also a hierarchy of certificate authorities (CA), rooted in a trusted root
certificate authority (RCA).

Cardholder Registration. This is the initial phase for cardholders. It lets each
cardholder register by providing him with a certificate for his signature key. A
cardholder begins a session by sending his credit card details to a CA, which
replies with a registration form. The cardholder completes the form and choose
an asymmetric key pair and send the public part to a CA. The CA checks whether
the request is valid (the protocol does not define how) and issues a certificate,
signed by the CA, that binds the public key to the cardholder’s name. He will
have to use the corresponding private key to sign purchase requests. Few points
are noteworthy:

– A merchant should not be able to verify a cardholder’s account details from
his certificate [14, pp. 7, 12 and 25]. Indeed, the cardholder’s certificate does
not store the account detail. The name of the certificate holder in the X.509
certificate standard [15, pp. 210, 213] is replaced by the hash of his primary
account number (PAN), loosely speaking the credit card number, and of a
secret nonce (PANSecret).

– Still the certificates must assure the merchant during the payment phase
(without his having to see the PAN) that a link exists between a cardholder,
and a valid PAN, and that the link was validated by the card issuer [14, pp.
8 and 25].

Merchant Registration. This phase performs the analogous function for mer-
chants. Unlike cardholders, merchants register both a signature key and an en-
cryption key. Each merchant gets two certificates.

Purchase Request. The cardholder sends the order information and the payment
instructions to a merchant, who may run Payment Authorization (see below)
before accepting the order. A trusting merchant can batch the payment autho-
rizations and run them later. It is worth noticing that the cardholder invokes
Purchase Request after he has agreed with the merchant to buy certain goods
or services (the Order Description) for a certain amount. SET is concerned with
payment, not with shopping.

Payment Authorization. When a merchant receives an order, he does not receive
the cardholder’s PAN. So, he cannot just use that number, as done with credit
card transactions conducted via the telephone [19], to settle directly with the
card issuer. Instead, the merchant forwards the payment instructions to a PG.
The PG, in cooperation with the card issuer, checks that everything is fine, and
sends the payment authorization to the merchant.

Payment Capture. The merchant sends to the PG one or more payment requests
and the corresponding “capture tokens” obtained during the previous steps.
The PG checks that everything is satisfactory and replies to the merchant. The
actual funds transfer from the cardholder to the merchant is done outside the
protocol. This step, for the finalization of the trasnfer of money from the bank
to the merchant is explained by a business need: payments can be authorized
on-line but captured (finalised) much later, such as at time of delivery. Another
example comes from “Buy on Christmas, Pay on Easter” schemes or the like.
All we expect is that payment is captured only if previously authorized.

3 The Tropos/i* Methodology for Requirement Analysis

We start by selecting the appropriate methodology for analysis. Among the
competing alternatives we have chosen the Tropos/i* methodology, which has
been already applied to model some security properties [12, 22].
Tropos [4, 21] is an agent-oriented software system development methodol-

ogy, tailored to describe both the organisational environment of a system and the
system itself, employing the same concepts throughout the development process.
Tropos adopts the i* modelling framework, which uses the concepts of actors,
goals, soft goals, tasks, resources and social dependencies for defining the obli-
gations of actors (dependees) to other actors (dependers). Actors have strategic
goals and intentions within the system or the organisation and represent (social)
agents (organisational, human or software), roles or positions (that represent
a set of roles). A goal represents the strategic interests of an actor. In Tropos
we differentiate between hard (hereafter just “goals”) and soft goals. The lat-
ter have no clear definition or criteria for deciding whether they are satisfied
or not. A task represents a way of doing something. Thus, for example a task
can be executed in order to satisfy a goal. A resource represents a physical or
an informational entity. finally, a dependency between two actors indicates that
one actor depends on another to accomplish a goal, execute a task, or deliver a
resource.
These modelling concepts are particularly well suited to model business secu-

rity requirements, which are usually expressed in natural language using notions
such as agents and high level goals such confidentiality and authentication. Tro-
pos features make also possible an explicit modelling of security as requirements
without requiring an immediate discussion of sizes of cryptographic keys or deny
vs access configuration of files.
The distinctive characteristic of Tropos (covering the very early phases of

requirements analysis) allows for a deeper understanding of the environment

holder
Card−

certificate
emission ofl Certification

Authority

Issuer

Authorization
Data

Local
Bank

manage
customer
relations

credit card
services

Card−
holder

goods

payment

Merchant

(b)(a)

Fig. 1. (a) Merchant-Cardhodler Basic Dependencies; (b) Certification actor diagram

where the software must operate, and of the kind of interactions that should
occur between software and human users. This understanding is often essential
for having security features right [1, 16]: technically perfect security solutions are
typically hampered by lack of understanding of interactions. By considering early
phases of the requirements analysis process, we can capture not only the what or
the how, but also the why a piece of software is developed. This, in turn, supports
a more refined analysis of system dependencies, covering both functional and
non-functional requirements. Security requirements can, of course, be seen as a
particular form of non-functional requirements.

4 Some Examples of Modelling Features

Let’s now start from a simple example of a dependency in SET using plain
Tropos.

Example 1 (Fig.1 - a). The Cardholder depends on the Merchant for obtaining
some goods and the Merchant depends on the Cardholder for obtaining the
payment.

The above example is fairly high level: a sort of first principle. We may
want to model more complicated examples on interdepencies looking at some
subsystems, for example Cardholder Registration.

Example 2 (Fig.1 - b). A Cardholder depends on the Certification Authority
for the emission of certificates.The Authority itself depends on the Cardholder’s
credit card Issuer for authorization data. The Issuer of the credit card delegates
to the local bank the management of customer relations, so that the Cardholder
also depends on the local bank for the desired credit card services.

Another interesting feature of Tropos is the refinement analysis and the usage
of rationale diagrams that explains dependencies.

certificate
emission ofl

request
Card−holder
personal data

PAN
request

authorization
check send

certification

AND

request

signature
digital

AND

request identification
Issuer

request of
information authorization

verification

AND

Certification
Authority

Fig. 2. Rationale diagram

Example 3 (Fig.2). Analyzing the goal of the emission of the certificate from ex-
ample 2, it can be and-decomposed into three subgoals: Request of personal data
from the cardholder, checking the authorization at the issuer and generating and
sending back the certificate. The first subgoal can be further refined into request-
ing the PAN of the cardholder and requesting the digital signature. The subgoal
for the authorization could be further sub-divided into subgoals: identification of
the Issuer, request of information and authorization from the Issuer, verification
from the authority internal database that no duplicate signature exists, etc.

5 First Attempt at Modelling SET with Tropos/i*

From an ideal perspective, we would like to start from the high level goal of
electronic payments and show why the protocol itself is a possible solution and
to what goals. So we start by refining the example 1. After all the merchant does
not receive the money directly from the customer, the passage is mediated by
the bank.

Example 4 (Fig.3). The Cardholder depends on the local Bank for banking ser-
vices and credit and the Merchant for obtaining some goods. The Merchant
depends on the Bank for obtaining the payment.

We can further refine this example as follows:

Example 5. The Cardholder depends on the local Bank for banking services and
the Merchant for obtaining some goods. The local Bank depends on the Issuer
for credit card transaction and the Issuer depends on the Bank for customer
relations. The Merchant depends on his Bank for obtaining the payment and

holder
Card−

Local
Bank

goods

payment

credit card
services

Merchant

Fig. 3. Payment-2 actor diagram

the Bank depends on the Acquirer for payment of credit card transaction and
the Acquirer depends on the Bank for customer service relations.

The next step clarifies the relations between various actors in the financial setting
of the transaction.

Example 6 (Fig.4). The Cardholder depends on the local Bank for banking ser-
vices and the Merchant for obtaining some goods. The local Bank depends on the
Issuer for authorizing billing credit card transaction and the Issuer depends on
the Bank for customer relations. The Merchant depends on his Bank for obtain-
ing the payment and the Bank depends on the Acquirer for authorizing crediting
of card transaction and the Acquirer depends on the Bank for customer service
relations. The Issuer depends on the Acquirer for obtaining financial data for
the transaction and viceversa.

holder
Card−

Local
Bank

credit card
services

Issuer

manage
customer
relations

authorize
billing credit

card transaction

Merchant Merchant
Bank

manage
customer
relations

goods

Acquirer

authorize

card transaction
crediting credit

payment
charge

credit data
financial

debit data
financial

Fig. 4. Payment-3 diagram

Further analysis of the financial data between Acquirer and Issuers reveals
that this is the client credit card number, the merchant account and the payment
information.
At this stage one may jump to the conclusion that now we need to encrypt

the credit card number so that the merchant cannot see it. Though possible,

Merchant Bank

Card−
holder

charge
payment

Fig. 5. Extendend dependency diagram

this conclusion, would not be immediately nor easily derivable from the present
analysis. The distance between the analysis and the proposed solution is far too
great. In Tropos, we could precisely model the protocol, but without explaining
why encrypting a credit card number is a good solution and especially a solution
for which problem.

6 Security-Enhanced Tropos

We now focus on what is missing in the “vanilla” version for Tropos. Looking at
the above example, it is clear that we need to distinguish between the servers
that manipulate some data (e.g., the Merchant) and the owners to whom the
data ultimately belongs (e.g., the Cardholder). Indeed, inasmuch as the owner
of a resource is also disposing of its use we have no need of security analysis.
We need security as soon as the owner of some data must use the services of
some other agent to use his own data.Looking at operating systems, we need
operating system security because the user owns a file but the operating system,
an agent distinct from the user, serves access to this file. So, we first extend the
Tropos notion of Actor as follows:

Actor:= Actor name [attributes] [creation-properties] [invar-properties] [actor-
goals] [ownership] [services]

We extend the notion of actor introducing the possibility that an actor can own
resources, tasks and goals (ownership) and can provide services (task, goals and
resources). Then we extend the notion of dependency introducing the notion of
owner, as follows:

Dependency:=Dependency name type mode Depender name Dependee name
[Owner name] [attributes] [creation-properties] [invar-properties] [fulfill-properties]

We can now model situations in which an agent (depender) depends on an an-
other agent (dependee) for a resource (task and goal) and a third agent (owner)
gives the permission to use such a resource (task and goal). Of course this in-
cludes also the fact that the dependee is able to provide the resource (task and
goal), namely the resource is included in its service list, and that the owner owns
the resource, namely the resource is included in the owned-resource list.
Figure 5 reports an example of such a dependency. The Merchant depends

on the Bank for charging a payment to a specific credit card number, and the

holder
Card−

payment
charge

Merchant
Bank

provide
debit details

get signature
card holder

provide provide
credit card

number

AND

authorization

issuer

get MOTO
authorization

OR

Issuer

Merchant

Fig. 6. Payment Dependency with Ownership of Data

Card-holder has to give the permission for such a task (in figure the ownership
is indicated as an “o”).
The new model makes it possible to analyze the trust relationship between

clients, servers, and owners and the consequent need for security solution. This
is the missing gap between the high-level model and the low-level usage of crypto-
graphic primitives. For example, suppose that we modelled some archival system
where the owner of some data must give the data to somebody for storing it. The
model will show the dependency relation. If the owner does not trust the storage
server, we can change the model and encrypt the data. The trusted relation of
the revised model can better address our desired trust relationships.

7 Modelling SET with Security Enhanced Tropos

Using this new ternary dependency we can refine the model presented in Fig. 4
with respect to the charge payment dependency between Merchant and Merchant
Bank. Fig. 6 reports the new model.
In the new model, the problem is becoming clear: to obtain the money the

Merchant must get a piece of data that belongs to somebody else. Since the
Merchant and the Cardholder are not phisically close, the data must be trasmit-
ted from the Cardholder to the Merchant via the network infrastructure. This is
modelled in Fig. 7 and basically correspond to the typical usage of credit card
for buying over the internet before the widespread adoption of SSL/TLS.
The analysis of the trust relationships in Fig. 7 shows by a glance that the

cardholder must trust the network provider to safely and securely manage the
credit card details. This situation is clearly unsatisfactory and thus we can revise
the model to propose an alternative.
It is worth noting that the same analysis of the trust relationship also shows

a potential vulnerability of the system that is not usually considered when dis-
cussing the security of internet payment systems. The cardholder must also trust
the phone/network provider between the bank and merchant. This explains the

holder
Card−

Public
Internet
Network
Provider

credit card
transfer

details

Provider

Phone
Network

provide
credit card

details

get credit
card details

send credit
card details

Merchant

card details
validate credit

AND

credit card
details

transfer

Fig. 7. Internet Shopping - Old Style

need for additional protection on that side or the usage of a dedicated financial
network. So we can devise a refinement alternative to Fig. 7 in which the data
channelled through the network provider is encrypted. In a nutshell, we simply
derive, the SSL/TLS idea of e-commerce. It is shown in Fig. 8. However, protec-
tion over Merchant and bank phone network is still necessary. Further details,
down to the actual protocol an then be worked out, but there is no longer the
big gap between the high level models and the sudden appearance of low level
security mechanisms.

This solution can be still unsatisfactory for the cardholder. His data must
still be processed by the merchant and there might be cases where this trust
relationship is undesirable. Now we can define yet a different refinement in Fig. 9.

Public
Internet
Network
Provider

Provider

Phone
Network

provide
credit card

details

get credit
card details

send credit
card details

holder
Card−

Merchant

card details
validate credit

AND

credit card
details

transfer

credit card
details

encrypt

credit card
details

transport encryption

AND

Fig. 8. Internet Shopping á la TLS/HTTPS

holder
Card−credit card

details

encript

Gateway
Payment

credit card
details

validate encripted

authorization
signature

Merchant

authorization
provide

Issuer

of transactions
authorization

Fig. 9. Internete Shopping - SET-style

We now have a stepwise refinement process that makes it possible to un-
derstand why there is the need of enrypting and protecting credit card details.
The refinement steps shows clearly how the trust relation is build, and what
trust relations are created. The usage of encrytpion is now clearly motivated by
the model itself: we have a owner of data that is forced to use the services of
some other entity. Authentication and access control can be similarly introduced
during the analysis of the depender-dependee model when the goal require some
form of identification.

8 Related Work and Conclusions

A number of articles have discussed the usage of Tropos/i* methodology for
modelling security concerns. For example, in [12] the authors show how mod-
elling relationships among strategic actors can be used in order to elicit, identify
and analyze security requirements. In particular, how actor dependency analysis
helps in the identification of attackers and their potential threats, while actor
goal analysis helps to elicit the dynamic decision making process of system play-
ers for security issues. [22] shows how goal models can be used to model privacy
concerns and the different alternatives for operationalizing it. Using an example
in the health care domain, the authors propose a framework based on a cata-
logue, to guide the software engineer through alternatives for achieving privacy.
However, both proposals remain at an abstract level and stops before filling the
missing gap that we noted.

A preliminary modification of the Tropos methodology to enable it to model
security concerns throughout the whole software development process has been
proposed in [18, 17]. In particular, this extension proposes the use of security con-
straints and secure capabilities as basic concepts to be used in order to integrate
security concerns throughout all phases of the software development process.
Here, we find an operational description but still the notion of constraints is not
sufficient to capture the trust relationship that we have been able to model in
our enhanced Tropos model.

Down the line in the modelling paradigm, a number of proposals have pro-
posed enhancements to UML to cope with security constraints. [9–11] propose an
extension of UML where cryptographic and authentication features are explicitly
modelled. The model is rich enough to allow for a detailed analysis and indeed
has been driven by a similar case study of electronic payment systems [8]. In
comparison to ours, the system is fairly low level and is therefore suited to more
operational analysis. A challenging line of research may involve the integration
of the two methodologies, so that one can start from a high level analysis of the
system with our security-enhanced Tropos and then continue down the line to
an operational specification using UML.

Another proposal of enhancing UML with security feature is the SecureUML
language [7, 13] which, however, is geared towards access control. The proposal
is focused on providing concrete syntax for representing access control notions in
UML so that access control policies can be directly modelled in UML and formal
properties derived from that models. These modelling features are essential, but
from our perspective only at the end of the system modelling process.

In this paper we have shown an enhancement of Tropos/i* that is based on the
clear separation of roles in a dependency relation between those offering a service
(the merchant processing a credit card number), those requesting the service
(the bank debiting the payment), and those owning the very same data (the
cardholder). This distinction makes it possible to capture the high-level security
requirements of an industrial case study, without getting immediatley bogged
down into cryptographic algorithms or security mechanisms, where purpose is
obscured in a morass of details. The modelling process we envision makes it clear
why encryption, authentication or access control are necessary and which trust
relationships or requirements they address. The challenge is now to integrate
this framework with other development phases, to ensure trully secure designs
for software systems.

References

1. R. Anderson. Security Engineering - a Guide to Building Dependable Distributed
Systems. Wiley and Sons, 2003.

2. G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial payment
protocol: The SET purchase phase. In V. Atluri, editor, 9th ACM Conference on
Computer and Communications Security, pages 12–20. ACM Press, 2002.

3. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET registration protocols.
IEEE Journal on Selected Areas on Communications, 21(1), 2003. in press.

4. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems, 2003. Elsevier,
Amsterdam, the Netherlands, (to appear).

5. P. T. Devambu and S. Stubbelbine. Software engineering for security: a roadmap.
In Future of Software Engineering. Special volume of the proceedings of the 22nd
International Conference on Software Engineering (ICSE 2000), pages 227–239,
2000.

6. J.-M. Jézéquel, H. Hußmann, and S. Cook, editors. 5th International Conference
on the Unified Modeling Language (UML 2002), volume 2460 of Lecture Notes in
Computer Science. Springer, 2002.

7. J.-M. Jézéquel, H. Hußmann, and S. Cook, editors. SecureUML: A UML-Based
Modeling Language for Model-Driven Security, volume 2460 of Lecture Notes in
Computer Science. Springer, 2002.

8. J. Jürjens. Modelling audit security for smart-card payment schemes with UMLsec.
In 16th International Conference on Information Security (IFIP/SEC 2001).
Kluwer AP, 2001.

9. J. Jürjens. Towards secure systems development with umlsec. In Fundamental Ap-
proaches to Software Engineering (FASE/ETAPS 2001), LNCS. Springer-Verlag,
2001.

10. J. Jürjens. UMLsec: Extending UML for secure systems development. In Jézéquel
et al. [6].

11. J. Jürjens. Using UMLsec and Goal-Trees for secure systems development. In
Symposium of Applied Computing (SAC 2002). ACM Press, 2002.

12. L. Liu, E. Yu, and J. Mylopoulos. Analyzing Security Requirements as Relation-
ships Among Strategic Actors. In Proceedings of the 2nd Symposium on Require-
ments Engineering for Information Security (SREIS-02), Raleigh, North Carolina,
2002.

13. T. Lodderstedt, D. A. Basin, and J. Doser. Model driven security for process-
oriented systems. In 8th ACM Symposium on Access Control Models and Tech-
nologies, 2003.

14. Mastercard & VISA. SET Secure Electronic Transaction Specifica-
tion: Business Description, May 1997. Available electronically at
http://www.setco.org/set specifications.html.

15. Mastercard & VISA. SET Secure Electronic Transaction Specifica-
tion: Programmer’s Guide, May 1997. Available electronically at
http://www.setco.org/set specifications.html.

16. G. McGraw and J. Viega. Building Secure Software. Addison Wesley Professional
computing, 2001.

17. H. Mouratidis, P. Giorgini, and G. Manson. Integrating security and systems
engineering: Towards the modelling of secure information systems. In Proceedings
of the 15th Conference On Advanced Information Systems Engineering (CAiSE
2003), 2003.

18. H. Mouratidis, P. Giorgini, and G. Manson. Modelling secure multiagent systems.
In Proceedings of the 2nd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2003.

19. D. O’Mahony, M. Peirce, and H. Tewari. Electronic payment systems. The Artech
House computer science library. Artech House, 1997.

20. A. Paller. Alert: Large criminal hacker attack on Windows NTE-banking and
E-commerce sites. On the Internet at http://www.sans.org/newlook/alerts/

NTE-bank.htm, Mar. 2001. SANS Institute.
21. A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. A Knowl-

edge Level Software Engineering Methodology for Agent Oriented Programming.
In Proc. of the 5th Int. Conference on Autonomous Agents, Montreal CA, May
2001. ACM.

22. E. Yu and L. Cysneiros. Designing for Privacy and Other Competing Requirements.
In Proceedings of the 2nd Symposium on Requirements Engineering for Information
Security (SREIS-02), Raleigh, North Carolina, 2002.

