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Abstract. In this paper, we describe a novel approach to policy-based
intrusion detection. The model we propose checks legality of information
flows between objects in the system, according to an existing security
policy specification. These flows are generated by executed system op-
erations. Illegal flows, i.e., not authorized by the security policy, are
signaled and considered as intrusion symptoms. This model is able to
detect a large class of attacks, referred to as “attacks by delegation” in
this paper. Since the approach focuses really on attack effects instead of
attack scenarii, unknown attacks by delegation can be detected.
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1 Introduction

Traditional intrusion detection techniques build on two distinct approaches:
scenario-based detection and anomaly-based detection. In the former case, an
intrusion detector includes a database of existing attack scenarii and algorithms
that correlate observed system events in order to detect known patterns. In the
latter case, observed events are compared to a “normal behaviour” profile that
usually results from a statistical learning process. While these intrusion detec-
tion systems (IDSes) have been effective in many cases, they raise a number of
inherent problems []:

— maintenance costs: for a scenario-based IDS to remain useful, its database
must be constantly upgraded to include new attack signatures as they are
discovered. Anomaly-based detectors require a new profile building phase
whenever new applications with legitimate but different behaviour are put
in service;

— detection reliability: a scenario-based IDS is by definition limited to
known attack scenarii, which are less likely to be used by a possible intruder.
Novel attack detection remains limited or impossible. This may produce false
negatives, i.e., successful attack not reported by the detector;

— detection accuracy: while successful attacks may remain undetected, an
IDS also produces false-positives, i.e., alerts reporting intrusions that did not
oceur.
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We believe that to a large extent, these problems arise from the fact that anomaly
or scenario-based intrusion detection relies on a context-free definition of what
a potential attack may be: while by definition any attack is a security policy
violation, the security policy itself is not taken into account in these approaches.

There has been increasing interest in policy-based intrusion detector develop-
ment in the recent years [2]. A policy-based IDS consists in a logical security pol-
icy specification and an execution trace validation algorithm. Such an approach
has the potential to improve significantly over statistical anomaly detection and
scenario detection in terms of reliability, accuracy and required maintenance.
Ideally, maintenance is needed only to change the specified policy, there is no
need for permanent upgrades or adaptation phases.

The present work pursues these goals by modeling a system in terms of
objects, operations and information flows between objects. A criterion to distin-
guish between legal and illegal information flows according to a security policy is
established. Information flows that appear as illegal are symptomatic of security
policy violation attempts and should be reported as intrusion alerts.

Our purpose is not to enforce a security policy a priori. Instead, we use infor-
mation flow control as a means to detect given access control criteria violations.
We want the policy enforcement mechanism to remain transparent to users as
much as possible. In this paper, we focus on discretionary access control poli-
cies, as these are used in the actual targeted operating systems. Nevertheless,
the approach is general enough to be able to handle also for instance a Chinese
Wall policy or a Bell&LaPadula policy.

In this paper, we present a formal intrusion detection model. Some imple-
mentation issues are discussed and we show the ability of the model to detect
actual intrusions.

The rest of this paper is organized as follows. In section [2, we present the
class of attacks we focus on and related work that provide partial solutions
to prevent or detect such attacks. The proposed intrusion detection model is
formally introduced in section [Bl Section [ describes our implementation on
the Linux OS, as well as an actual attack detection example. Finally, section
presents the conclusion of our current work and some future directions.

2 Background

In this section, we present a class of host-based confidentiality or integrity viola-
tions, referred to as “attacks by delegation”. These attacks can be described and
modeled in terms of information flows. We briefly present and discuss several
existing techniques and models that can be used to deal with these attacks.

2.1 Attacks by Delegation

Integrity and confidentiality policies in operating systems are primarily enforced
using access control mechanisms. If the access control implementation is correct,
then it forbids any action that explicitly violates desired confidentiality and
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integrity criteria. However, experience shows that security policy violations, i.e.,
intrusions, are still possible. Even if the attacker is prohibited from executing a
specific action, an intrusion can be achieved by various means:

— The well-known access leakage problem, inherent to HRU-based access con-
trol models [3], can be exploited. In this case, the action eventually exe-
cuted by the attacker is explicitly authorized by the access control, but is
semantically equivalent to an action declared as illegal in terms of access to
information;

— Race conditions can be exploited by interfering with the actions executed
by some other process or subject. The attacker knows that a specific action
will eventually be executed and schedules its own actions in order to take
advantage of this. While all the actions performed by the attacker are legal
by themselves, the security policy is violated by the effect of their scheduling;

— Abusing the privileges of other subjects is another form of interference, as in
confused deputy-based attacks. In this case, the policy is violated by the fact
that this action is executed as a consequence of an action of the attacker.
Under some circumstances, Trojan horses and back-doors can be considered
as confused deputy exploits, where the confused deputy itself is designed by
the attacker to meet his needs. Once installed using some other attack, it
can be activated by the attacker purposely to perform operations that are
not allowed to him;

— We can consider some buffer overflow-based attacks as special cases of Trojan
horses. Here, a misbehaving program executing actions programmed by an
attacker using a buffer overflow exploit has the same effect as a Trojan horse
installed by the attacker.

These intrusion scenarii consist in series of actions, where each one is legal
from the access control point of view when considered separately. However, when
combined and executed in a particular context, they lead to some effect that is
explicitly forbidden by access control.

We call such attacks attacks by delegation. Indeed, an attacker aiming at
executing some action, but not allowed to do so, will “delegate” the action to
some other subject, or a special context he produces. Note that this concept is
orthogonal to the more common classification of attacks (DoS, read access to
data, execution of code), because in each of these categories, number of attacks
can be modeled as attacks by delegation.

Attacks by delegation can be described in terms of information flows between
objects in the system. As a simple example, let us consider the well-known attack
against Ipr (please refer to table [M). While each step is legal per-se, the final
result is that the attacker prints /etc/shadow, which is prohibited by the DAC
policy. This attack results in an information flow from a file (in this example,
/etc/shadow) to the printer device, while the printer is not an allowed destination
for this flow. The printer daemon is used as a confused deputy to produce such a
flow (in step 6), by combining other legal information flows using a race condition
(in steps 3 and 4).
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Table 1. The Ipr attack

Ipr daemon ‘ attacker

lpr /home/user/doc.txt

read /var/spool/lpd/job-*¥**

rm /home/user/doc.txt
In -s /home/user/doc.txt /etc/shadow

read /home/user/doc.txt
send document to printer

O U = | W DNO| —

2.2 Related Work

Information Flow Control. In the general case, access control mechanisms
that consider each operation separately cannot protect a system against attacks
by delegation. In most cases, rights to execute operations are granted on a strictly
context-free subject/object identity basis, while interference and cooperation
schemes take into account context and execution history when dealing with
access to data and data modification. In other words - the security policy is
implemented at the object access control level, while attackers operate at the
information flow level.

In theory, this problem can be solved by using information flow control mod-
els; a large number of these has been proposed [A5JGITISIOT0[TT]. However, when
focusing on implementing given security policies on existing general-purpose op-
erating systems, their actual usability remains limited due to various practical
reasons:

1. Models that enforce complete control over all possible information flow chan-
nels, including hidden ones, require knowledge of control flows and depen-
dency graphs [4l5]. In our opinion, such a fine granularity is unrealistic on a
large-scale OS running third-party software.

2. Coarse-grained, multi-level models that enforce control over well-defined
channels have been proposed (such as the Bell&LaPadula [G], Biba [7] and
Chinese Wall [8] models). A common basis to many of these models is that
they enforce unidirectional information flow channels and ensure that the
graph of all possible information flows is acyclic [9]. This is generally consid-
ered too strict for practical usage, so that exceptions have to be introduced, in
the form of group intersections, declassification operations, method waivers
[10], etc. Again, static program analysis may be required in such cases to
avoid substantial overhead of run-time information flow checking [I1];

3. Particular models designed for specific applications rely on assumptions met
by a highly specialized operating environment, but remain unusable in the
general case. For instance, the model described in [12] exploits the Java
visibility rules and security constraints to infer knowledge of possible infor-
mation flow channels, which is a form of static program analysis.
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Neither of these approaches is directly usable on a generic OS such as Linux,
Unix or Windows, especially if the existing security policy remains unchanged
and the system runs unmodified closed-source software.

Access Control. Confused deputy attacks can be avoided using a capability-
based access control model such as [I3l[14]. By binding possible operations of a
process directly to objects, these models prevents attacks such as those based
on symbolic links or file renaming. Similarly, the problem of access leakage in
access control models can be addressed in multiple ways. Typed access control
models [T5J16] provide means to define safety invariants and ensure that a subject
will not be able to gain certain undesired privileges. Nevertheless these models
remain unable to prevent malicious cooperation or interference. They also fall
short in dealing with back-doors or operation side-effects.

To deal with privilege and information transfer from an access control point of
view, the “Take-Grant” model and its derivatives were developed [I7J18/19]. This
formalism allows to distinguish between de jure transfers, where a subject gains
privileges that allow him to access some informations, and de facto transfers,
that consist in accessing some copy of that information [20]. Later, the problems
of privilege theft, conspiracy [21l22] and information flow between subjects and
objects have been modeled using this framework. The proposed solutions
provide means to validate a given access control policy, modeled using the “Take-
Grant” formalism, against potential de facto transfers or conspiracy scenarii.

Some attacks by delegation actually create de facto transfers or privilege
thefts, and could thus be prevented by modifying the policy using these ap-
proaches. However, others forms of attacks involving illegal information flows
(such as Trojan horses or back-doors) cannot be modeled so easily this way.

Intrusion Detection. In the intrusion detection field, an interesting approach
to race conditions-based attacks detection has been proposed [24]. The authors
define a property of subjects non-interfering with data and propose an algorithm
for system integrity enforcement. They show their model’s ability to detect novel
security policy violations, however security policies taken into account in this
work focus only on subjects being forbidden to overwrite a piece of data. In
Appendix A, we show that policies of this form can easily be handled also using
our model.

An approach to prevent privilege abuse and confused deputy attacks is the
“privilege graph” model [25], that takes into account implemented subject priv-
ileges, as well as vulnerabilities that allow some subject to gain additional priv-
ileges. This model can be used to evaluate a given security policy by estimating
the global security level of that policy and the impact of policy changes (sub-
ject creation, subject privilege modification, etc.). From an intrusion detection
point of view, this can be seen as an event correlation model. However it is not
a runtime intrusion detection mechanism by itself.
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2.3 Positioning of Our Work

Since our goal is to detect attacks by delegation that produce illegal information
flows, we propose to enforce a simplified information flow control by restricting
our focus only to flows between system objects. In practical terms, anything that
is identified as an “object” by the underlying operating system fits in the model:
in a Windows or Unix-like system, this includes files, pipes, FIFOs, sockets,
message queues, shared memory buffers etc.

Our purpose is not to enforce a security policy a priori. Instead, we use infor-
mation flow control as a means to detect given access control criteria violations
by various forms of interference or confused-deputy exploits at runtime. In this
paper, we focus on discretionary access control policies, as these are used
in the targeted operating systems. Nevertheless, the approach is general enough
to be able to handle also for instance a Chinese Wall policy or a Bell&LaPadula
policy.

3 Intrusion Detection Model

We propose to simplify information flow control by considering only flows be-
tween system objects. Any access to an information is modeled by a method call
on the object containing that information. By executing series of method calls,
system operations produce information flows between objects. A security policy
is enforced by defining domains that specify sets of method calls, each combi-
nation of these calls producing authorized information flows. By definition, to
be legal, information flows must occur within an unique domain; any flow that
violates this rule violates by definition a confidentiality or integrity requirement.

3.1 Objects and Operations

The elementary unit of information in our model is an atomic object state. Atomic
objects provide information containers. Their state is set and retrieved using
method calls.

According to the usual definition, the state of an object is defined by the
values of its attributes. Atomic objects' are objects whose attributes depend on
each other and cannot be modified separately, thus the security policy can only
deal with the object as a whole (for instance, a file contents, not a part of it).
In practical terms, our model can enforce a policy if a file contents is accessed
using the read and write methods as an atomic objects, but not if it is accessed
through a raw device or by mapping the file as part of the virtual memory of a

process (which are not atomic)?.

! In this paper, we further refer to atomic objects simply as to objects.
2 In current operating systems, non-atomic object exist; however, the problem is known
and is being addressed in current development [26]. Thus, our model only handles

atomic objects, while the implementation will use the possibility of emulating atomic
objects as soon as it will be released.
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By allowing to access and modify an object state, its methods in effect pro-
duce information flows. Any operation executed on the system that accesses or
modifies the state of an object thus has a meaning in terms of generated in-
formation flows between objects. As such, it is defined by a set of objects and
the set of called methods. We use the symbol > to denote such operations: an
operation

{o.m} > {o'.m'}

creates an information flow from object o to object o’ by accessing the state of
o using its method m and, as a consequence, setting the state of o' using its
method m/.

Since we focus only on flows produced by method calls, information flows
using hidden channels are clearly outside of our scope.

Our operating system model is formally specified as follows:

Definition 31 A system is a tuple (O, M, (2, S, exec) where

— O is a set of object identifiers;

— M is a set of object methods;

— 2 C{(Ox M) > (0 x M)*} is the set of operations that generate infor-
mation flows between objects, x being used as a notation for the powerset;

— S is a set of system states;

— exec: 2 — (S — S) are the information flow semantics of operation execu-
tion, i.e., the system state transition functions.

This model provides an instance of an EM enforcement mechanism [27]. The set
of system states S and state transition functions exec will be formally defined
in the following sections.

3.2 Domains and References

An attack by delegation symptom is an information flow between objects that
violates the enforced security policy. To detect operations that create such flows,
we need to define a “legality condition” for the generated flows.

As implemented by an access control mechanism, a security policy explicitly
declares legal and illegal flows. Let us consider the sample DAC policy from
table 2l When applied to a given system state (i.e., the states of all the system
objects), this policy declares an operation such as {m.r} > {n.w} as legal. On
the opposite, we consider that any access that is not explicitly authorized is
forbidden. Thus, an operation such as {m.r} > {p.w} is illegal.

In the general case, a security policy implies legal combinations of object
method calls to be used by operations. We call domain a set of method calls
such that any combination of these is legal as regard to the security policy.
Therefore, an operation that executes only method calls that belong to the same
domain is legal by definition. Similarly, an operation that consists in method
calls of several distinct domains is illegal, as the information flow it generates is
not considered as authorized by the security policy.



298 Jacob Zimmermann, Ludovic Mé, and Christophe Bidan

Table 2. Sample access control policy

[ TTee ] Bob |
{r,w}] 0

n ({r,w}{{r,w}
p

{r,w}{{r,w}
0 | {w}

Formally, the method calls that belong to a given domain are defined by a
set of references. A reference Rgo.m allows to execute the o.m method call in
the domain d. Given a system state (i.e., the states of all objects), each object
is bound to a set of references.

Definition 32 Let D be a set of domain identifiers. A system state is a objects-
to-references binding:

— S:0—{Rgo.m|d € D,oe O,me M}

Given an object 0o € O and a state s € S, s(0) C {Rqo.m|d € D,m € M} is the
set of all references that provide legal accesses to the o object in the s state.

Defining domains and related reference sets in an initial system state is the
means to implement the existing security policy. The actual domain building
algorithm depends on the security policy one wish to implement, the common
DAC case is treated in section [L.2]

For a single information flow, the “domain uniqueness rule” is formally de-
fined by the islegal predicate:

Definition 33 We define the function dom : (OxM)* xS — D* as the set of all
domains that allow a set of object method calls to be executed in a system state.
Given an operation and a system state, we define the predicate islegal : §2 xS —
{true, false} as true if all the executed method calls are allowed within some
same domain, i.e. if there exists some domain where the appropriate method
calls on both the source objects and the destination objects can be executed.

— dom[{o1.m1,...,0p.my},s] ={d € D|Vi € [1...p|Rqo;.m; € s(0;)}
— islegal(src>> dst, s) = true if dom(src, s) N dom(dst,s) # 0

This predicate checks that there exists at least one domain where accessing both
the source objects (src¢) and the destination objects (dst) is allowed. Since any
flow within some domain is by definition legal, the “domain uniqueness rule”
ensures that no illegal information flow occurs when executing the src > dst
operation.

3.3 Causal Dependency and Reference Flow

Information flows between objects are also generated by sequences of causally
dependent operations. According to Lamport’s causal ordering [28], an operation
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wy 1 Srcy 3> dsty is a causal consequence of some operation wy : sreq > dsty
if it accesses an object state set by wq, i.e., if there exists an object o € O and
two methods (m, m’) € M x M such that o.m € dst; and o.m’ € srcy. In this
case, the sequence [srcy > dsty; sreg > dsta] actually creates an information
flow srcy > dsty. Thus, after having executed srcy > dstq, srcg > dsty is legal
if, and only if, src; > dsts is legal.

Since information flow legality is enforced using references, that means that
if sreq > dsty occurs, the dst; objects must then have references similar to those
of the src; objects. An information flow thus results in a flow of references. More
precisely, whenever a legal information flow occurs, references from the source
objects are propagated to the destination objects. Executing src > dst in some
system state s thus generates a new system state s’ through the state transition
function exec: 2 — (S — 9).

Definition 34 exec(src>> dst) =s — s’ such that Yo € O,

— if 3m € M|o.m € dst
then s'(0) = Prop(o, s, src > dst) U Create(o, src >> dst) where
e Prop(o, s, src > dst) ={Rgo.m/|d € dom(src,s)
and 30" € O,m" € M|o'.m" € src AN Rqgo'.m’ € s(0')}
e Create(o, src>> dst) is a set of new references.
— else s'(0) = s(0)

When a flow from an object o’ to an object o occurs in the state s, the operations
possible on o in the new state s’ must be at most the operations possible on o’
in the previous state s. This is enforced by the reference flow, formalized by the
definition B4} Prop is the set of flowing references, whereas Create is used in
operations that create new objects. The first condition in Prop, i.e. dom(sre, s),
selects all the domains in which a flow sourcing at the src objects in state s is
legal. The second condition select all references that relate to source objects (i.e.
objects that have methods called in src) in these domains. Notice that theoreti-
cally, some of these methods may not exist for the destination objects. However,
a non-existing method will by definition not be called, so these references will
never be involved in any further reference flow. Moreover, practically, all objects
involved in a given operation have the same interfaces: thus this case does not
even occur in the implementation.

Object creation operations are not formalized specifically, since they sim-
ply consist of information flows to objects. However, for the new objects be-
ing accessible, appropriate created references to these objects must be bound
to dom(sre, s) N dom(dst, s). Just like representing known operations using the
src > dst formalism, this depends on the actual system implementation.

As an example, let us consider again the DAC policy from table 2 In the
scenario shown on table [B] operation at step 1 generates a flow® from m to n;
a flow from m to p would have been illegal since the DAC policy allows either

3 In table B, n — p denotes an authorized flow from n to p, i.e., islegal({n.m1} >
{p.-ma},s) = true, mi,ms € M.
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Table 3. Illegal sequence of operations

’s\ operation \ legal flows \islegal‘
0 M 4> N;M 4> 0,04 N0 = Pin — P
1{m.r} > {n.w} M 4 N;M 4 0,043 N0 — P true
2 {n.r} > {pw} false

reading m or writing p, but never both simultaneously. Thus, the flow from n to
p at step 2 is also illegal, because it would result in a flow from m to p through
n.

3.4 Intrusion Detection

Let us consider a (O, M, £2, S, exec) system model with S and exec as defined
in the previous section. We suppose the system to be in some initial state sg
that binds objects and their methods into domains as implied by the access
control policy. Thus, any cross-domain operation is supposed to be an intrusion
symptom. To detect such symptoms in an execution trace, i.e., a sequence of
operations [wi,ws . ..wy], we have to check the “no cross-domain” property for
each of the operations. That is:

1. For each operation w;, the islegal predicate must be true.
2. Each operation modifies the state of the system as defined by the exec func-
tion,

4 Implementation

We have developed a run-time intrusion detector using this model on Linux. This
system matches well the object-based model with a discretionary access control
policy. In addition, the system being open-source provides an ideal testbed en-
vironment.

Our implementation has shown promising abilities to detect different realistic
attacks, including unknown attacks. In this section, we give some details about
this implementation and show, on one interesting example, its ability to detect
actual intrusions.

4.1 Modeling the Linux OS

In this implementation, we consider the following objects as information con-
tainers:

— Filesystem objects (i.e., regular files, directories and named FIFOs). Special
“device files” are not considered;

— User and client related metadata: authentication accounts handled through
the PAM system and IP ports
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Table 4. Sample reference requirements

’System call \Reference requirements \Created flows ‘

sendfile(out,in,offset,count) |Rgout.w, Rgin.r {in.r} >
{out.w}

read(fd,buf,count) Ryfd.r, Rgbuf.r, Rgbufow |{fd.r,bufr} >
{bufw}

mmap(s,L,p,f,fd,0)? Rys.r, Rgs.w, fd.r {s.r, fd.r} >
{s.w}

Input/output descriptors for filesystem objects, pipes and sockets;
— POSIX inter-process messages;

POSIX shared memory objects;

process memory images.

The subset of system calls that we must handle to deal with these objects is
quite small: while Linux kernel version 2.4 defines over 250 system calls, only 16
generate actual information flows between objects and are taken into account
in our present implementation. These are calls that create or use I/O descrip-
tors (file, pipe and socket operations), the mmap call, the msgget and msgsnd
calls. Each has well-known semantics regarding information flows, from which
we derive a precise specification in terms of reference requirements, such as those
shown on table @ and also reference creation where it applies. These rules are
defined once and for all by the implementation.

As described in section [B.1] the implemented model assumes objects to be
atomic. Nevertheless, some objects in Linux are not atomic: for instance, each
line the /etc/shadow file can theoretically be overwritten only by information
flowing from a given user’s console. This cannot be easily modeled, so some
attacks (such as Alice changing Bob’s password instead of her own) will not
be detected. However, a new filesystem is currently being developed that will
eventually solve the problem by allowing to represent any information as a set of
atomic files [26]. Once this feature will become available, we will take advantage
of it.

4.2 Building the Initial State

Since Linux enforces a discretionary access control policy, the initial object-to-
references binding sg is easily deduced from the DAC matrix by forbidding de
facto access rights transfers [20]. Since DAC is the primary means to implement
security policies in Linux (and other current operating systems), we use it as
a security policy specification. Thus, our goal is not to refine or correct DAC
permissions, but to enforce the existing policy in cases where it could be violated
by some attack by delegation.

Basically, by reading and writing objects he is allowed to access, any subject
can generate information flows between these objects. Our interpretation of the



302 Jacob Zimmermann, Ludovic Mé, and Christophe Bidan

Algorithm 1 Building the initial state sq:
1. Let U be the set of Linux subjects other than root.
2. Initially
(a) D=U
(b) Yo € O,s0(0) =10
3. For each w in U :
(a) for each method m in M, let All,,(u) be the set of objects that u is
allowed to execute m on.
(b) If there exists an v’ in U, u’ # u, such that for any method m, All,,(u) C
Al (u)
i. then D < D — {u}
ii. else for each o in All,,(u), so(0)  Ry,0.m

policy is that such a flow is legal if some subject is allowed to read the source
objects and write the destination objects. Thus, all flows a given subject can
generate belong by definition to the same domain(s).

This interpretation of the Linux DAC is problematic in one case: suppose
that Bob’s access rights are strictly a subset of Alice’s ones. That means that
any flow Bob can possibly produce can also be generated by Alice; so all flows
that either Bob or Alice can generate belong to the same domain(s). Therefore,
if an attack by delegation attempts at creating a flow between Alice’s and Bob’s
objects, it will remain undetected.

We argue, however, that there is no harm due to this. For the situation to
arise, Bob would actually have to share everything with Alice, including her
authentication account. If this is the case, then no action of Bob could be dis-
tinguished from an Alice’s action, which is undoubtedly a policy anomaly.

The set of domains D and the initial state so are built by the algorithm [II
For any subject but root, it checks whether his rights are superseded by those of
some other subject. If it is not the case, then all flows this subject can produce
define one domain.

4.3 Running the Checker

Our implementation consists in a user-space daemon running as a low-priority
background process. A trivial kernel module hooks on the observed system calls
and sends a message to the daemon whenever any of them is executed by a
process. Thus, actual reference flow processing and checking the islegal condition
is asynchronous. Using this design, the performance degradation on the target
host is kept low (please see table [l for an example).

Theoretically, the maximum number of domains is number of objects * num-
ber of subjects, assuming a DAC policy. However, most of the domains actually
overlap; by considering all flows that may be generated by a given DAC subject
as belonging to the same domain, the maximum number of automatically gen-

*
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Table 5. Linux kernel compilation benchmark (make bzImage)

# of operations |[|12051434
default 9m 40s
with active checker|| 11m 23s

erated domains is the number of subjects. Let us notice that the initial domain
construction phase takes approximately 15 minutes on a standard PC running
Linux with 13 users and over 120000 objects, or 8 minutes on our mail server
(which has a much faster SCST disk).

The islegal test complexity is linear in the number of checked references.
There can be at most number of methods * number of domains references per
object; most objects have only three methods (read, write and ezec). Because no
new domains are created during execution®, the maximum number of references
per object remains constant.

The maximum number of propagated references per object is number of meth-
ods*number of domains, in the worst case (a flow being allowed in all the do-
mains at the same time, such as a flow between two world-readable, writable
and executable objects). In our test on the mail server, this worst number is
39. However, most of the time, a flow is allowed in only one domain; thus, the
number if propagated references per object is number of methods, i.e. 2 (read
and write methods, since executable objects are rarely involved in flows).

4.4 Actual Attack Detection Example

As an actual intrusion detection example, we present a Trojan horse-based attack
against OpenSSH [29]. The purpose of this attack is to force the login process
started by OpenSSH to execute a setuid(0) operation and thus start a root shell,
regardless of the attacker’s authentication. The exploit is based on the fact that
the OpenSSH daemon can be configured to use an external login program, and
to allow users set their own environment variables before the login procedure
begins.

Please refer to table [f] for the attack scenario. It consists in creating a shared
library (libroot.so) that overloads the setuid system call. When executed through
this library, setuid effectively sets the process’ uid to 0. The attacker then uses
the LD_.PRELOAD environment variable to force loading of this library when
the /bin/login executable is started. After successful authentication, the login
program executes an setuid operation to set the authenticated user’s identity.
Because of libroot.so being loaded, this becomes in effect setuid(0). As a result,
the attacker gets a root shell.

At step 1, the libroot.so file is created as a destination object of an information
flow whose source is primarily an object that represents the attacker’s console.

® Currently, new user creation or policy modification is not handled by our implemen-
tation.
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Table 6. OpenSSH attack

operation \ required references

attacker creates libroot.so Rgiconsole.r, Rgilibrootso.w
attacker sets LD_PRELOAD
attacker starts ssh session
sshd executes /bin/login | Raelogin.r, Rgzlogin.z, Risimg.w
login loads libroot.so Railibrootso.r, Rgoimg.r, Rgoimg.w
authentication process
login executes setuid(0)
login executes /bin/sh
root shell is available

O[O0 || U = | W N —

We consider that this flow occurs within some domain d;, and that no flow is
permitted between the console and the running sshd daemon. At step 4, the
memory image of the login process (here noted as img) results from a child of
the ssh daemon executing /bin/login; that is, a flow from /bin/login to img. It
belongs thus to some domain ds where it is possible both to read the contents
of /bin/login (most probably, this is possible in any domain) and to overwrite
the memory image of the calling process img.

These two flows converge at step 5, by the contents of libroot.so flowing
into 9mg when the mmap system call is executed. Since it is necessary to write
1mg again, this could occur but in the domain dy. However, the read reference
available for libroot.so is Rg41librootso.r. Since this flow requires thus references
from two domains, it is illegal and should be considered as an intrusion symptom.

The security policy goal enforced here is precisely that no information pro-
duced by the attacker should modify the login program. No hypothesis is made
on how this modification may actually occur. It can be:

by actually overwriting somehow the /bin/login file;
by using the described attack against OpenSSH;
by using the same attack against another program
— and so on.

6.
’

All these cases lead to an identical effect in terms of information flows between
objects: a cross-domain flow occurs between an object produced by the attacker
and an object causally bound to the login program. As such, the attack will be
detected in these terms in all cases, including possible novel ones.

Note: In this attack, the model in effect results in forbidding usage of user-
defined shared libraries in programs that aren’t executed under the user’s
own identity. Note that this very behaviour is implemented ad-hoc in the
ELF dynamic linker, precisely to avoid such misuse. The OpenSSH attack is
an attack by delegation that overcomes this prevention mechanism.

5 Originally, this was a known problem of the telnet daemon, which was resolved. The
same vulnerability being discovered later in OpenSSH shows the limits of this “patch
and pray” approach.
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5 Conclusion

We have proposed a mechanism to detect host-based attacks by delegation by
checking information flows between system objects through known and expected
channels. This mechanism requires neither actual attack scenarii knowledge, nor
empirical “normal behaviour” profile. As such, it is able to detect known as well
as novel attacks and is suitable for host-based, policy-based intrusion detection.

The domains definition, resulting from a security policy specification, pro-
vides in effect legal execution scenarii constructs. The proposed approach is thus
as special case of anomaly-based intrusion detection. Detected illegal operations
provide information about attempted attack semantics (as an attacker trying
to modify the login program execution), but no information about the precise
attack scenario that led to this operation.

We have developed a runtime implementation on the Linux operating sys-
tem. Our current test are encouraging, the system actually proves to be able to
detect known as well as unknown host-based attacks, as well as some remote
attacks that lead to a cross-domain information flow on the target system. The
experiments show that the implementation of the model raises alarms only if an
illegal flow actually occurs. False alarms exist, but are due to special cases where
neither the policy specification, nor the model, are precise enough. These cases
remain extremely rare and thus the number of false alarms is very low (4 in 26
million of processed events). These results are discussed in [30].
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Appendix A

The model published by Ko & Redmond in [24] focuses on noninterference be-
tween a group of users G and a piece of data o, noted G> | {o}. Integrity
policy goals consist in such noninterference requirements, that prevent specific
users from modifying critical data. A system trace, as defined by the authors,
is a sequence of system state changes where each information modification is
performed on behalf of some subject.

We do not define “subjects” explicitly. However, any interaction with users
is done through some terminal object, i.e. a tty device, a network socket, a
removable device etc. Thus, an operation is executed by some user if it involves
a flow from this user’s terminal object(s).

It is up to the authentication procedure (in the case of Linux, this is done
through the PAM authentication system) to create terminal objects and appro-
priate references. Let us consider a single terminal object per user. For each
user u, dlogin(u) is the set of domains the user’s terminal object (denoted tu)
is bound to. A user login operation is thus modeled as follows:

— login(u) = 0> {tu.w}
— Create(tu,...) = {Rqtu.read, Rgtu.write} ,d € dlogin(u)

Theorem 51 Let G be a group of users, o an object, M,,(0) the subset of its
methods that change its state and M, (o) the subset of its methods that read
its state. Given an initial system state sqg, the policy G || {o} is enforced if
Vu € G,Ym € My(0),dlogin(u) N dom(o.m, sg) = 0. (%)

Proof:
Let us consider a system trace
[srer > dsty, sreg > dsta, . .., sre, > dsty,)

1. If o ¢ dst; for any ¢ < n, then the policy is trivially enforced.

2. Let us suppose that o € dst; for some operation i. If tu € sre;, v € G,
then the policy is violated if islegal(src; > dst;) = true. Since (%) implies
islegal(sre; > dst;) = false, the policy is enforced if (x) holds.

3. If o € dst; for some operation i and tu ¢ src; for any u € G, then the policy
G> || {o} is enforced if G> || {o},} is enforced for any o}, accessed in sre¢; or
islegal(sre; > dst;) = false.
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(a) If G> || {o},} is enforced for any o, then G> || {o} is trivially enforced.
(b) If G> || {0}.} is not enforced for some o}, then, as a result from the Prop
rule, dom(src;, s;) C dlogin(u) for some u € G. Thus, (x) implies that
islegal(sre; > dst;) = false, and G || {o} is thus enforced if (x) holds.
Of course, practical effectiveness of this mechanism requires all considered system
calls being accurately modeled in terms of information flows, including parameter
passing (for instance, passing a file path parameter to the open system call means
reading from memory).
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